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HAMILTONIAN CATASTROPHES
by

Ralph Abrgham

In the five years since the publication of Foundations of Mechanics

(FM] there Have been a number of results extending our understanding of the
qualitative structure of conservative mechanical systems, and I would like to
take this opportunity to bring up to date the picture presented in that book,
and to correct several mistakes, I am indebted to Clark Robinson, Ken Meyer,
and Floris Takens for valuable discussions over these years, as well as their
published papers, which contain most of the results I am going to describe,

end to Joel Robbin and Floris Takens for criticizing this manuscript,

Over these years, I have been deeply concerned with the socfal
problems of the world, the misuse of technology, and the basic question:
is mathematics worth doiné. My experiences and reflections during this period
leavé me with the conviction that much of mathematics, including the ideas
of this lecture in particular, are part of the intellectual wealth of mankind,
essential to our evolution and survival. I may add, however, the qualif;cation that
the relevance and valve of this kind of wealth is dependent upon applicatioms,
wvhich up to now, have been shamefully neglected, All weglth can be used, misused,

or neglected,



CONTENTS

PA#T I. GENERIC PROPERTIES
Introduction
Five years ago
Recent results
Orbit cylinders

Generic conditions of Robinson

PART I1I. BIFURCATIONS
Introduction
The burst and reincarnation
Creation
Subtle division
Murder
The phantom kisses

Emission

CONCLUSION: The general pathology

BIBLIOGRAPHY

ILLUSTRATIONS



PART 1. GENERIC PROPERTIES

1, Introduction; The book [FM] has three principal parts: formal

mechanics (Chapters 3 and 4), qualitative theory (Chapter 6), and applications
to the restricted three-body problem (Chapter 7)., In the first of these, it now
seems to me that the weakest parts are the treatment of generating functions and
groups of symmetries, These subjects are now well understood, thanks mainly to
the work of Weinstein [20] and Smale [12, 13] respectively, which Joel Robbin
has just explained in his talks, The second part, on the generic qualitative be-
haviour, was described in the book as "a science fiction story about the future
of the subject",. Like space travel, most of this story, suitably corrected of
course, has now become fact, through the work of Robinson [9, 10, 11] and Meyer
(3, 4] especially, It is mainly these two developments which I want to describe
in this lecture, The third part of the book, on the restricted problem of
three-bodies, is much simplified by the observation that the Poisson bracket

[L, 3] appearing in most of the equations 1s zero, as many readers have informed
me. The rather complicated proof can be found in Brouwer and Clemence [22). Also,

this area has been greatly enriched by the work of Smale {12, 137,






time explained why H2 could not be generic, and Robinson showed that a

modified property, which I will c¢all R2, 18 generic, In addition, he proved

that H5 and H6 are generic, but S is not (see alsc 7270, Mever and Palmorcté‘?r;rovi:jed
examples of the typical behaviour of R2 systems: bifurcation of closed orbitl.f
Then, in 1970, Meyer (3] gave a complete classification of the bifurcations
arising generically in the case of two degrees of freedom (n=2, dimension of

m =4 ), That 18, he defined a property T will call Ml for X ¢ ' , for r
sufficiently large, indicated it was Cr:generic, and classified the bifurcations
of Ml systems, This property is difficult to describe, but it {s similar to
condition T , In 1971, Meyer (4] showed that a stronger condition, 1 will call
it M2 , i3 generic, and used it to decide the orbital stability of the bifur-
cating orbits of his previous classification, All conditions of a general type,
including R2 , Ml, M2 , and T were proven to be generic by Takens [14] in
1970, Simultaneously, Robinson proved that T 1{is generic, and H3 1s not,

He proposed a corrected property, R3 , and proved it is generic, Property R3
differs from H3 more or less as R2 differs from H2 , and I will omit the

definition [10]. Also, Pugh proved the C1 closing lemma for Hamiltonian systems [30],

and established H4 as a generic property , and Takens proved H7 and related
properties are generic [15].

There may be other results unknown to me, but here I would like
especially to discuss the work of Robinson and Meyer relating to H2 and
bifurcations of orbit cylinders, to complete a gemeral picture of the generic

pathology of Hamiltonian systems which I tried unsuccessfully to describe in

1966,
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4, Orbit Cylinders. Now I will consider a fixed Hamiltonian system

xH €H on a symplectic manifold M of dimension 2n » with r 21 | and o
closed orbit y ©€ M , Then for all points m € v, H(m) = ¢ ; & co#stant,

and H-l(c) contains a hypersurface IL y with y %: . Also, a néighborhood
of YCM 1is foliated by such energy hypersurfaces Ze CH_I(e) R f.or

e € (c -84 c+8) , Let S be s local transversal section of X, at m€y,
having dimension 2n-1 , and © the associated Poincaré map. The elgenvalues of
Tm® » Which are independent of m € Y and S , are the characteristic multi-
pliers, or CM's |, of XH at Y . Because of the symplectic eigenvalue
theorem [FM, 13.16] on the quadruplet symmetry of the spectrum of a symplectic
linear transformation, these CM's occur in quadruplets (A, X, 1-1, X-l) of
equal multiplicity, and A =1 1s always a CM » with odd multiplicity,

Following Robinson, the principal characteristic multipliers s or PCM's of

XH at Y are defined as follows: the ¢M 1 of multiplicity 2k + 1 18 a

PCM of multiplicity k , the CM -1 of multiplicity 2k 4s a PCM of multiplicity
k . To a unimodular CM pair (}; X; |l| =1, Re() »0) of mltiplicity k
corresponds the single Pcﬁ A with multiplicity k , To a real CM pair

(A, 1-1; lRe(l)I >1) of multiplicity k corresponds the single PCM A with
wultiplicity k . And finally, to a CM quadruplet (X, X, l-l, X‘I;

|A| >1 , Re(A\) >0) of multiplicity k corresponds a pair of PCM's

(A, 1) of multiplicity k . Counting multiplicities, the 2n-1 = 2(n-1) + 1 CM's
have been replaced by (n-1) PCM's (see Figure 1). The theorem on cylinders of

closed orbits [FM] may now be expressed this way,

Definition, An energy cylinder of XH is an embedding

T: S1 x (a, b)

1
> M such that for all e € (a, b) , Ye = T{s x {e]]
is a closed orbit of XH of energy H[Ye] =e ,and T 1s transversal to

the energy surface Ee + That 45, H . T has no critical point,
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Energy Cylinder Theorem. If Yy 18 a closed orbit of XH s then

Y 18 contained in an energy cylinder if and only if 1 1is not a PCM of vy

One could ask how these cylinders terminate, and now this question
ﬁxay be answered more fully than in 1966, Next, I will recall the definition of
property H2 , Let Al""’xk be the unimodular PCM's of Y , and write
lj = exp(Zﬂicj) . t:.j €fo, 2] , 1=1,...,k _« For a positive integer N ,
Y 1is N-elementary 1if its unimodular PCM's have multiplicity one, and for

all integers PrsesesPy € [N, N] ,

%i; pjuj an integer = Py ® " P "0

Further, vy 18 J}H-elementary {f {t is N-elementary for all N ,

Finally, xH has property H2 1f all its closed orbits are H-elementary.
All of this is review, But now it is easy to see why H2 cannot be generic,

as Robinsor and Meyer pointed out in 1968, and undoubtedly this has been knowm

to specialists of celestial mechanice for quite a long time. For if Yc is

an H-elementary closed orbit of X, , then 1 1s not among its PCM's, so the

Energy Cylinder Theorem applies, and y belongs to cylinder of closed orbits

{Ye] parameterized by the energy, Ye c Ee . The PCM's of Ye vary continuously

with e , and thus aiso the transverse frequencies {a,(e)] » which may

J

therefore be Z-dependant for nearly all (that is, & dense set of) values

e € (c-¢, cte) , Perturbations of H do not improve the situation,

5. Generic conditions of Robinson, The first improve=ent in the

treatment of orbit cylinders is the O-elementary condition of Robinson. This

concerns the question: what happens when 1 occurs as a PCM. Let m, Y, IL » S



and 6 be as before, Then the vector subspace
V. =TS NAKer di{m) <T S
m m m

1s the tangent space at m of the energy subsurface S N I% within S .

Following Robinson, we say Y 18 O-elementary 1if the image of

T8-I:T ST §
m m m

contains Vm , where I 1s the identity of T, S .If 1 1is not a PCM, then
y 1s O-elementary. But if 1 is a PCM, Y may still be O-elementary (or not).

Thus O-elementary is a weaker condition then 1 £ PCM , and the following

is a stronger result than the Energy Cylinder Theorem of (rM] .

Orbit Cylinder Theorem of Robinson {9 1.

If v 18 s O-elementary closed orbit, then there is a cylinder

T: S1 x (<6, 8) > M such that vy, = T [S1 x (A)) 1is a closed orbit, and

Yb Y .

Here the parameter A may not be assumed to be the energy unless
y satisfies the stronger condition 1 d PCM . This theorem is also proved
by Meyer [3) 1in the special case of n=2 degrees of freedom, As Robinson hase

shown that the condition R2-0 : all closed orbits are O-elementary is a

Cz-generic property, I may suppose from now on that in the system XH , all
closed orbits lie in orbit cylinders, Purther, for such an orbit cylinder

[YA] s I will assume that a curve

ag: [-6,56] = Sympl( rR2™?y a0 - Ay

has been constructed so that the spectrum of the symplectic linear transformation
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Al is the set of CMs of YA , with one 1 removed, This construction is

2n-2)

tedious but possible, Then in Symp( R y let B, denote the bad set of

transformations A such that the unimodular eigenvalues of A , say

-

exp(+ 2ma,),..., exp(+2ma ), o, € [o, %)

(each repeated according to multiplicity) have linearly dependant transverse
frequencies over [-N, NJ , That is, there are integers PrreeesPy € (-N, N] ,

not all zero, such that
Py a1+...+ P; O is an integer,

At this point it is necessary to know that BN is a semi-glgebraic set without
interior, and therefore a union of submanifolds of positive codimension, A

careful proof is found in Buchner [1] . The orbit cylinder T 1s said to be

N-elementary 1if the symplectic curve O 1is transversal to the submanifolds

comprising the bad set BN. . This implies that ¢ will intersect BN only
in isoclated values of the parameter A € (-6, 8) , and only in strate of BN
of codimension one, Now Robinson's definition: Xy satisfies R2 1if every

closed orbit is O-elementary, and every orbit cylinder is N-elementary, for all

positive integers N .,

Theorem of Robinson [9]. Property R2 1{is Crﬁgeneric , for T 22 .,

Actually, Robinson's conditions are a little stronger, as he proved
independence for all of the PCM's , not only the unimodular ones, However,

I think that this version contains the essense of his result, In fact, the bad
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behaviour of Hamiltonian systems stems from resonances of the unimodular
transverse frequencies only. And according to Robinson's theorem, resonance
of order N (o(}) ¢ BN) occurs only at isolated closed orbits within a
given orbit cylinder. As N increﬁses, these may become more numerocus, and
a very high order resonance could occur for nearly all (that is, a dense set of)

orbits in the cylinder., Perhaps it is not too early for me to admit that con-

jecture H2 was a bit optimistic.
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PART II, BIFURCATIONS

6. Introduction., The principal pathology of the qualitative theory

of Hamilto;ian systems inveclves the origination and termination of orbit
cylinders, and their incidence upon each other, These phenomena, called bifurca-
tions, occur also in one-parameter families of general dynamical systems. The
theory of bifurcations is now only in its infancy, and its importance in appli-
cations is established by a number of recent developments, especially the work
of René Thom, about which I will speak in my next lecture. The work of Meyer [3]
is a first step toward a taxonomy of generic bifurcations of orbit eylinders

of Hamiltonian systems. He gives a complete zoo in the case of n=2 degrees of
freedom, where an orbit cylinder has only one PCM, which is an Nth root

of unity if it 1s in the bad set BN . I will dodge the meaning of generic

in this context, except to say that it involves properties MI and M2 for the
Hamiltonian system xH ,» defined in terms of higher derivatives of the flow,
and these conditions are proved to be Cr-generic, for r sufficiently large,

by Takens [141. Thus with dim(M) =4 , and X, € ¥ satis-
fying Hl1 , R2 , Ml , and M2 , I am going to describe geometrically the con-

figurations of orbit cylinders which can occur,

7. The burst and reincarnation.

First, an orbit cylinder can originate or terminate at
a critical point., This bifurcation, a metaphor for asexual c¢reation, was known
to Liapounov, and is described in the Liapounov Stability Theorem [FM; 29,37,
It is similar to the Hopf bifurcation in the context of one-parameter families of

vectorfields, which I will describe in my next lecture,
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Let m € M be an Y-elementary critical point of xH . Two cases
arise (as n=2 ) : either m 1s a saddle-center, with CMs
: (exp(+ 2mia) , , uql) with a € (0, 4) and irrational, KU >1 real, or m
is a pure center, with CMs (exp(+ 2mia), exp(+ 2mip)) with @a, B € (0, &) ,
and irrationally related, Take the saddle-center case first, and let
A< Tm M be the eigenspace of exp(+ 2mia) . By the Liapounov Theorem, there
is a 2-dimensional submanifold C CM tangent to A at m , consisting
entirely of closed orbits of transverse frequency approximately & , the

center manifold of m ., The center manifold must be an orbit eylinder

therefore, closed by the point m , as shown in Figure 2, As X" is assumed
R2 , this cylinder is N-elementary for all N , Suppose this cylinder is
parameterized as {YA] =T , with ) tending to m as A >0 tends to
zero, The flow normal to Yy o for A sufficiently small, is governed by
the CMs (|, H-l) of m ,as Cc=TU ﬁm} is tangent to A at m , Thus
the CM Y of YA approaches |1 as A tends to zero, and therefore is
eventually real., Thus a disk in C around m consists entirely of closed
orbits of hyperbolic type (real PCM ), closed by m . As in the qualitative
view only elliptic orbit cylinders (unimodular PCM) are significant, because
of their generic orbital stability [FM; 30,4, here generic means property T ]

this cace 18 of no great significance/

Now consider the second possibility, in which m 1s a pure center,
Let A < Tm M be as before, and B < Tm M Pe similarly the eigenspace of the
CMs exp(+2mig) . The Liapounov construction now applies to both A and B ,

so we have two orbit cylinders (not intersecting) closed by m |, comprising the

two subcenter manifolds of m , say

C,=Tyufm} , T, ={n} ,1=0a 5 .
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a
Here the PCM of YA approaches exp(2Ma) as A tends to zero. That is, the
transverse frequency of Y% approaches a ., Similarly, the transverse

frequency of Yg approaches B , If the period of a closed orbit ¥ is T

’
then its orbital frequency i1s 2T/T | The orbital and transverse frequencies
must not be confused, In this case, the transverse frequency of Y? approaches
the orbital frequency of Yf s and vice versa, Eventually, both Yg and

Yg are of elliptic type, and therefore of qualitative significance,

As PCM # 1 1in either case, the parameter' A can be taken to be the energy,

which may have at m either a local extremum or a saddle point. In the first

case, in each energy surface Ig near m , we have two elliptic closed orbits

B
and Ye

Qa

Y, , collapsing to m as e aproaches its critical value ¢ = H{(m) |,

as shown in Figure 3, The energy surfaces are ellipsoids around m , From the
catastrophe point of view, this represents the simultaneous creation (or annihilation
in vacuo of twin stable oscillations of (possibly) large orbital and transverse

frequencies, with amplitude increasing from (or decreasing to) zero as e passes

its critical value ¢ at m , the relative extremum, the burst catastrophe,

In the saddle case, the energy surfaces are hyperboloidal, and each

contains a closed orbit, Ye for e >c¢ , YE for e <c¢c , As e passes ¢ ,
YE shrinks, dies, and is reborn as Y: , the reincarnation catastrophe,

In the case of n=3 degrees of freedom, we would have three
possibilities for tive CMs of m : one, two, or three subcenter manifolds or
orbit cylinders at m ., But only in the case of a pure center (three orbit
cylinders) would any (and thus all) of the cylinders be of elliptic (stable)
type. And in this case, the critical point m could be either an extremum or
a saddle, If extremal, three qualitatively significant closed orbits are

simultaneously created (or annihilated) as e 1increases past c¢ the burst
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If a saddle, one closed orbit dies, and two are born (or vice versa) as e

passes ¢ , reincarnation . For n degrees of freedom, we may have in the pure

center case k cylinders dying, and reincarnated as n-k cylinders.

.
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8. Creation, In the case of n=2 degrees of freedom, a closed
orbit Y has only one PCM L , either real (Iul >1 , the hyperbolic case),
unimodular ( b = exp(2mia) , a € (0,2) , the elliptic case), or both

(Hu=+1, the degenerate cases,) Thus for n=2 , the bad set By corresponds

to W = exp(2ma) with a € [0, $] , and there is a non-zero integer

p € [-N, N] such that pa 1s an integer, or = q/p . Without loss of
generality, as a 1is non-negative, we may assume p 1is positive, and q
non-negative, so {4 is a p-th root of unity. In other words, for an orbit
cylinder {Yk} in the case n=2 , we have non-H2 behaviour whenever the

PCM My is a p-th root of unity, p =1,2,..., etc, In the rest of this lecture
I will consider these cases one at a time, and describe the results of Meyer,
vho classified all the generic phenomena which arise with n=2 , He calls

these the generic p-bifurcations, and in this section I consider the first

case, p =1 , which Meyer calls an extremal closed orbit . Thus we have

a O-elementary orbit cylinder (Yl] , with PCM W, . and Y, 1s extremal,

or W = 1 . By the Energy Cylinder Theorem, the orbit cylinder is tangent

to the energy surface Zé s € = H(Yo) y S0 A cannot be the energy of R
Generically, Meyer shows that this occurs only when by changes transversally from
real to unimodular values, passing through 1 at A =0 , so Y, changes
suddenly from hyperbolic to elliptic type (or vice versa) as A 1increases

through zero, as shown in Figure 4, Also, he shows that the parameter can be

chosen such that the period of Yx is TX = To + A , and that 16 is

orbitally unstable,

From the catastrophe point of view, with the energy e as parameter,
the vector-field XHI I; = Xe suddenly develops an unstable periodic orbit Yo
for e =c¢ , of large amplitude, presumably by a Pugh catastrophe: The closing

of a recurrent orbit, For e »c , this extremal orbit Yy splits into
o B°P
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two closed orbits Ye and Y: » where Y: = Y for some A <O ﬂ/and is
hyperbolic, and Y: =Y for some A >0 , and 1s elliptic, As only Y:

is qualitatively 'visible" , a single elliptic closed orbit has suddenly

made its appearance in the phase portrait of xe , as e increased_past e®c
and nearby is its phantom dual, Y; s which is qualitatively invisiﬁ}e.
Alternatively, the process could be read in reverse, as the instantaneous

annihilation of a large closed orbdit, through cancellation by a phantom dual,

I therefore call this phenomenon the creation (or annihilation ) catastrophe ,

9. Subtle division, Next let p=2 , the 2-bifurcation or transitional

orbit of Meyer, As 1 18 not a PCM in this case (or in fact in any of the re-
maining cases) the orbit cylinder may be parameterized by the energy according
to the energy cylinder theorem, Thus I'= {Ye] » H, = PCH (Ye) , and M, = -1
GCenerically, according to Meyer, the transitional orbit YE occurs only for a
transversal change of My from unimodular to real values, through the common
peint -1 , and Ye undergoes "transition" from elliptic to hyperbolic type
as e 1increases through ¢ , or vice versa, This aspect is similar to the
extremal orbit of the creation catastrophe, but W, moves through -1 instead
of 41 ., But in this case energy is the parameter, and there is a further
pathology, in the incidence at Y, C T of another orbit cylinder

A= {6e' e >c] . Two cases arise, In the first, 6, 1s of elliptic type,

As e approaches ¢ from above, 6e tends to a double covering of YE ’

and the orbital frequency of 6e approaches half the orbital frequency of YE .
Thus we may consider 6e a sub-harmonic of Yé » approaching résonance, as

shown in Figure 5, Meyer has shown that the transitional orbit Ye is orbitally
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stable, Thus from the catastrophe point of view, as e increases through ¢ ,
we have‘the significant orbit Ye replaced by the qualitatively visible
sub-harmonic 6e ’ whiie Yo itself becomes invisible, Qualitatively, the
behaviour is not changea very much, as 6e is approximately a double covering
of Yo » 0 the orbital frequency and amplitude of the oscillation are not
catastrophically changed, Only later, as e 1increases considerably, will it
become apparent to an observer that 6e hag doubled its period because 6e

is no longer running twice around in a neighbourhood of Yo - Hence 1 call

this phenomenon subtle division . Read the other way, with energy decreasing

with time, a visible oscillation doubles over itself, and resonates with a

phantom oscillation having twice its orbital frequency.a subtle doubling .,

These are two versions of the first of the two cases arising generically when

the PCM 1is -1 .

10, Murder. 1In this case, the arriving sub-harmonic orbit c¢ylinder
A= {6e} is of hyperbelic type, and approaches from the other side of Ec ’
that is, along the elliptic part of I , Therefore, the configuration is
identical to subtle division, with "elliptic" and "hyperbolie" interchanged
everywhere in Figure 5, and the energy parameter reversed, Thus Ye changes
from elliptic type (e <c) to hyperbolic type (e >c) at Y, » the
transitional orbit, which in this case is orbitally unstable, The hyperbolic
sub-harmonic ée (e < c¢) approaches a double covering of Ye as e 1Increases
to ¢ , and the orbit cylinder A terminates at Y, » as shown 1in Figure 6.
From the catastrophe point of view, only Yé , for e <c¢ , is visible, The
phantom killer 6e approaches the stable orbit Y, at half {its orbital
frequency, At e = ¢ , resonance occurs, ée dissappears, and Ye dies,

For e »2c¢ , Yé persists only as a ghost, so I call it the murder
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’
catastrophe, In this case also, the transition can be interpreted with time
(energy) reversed. Thus a ghost (YE) suddenly materializes (becomes elliptic),

and emits a phantom sub-harmonic ( 6, hyperbolic), the materialization

catastrophe,

11, The phantom kisses, The cases already described cover transitions

between hyperbolic and elliptic states (PCM = +1) and the remaining p-bifur-
cations (PCM = p-th root of unity, p = 3,4,... ) all must occur along orbit
cyliinders, parameterized by the energy, which remain elliptic during the bi~-
furcation, The case p=3 and one of the two cases with p=4 are very similar,
The orbit cylinder T = {Ye} is elliptic, and 'Y, has PCM exp (Zﬂiaé) .

For e = c¢ , the transverse frequency 1is Q@ = l [resp. % ], and generically,

[ 3

aé passes transversally through this value, Nearby are two other orbit c¢ylinders

A = [ée : e € (c-¢, ¢)}
& = [6e : e € (c, ct+e) ]}

~f hyperbolic type. As e approaches ¢ from above or below, 6e approaches
a triple [resP. quac. e, ] covering of Ye » as shown in Figure 7, Both
cylinders terminate at Yo which is orbitally unstable, The set of closed

orbits

+ -
A=Ay Yy, Ua = [ée : e € (c-€, c+€) }

with 6c ® Y. may be considered an orbit "cylinder® » degenerate at e =c¢ ,

In the catastrophe view, the phantom 6e approaches Ye » Tesonates to its

third (resp. fourth) harmonic, kisses T at Y. = & , an excited state,

undergoes subtle frequency division (falls to its ground state) and departs
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s
again, The actor Yo loses his stability momentarily, but recovers immedigtely.,

An observer sees nothing but this momentary instability, if anything,

12, Emission., The second case of 4-bifurcation, and all cases
of p=bifurcation for p > 4 (there is generically only one phenomenon for
each p >4 , according to Meyer) are similar., Again T = {Ye} is an elliptie
orbit cylinder, and the transverse frequency ab passes transversally through
a = i (resp. g , P >4, 1 sq < ([p/2)] . There are two nearby orbit cylinders,
an elliptic one A4 = {ée} and a hyperbolic one E = [ee} , both defined only
for e ®»¢c , As e approaches ¢ from above, both 6e and €e approach
a p-fold covering of Y, A and E terminating at Y., » as shown 1in
Figure 8., The critical orbit Ye is stable, Here, from the catastrophe view,
something significant happens, As e increases through ¢ , the stable orbit
Y. splits into two stable orbits, Ye and be , the latter at a subtly
divided (sub-harmonic) orbital frequency. Although no change 1s observed

in the principle gctor Y, » & new actor is emitted from Yo along with a

phantom twin, ee . Hence, I call this the emicsion catastrophe , following

Thom, Read in xeverse, it i{s the absorbtion catastrophe,
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CONCLUSION: The general pathology.

Finally, I would like to combine these results and the invariant
tori of Kolmogorov, Arnol'd, and Moser, in a single picture, Supppse M has
dimension four, H : M *R is ct s ¥ 21 , and the Hamiltonian system XH
satisfies all of the generic conditions envisioned so far, The XH has a set
C of isolated critical points which are of hyperbolic (real or complex),
saddle-center, or generic pure-center type, or C = Ch U Cs U Cc . Each point
m € C has a different energy H(m) . The complement M\ C is foliated by
energy surfaces Z% of dimension three., A point m € Ch has two dimensional
insets and outsets, and no center set, A point m € Cs has one dimensional
insets and outsets, and a two dimensional center, which is a hyperbolic orbit
cylinder, A point m € Cc has two sub-centers of dimension two, each an
elliptic orbit cylinder - the burst catastrophe, The remaining closed orbits

comprise orbit cylinders which originate and terminate on these center cylinders,
or on cach other, Each orbit cylinder I may be tangent to an encrgy surface

only at isolated values of its cylinder parameter - the creation catastrophes .

At each of these catastrophic tangencies, the eylinder changes from hyperbolic

to elliptic type, or vice versa, The creation catastrophes of a given cylinder

divide it into bands or *lased orbits, paramaterized by the energy. At isolated

closed orbits in these bands, there may occur either subtle division (arrival

of an elliptic cylinder of half the orbital frequency) or murder (arrival of a
hyperbolic cylinder of half the orbital frequency). In ejither case, the original
band changes from elliptic to hyperbolic type. Omitting the transitional orbits

of all three types, the components of the rest of the original ¢ylinder T 1s a
union of connected orbit bands, each completely elliptic or hyperbolie, The

hyperbolic bands have no further catastrophes, Let E be an elliptic band of T
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Then at isolated orbits in E , hyperbolic cylinders may touch E 1in one of
the Kkisses , resonating to either their third or fourth octaves at contact,
On the rest of E , the transverse f{requency a, of Ye =E N Ee passes
continuously through rational and irrational values. At each rational value,
the emission of a pair of 5ub-harﬁonic cylinders occurs, one elliptic¢ and
one hyperbolic, A few of these are 1llustrated in Figure 9, within a three
dimensional submanifold S ©M , which is transversal to the cylinder E

(S NE 1s a curve) and such that S 1s a transversal section for each orbit
Ye CE . The energy subsurfaces Se =sN Zg are drawn as horizontal sub-
spaces, and the curve S NE 1s a vertical line. Each Se is a transversal
section for Y, within Ze » 80 closed orbits 6e of an emitted cylinder A
appear as perilodic orbits of the Poincaré section map of Se . As e varles,
the periodic points corresponding to 6e trace curves in § , which appear
as rivs of an upside-down umbrella, At each e with a rational, such an
umbrella originates, with 2p ribs, if a is a p-tn root of unity, The
ribs alternate elliptic/hyperbolic and are tangent to Se at Xe = Ye ns ,
according to Meyer [3) . Only a few umbrellas are drawn in Figure 9, but

in fact, S 1is practically full of them. See also Figure 10,

Now fix an elliptic closed orbit Ye CE , As XH satisfies
property T , the Polncaré section Se has many concentric invariant circles
arouna X, = Ye NS , corresponding to invariant tori around Ye » on which
XH is an irrational rotation, according to the Moser Stability Theorem, The
ribs of emitted umbrellas for X, = YE 'S below xe pierce the annuli
bounded by the Moser circles, As X, B8ets closer to X, the ribs emitted

from X, plerce progressively smaller annuli, For a given p , there will
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be a finite number of umbrellas of 2p ribs, so the ribs of the umbrella of x,

must get Increasingly numerous as x, approaches X, -

Finally sweep the whole picture around the orbit cylinder E , to
return to M - difficult to visualize? This is the garden variety elliptic

orbit band,

Now consider a hyperbolic orbit band H €T , Then Yy <H neg,
is a normal hyperbolic closed orbit of a flow on a three dimensional manifold,
and therefore has two dimensional inset and outset (that is, stable and unstable
manifold) intersecting transversally through Yo - By Robinson's generic
condition R3 , these insets and outsets, for all hyperbolic orbits in Ze ’
intersect transversally within Ee . The hyperbolic bands, like H , prigin,te
and terminate only at saddle-center critical points by bursting on elliptic
bands via kissing, murder, or emission, or by transition to an elliptic band

through creation, subtle division, or murder.

A few possibilities for a typical orbit cylinder are shown in

schematic form in Figure 11, Here, orbit cylinders are shown as curves -

dotted for hyperbolic, svi1d €ew o1liptic. Energy surfaces appear as hori-

zontal curves,

This then, is the typical behaviour of a Hamiltonian system with
two degrees of freedom. For higher dimensions, the burst phenomenon has already
been described, The transitional catastrophes are similar to the cases described,
Another kind of transition occurs already for three degrees of freedom. We

may have a closed orbit with its four CMs arranged in a symplectic quadruplet,
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which collapses onto the unit circle, as shown in Figure 12, An cxample has
been studied by Robinson [9). The p-bifurcations in higher dimensions should
admit many new catastrophes, Worse, catastrophes must be expected whenever
the transverse frequencies are rationally related, not only when one of thenm

is a root of unity,

At present, the study of Hamiltonian bifurcations is in its infancy,
and to my knowledge, practically nothing is known for n > 2 . However, the
development of technical tools has begun, The techniques used by Meyer for
n=2 are based on the Poincaré generating function. This is the subject of two
papers by Weinstein [19, 20], as you know from Joel Robbin's talk, Also, recent
work of Takens [15) attacks this problem, and the normal forms of Robinson [11])
and of Burgonne-Cushman [21] should be helpful, At least, it seems there is
much more information and.activity now than in 1966, and 1 hope I may be
forgiven the naivity of my ideas of that time, and that this review will com-

pensate somewhat for the weaknesses of Foundations of Mechanics .
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FIGURE 1

A typical symplectic spectrum, for a closed orbit of a Hamiltonian system,

multiplicities in parenthesis, for eight degrees of freedom. See Section 4.
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FIGURE 2

Schematic diagram of the Liapounov bifurcation, in n=2 degrees of freedom,

for a single hyperbolic orbit cylinder, incident at a critical point of
saddle-center type, along the center. A three dimensional energy surface is shown
as a two dimensional surface of rotation, The PCMs of the critical point are
shown below the PCM of the approaching closed orbits. See section 7., Here T

is shown dashed because it is hyperbolic, and therefore qualitatively invisible,
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FIGURE 3: THE BURST, AND REINCARNATION

Schematic diagram of the Liapounov bifurcation in n=2 degrees of freedom, for
a pair of elliptic orbit cylinders, incident at a critical point of pure-center
type, along the sub-centers. In four dimensions, they don't intersect, Notations
as in Figure 2.

B

The PCM of Ye is shown above the PCMs of m , with the PM of Yf at the

bottom. See Section 7.
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FIGURE 4: CREATION

Schematic diagram of a hyperbolic to elliptic transition via tangency of an
orbit cylinder (here shown as a surface of revolution, hyperbolic dashed,
elliptic solid) to an energy surface (here, a horizontal plane). The PCM
for theelliptic, transitional, and hyperbolic cases are shown alongside.
The transitional orbit is unstable, and therefore belongs to the dashed

partion of T . See Section 8.
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FIGURE 5: SUBTLE DIVISION

Schematic of an elliptic to hyperbolic transition via crossing of PCM
through -1, with emission of a subtly halved elliptic cylinder, See

Section 9, The transitional orbit is stable,
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HYP

FIGURE 6: MURDER

F6

HYP

An elliptic to hyperbolic transition via crossing of PCM through -1, with

absorbtion of a sub-harmonic hyperbolic cylinder, The transitional orbit is

unstable, See Section 10.
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FIGURE 7: PHANTOM KISS

Schematic of a crossing of a PCM past exp(2Tia) , oq= 1/3 » a 3-bifurcation,
with a kiss by a hyperbolic sub-harmonic, The original elliptic cylinder is
unperturbed, The 4-kiss, in which @ passes 1/4, is identical, except that

the osculating sub-harmonic has one-fourth the orbital frequency, instead of

one-third as shown, of the elliptic cylinder, See Section 11,
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FIGURE 8: EMISSION

Schematic of a crossing of a PCM past exp(2Tia) , & p-th root of unity,

p 24 , with emission of elliptic and hyperbolic sub-harmonics of one-p-th
the orbital frequency of the original elliptic cylinder, shown here for

p =4 , See Section 12,
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FIGURE 9: NESTED UMBRELLAS

Pictorial sketch of a cross-section S of an elliptic orbit cylinder, T ,
showing the loci of successive emitted sub-harmonic cylinders. The energy
surfaces S, = Ee N's , shown as horizontal planes, are actually two-dimensional,
The intersection § 1" ,shown as a vertical line, is actually one-dimensional.
Pictorials of all the catastrophes, shown shematically (four-dimensions re-
presented as three) in the previous {llustrations, could be made in this manner.
See the Conclusion. Only a few ribs of three umbrellas are shown. There is a

countable set of umbrellas.
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FIGURE 10: NESTED TORI

Another pictorial sketch of an elliptic orbit, Y, this time, a single
three-dimensional energy surface Ee is shown. As e moves, this figure
translates in four-space to generate the orbit cylinders I and those of
the ribs of the umbrellas, For example, as e decreases, suppose Yo is

stationary within Ze , as ee approaches, faster and faster, a p-fold

covering of . This point of view 1s the basis of all of the catastrophe
Ve

interpretations of the preceeding bifurcations.
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FIGURE 11 : SECTION OF A TYPICAL CYLINDER

Schematic of a typical cylinder, from birth (here from a saddle-center critical
point, initially hyperbolie)} through successive catastrophes to deatﬂ at a
burst, Only a few of the many possibilities are shown, All orbit cylinders are
represented as curves, Energy surfaces are imagined to be horizontal plan'es,
except near the critical point, See the Conclusion, This indicates the generic

pathology in the case of n=2 degrees of freedom,
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FIGURE 12 : KREIN ROBINSON BIFURCATION

All the preceeding catastrophes have been established for n=2 degrees of
freedom, For larger n , they can also be expected. And in addition, there

is one new phenomenon to be expected, which is typified by this bifurcation of a
quadruplet of CMs, which can occur for n=3 , The incidence of other orbit
cylinders in this case is not yet known, Further bifurcations can also be
expected, which are caused by rational dependence of CMs belonging to distinct
quadruplets or pairs. See the Conclusion. This represents the current frontier

of knowledge of the qualitative theory of Hamiltonian systems.
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