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1. INTRODUCTION

We consider a charged perfect fluid with finite electrical conductivity,
no heat conductivity, and variable dielectric capacity and magnetic permeability
in the space-time of general relativity amid arbitrary Maxwelllan fields. From
the description of these fields by a pair of bilvectors (skew symmetric tensors
of order two) and a decomposition theorem for bivectors, a new description is
obtained which generalizes the classical scheme. From this new scheme the
characteristic equation is found, which shows that the fluid supports two mod-
ified sound waves and a modified contact surface. |
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2. THE BIVECTOR PAIR DESCRIPTION

In the scheme of Pham Mau Qu:n,l

the fluid is described by the parameters:
p: energy density
g: specific entropy density
p(p,0): pressure
AMp,o): dilectric capacity
u(p,0): magnetic permeability
n: electrical conductivity
&: net electric charge density
ug: unit time-like L-velocity vector
Jy: net electric charge U-current vector
Gid: magnetic fleld-electric displacement bivector

HiJ: electric fleld-magnetic induction bivector.

The physical equations are:
the constitutive (or linking) equations:

(2.1)  Grg = 1/ Brg + =M (Hy u® ug - up Hpg w7

the homogeneous Maxwell equations:

(2.2) Vp Hpg + Vp Hog + Vg Hpe = O

the inhomogeneous Maxwell equatlons:

(2.3) Vp.G'® = J®

Ohm's law for the finitely conductive case, without Hall current:

(2.4) Jp = Bu. +x Hy. ut

the adiabatic assumption, expressing the constancy of entropy along stream-
lines:
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(2.5) W™ V0 = 0

and the relativistic conservation laws,

(2.6) v T° = 0

wvhere Trs is the epergy-momentum tensor

(2.7)  Tpg = pupug + P (uplg = Brg) + Tpg = (1-Ma) Ty U ug

and T is the Maxwell stress tensor

(2.8) Trs = % o Hyn 8rg = Cppe H?E

Computing the divergence of the energy-momentum tensor (2.7) the conservation
equations (2.6) yleld

{P+P}UF ?ru: + [p+p}u? ?ruﬁ + utub [qu + ?rpd - ¢8 -

(E.?} + ?r TI'E - {1-},4_1] {umuu l’?r ‘-I'm + "'I'rm uE F.'I." um + Tm L],m ?I" uH}

+ 0oy o uw® v (M) = 0

Forming the scalar product of this equation with ug, and taking account of the
fact that uBuH = 1 by hypotheslis, one obtains the energy conservation equation

(p*p) Vo uF +uF Vo + Auug vp 7°°

(2.10)
- [1-}-..u}1'rB Ve ug + : e Uy Ve (Ap) = 0

If now (2.9) 1s simplified by subtracting (2.10) times u,, the equations of mo-
tion are obtained,

(p+p)u’ v, u® + (uu® - g8 )vp + R

(2.11)
- upu® gL P o (AT u Vu® = 0
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3. A DIGRESSION ON BIVECTORS

Let e,gmy D& the covariant indicator tensor density of welght -1, having
value 1, 0, or -1 according as (rsmn) is an even, repeated, or odd permutation
of (123%), and e,g,, the associated absolute tensor

fj-r l} Erﬂmﬂ - J'_E Eﬂm

where g 1s the determinant of the metric, gpg. If Apg is an arbitrary bivec-
tor, define 1ts dual (or adjoint) by

(3.2) *A., = %erm AT

If b, 1s & non-null vector, and Ar“br = 0, say that the bivector A.; is orthog-
onal to the vector b,. If vectors &, and b, exist such that A, = a,b; - ba,,
say that A.. 1s a simple (or decomposable) bivector.

THEOREM. If a bivector A,y is orthogonal to a unit vector a,, then both
A.; and *A._ are simple, and further

(3.3) *Apg = 8 (&, (*Apg &%) - (*Ap,. a®)as)
where s = nrar.

Proof. It is known® that every non-zero bivector in a V), 4is of rank b
(or 2), and can be written as a sum of two (or one) simple bivectors (its
leaves or blades), Suppose A.g 1s of rank L, so we may write

(3.4) Apg = (bpeg = cpbg) +brpwg - wpvg)

where b, ¢,, V., and w,. are linearly independent, and suppose further that
A.g 18 orthogonal to a,. Then from (3.4) we have

(3.5)  (a"b)eg - (afcg)bg - (afvp)wg - (a"wu)vg, = ©
As b, €4, Vy, and ¥, are linearly independent by hypothesis, the coefficlents
of (3.5) all vanish, and thus a, = O, Therefore a bivector of rank 4 1s or-

thogonal to no vector, and so if A, 1s orthogonal to a,., non-oull, then A..
is simple, and we may write

(3.6) Arg = bpeg = cpbg

for some vectors b, and c,. Taking the dual of (3.6) according to (3.2), we
have ’

[ j - T } *ATE = Erﬁmnhmﬂn
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which 1s clearly orthogonal to both by and cy. At a generilc point p, by and cyp
may be taken orthogonal to each other. Contracting (3.6) with a®, we have by
assumption

(3.8)  (a"by)eg - (aTen)vg = 0
so at p, &., b., and c,. form an orthogonal triple. We see from (3.7) that
(3.9) *Apga® = LY

which 1s clearly non-zero, so that *A,. is not orthogonal to a,, and thus there
exists a vector 4, orthogonal to a, such that

(3.10) Whpg = ad, - da,

Forming a scalar product of (3.10) with ap, we find (as s = a¥a,)
(3.11) dg = s*A.ga"

This completes the proof.

COROLLARY. If Aps 1s an arbltrary bilvector and a, 1s any time-like unit
vector, then

(3.12) Apg = E‘1-':""1555'*11'::] = I:‘u‘-litrﬂ‘k:"'"s z 'Er:arnl:l::“m{"'l'*"‘]”:l""lf.J

Proof. Let
k k
(3.13) Bpg = Apg - (8pAggs - Agasg)
Then B,g 1s clearly orthogonal to a, when s = 1, so by (3.3) we have
(3.14) *¥Brg = ’r(*Bkn‘k] = [*Bkrlk}ﬁs

It 4s evident from (3.13) and (3.2) that *By.eF = *A,.8¥, so taking the dual
of (3.14),we have

(3.15) #**B.. = e, a®(*A%"q, )

Now as ¥*¥B_.. = -Ers,j substitution for Byg from (3.13) and a simplification
yield the equation (3.12).

Liriging! imom
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4. THE VECTOR TETRAD DESCRIPTION

The bivector palr description of the Maxwellian flelds is to be inter-
preted thus. If an observer should move in space-time with the fluld, that
is with velocity u,, the classical Maxwelllan filelds observed by him are sup-
posed to be:

(b.la) Hg = *Gpgu” : magnetic field intensity,

(4.1b) Dg = Gugu" : electric displacement,
(b.1e) Eg = H.ou' : electric field intensity,
(b.1d) Bg = *H.gu' : magnetic induction.

These 4-vectors are all orthogonal to Uy, 8nd hence lie in the spatial sectlon
of the observer, and may be thought of as the classical 3-vectors of the same
names.

-

These equations translate the bivector palr into a description of the Max-
welllan fields seen by an observer in terms of the classical tetrad of vectors.
The corollary of the last section provides an inversion of this translation,
for if up takes the role of a,, and Gpg, Hyrg, *Grg, and *Hpg successively the
role of Apg in (3.12), (4.1) provides

(k.2a) Gpg = upDg - Dpug - €pgpn u"H"
(b.2b) Hpg = uBg - EQug - epgpy u"p"
(L.2¢) *Gpg = upHg - Hpug - epgmp W'D

(h.2d) *H., =wB, - Bug - e 0 w'E"

The translation eguations of (L4.1) and (L4.2) may now be used to transcribe the
physical equations (2.1) to (2.11) into the vector tetrad description of an
observer moving with the fluid.

Forming the scalar product of (2.1) and its dual with u,, the constitutive
equations are obtained in the classical form:

(b.3a) Dg = AEg
(k.3b) By = uH

From (L4.2d) the homogeneous Maxwell equations (2.2) (or v, #1T8 = 0) may be
written
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“h.li:l vr {ul"BE _ BTI.I.E _ EI'EIEIII UmEn] = 0

and from (4.2a) the inhomogeneous Maxwell equations (2.3) (or 7, GT% = J%) are

(4.5) v, (u'D® - D"u® - ™™ wH) = J°

Using (4.lc) the Ohm"s law (2.4) becomes

{h-E] IIr = Eur + ITEr,

The adiabatic assumption (2.5) is not changed by the translation. To continue
the translation, we must compute the term Gmrﬂm“ which appears in (2.8). By
raising the indices of (4.2b) and contracting with (L.2a) we obtain

(4.7)  GgeH™ = (upDr- D - epregu’H’) (WE%-E™® - &"*%Pu,By)
If we now define Poynting's wector by

(.8) P, = EI.um.‘li'ﬂHmu’:I
lh

recall

b b
(5.9)  eppege 0 = - B252BY - BBIBL - BIO.B. + BLOLD + B3bady + Bebab,

and perform the indicated contractions in (4.7), we obtain, after lowering the
index s, and taking account of (L.3b) and (L.7),

(%.10) Gm.rﬂ:?n = (DgE" + HyB )upug - HmBmErs + Bpllg + Dy = AMupPg - Prug

Contracting this equation with g'°, we get

(4.11) G = 2(DgE" - HyB")

We may now substitute (4,10) and (L4.11) into the Maxwell stress tensor (2.8),

ocbtalining
(b.12) Tpg AMeupug - Brg) - WHHg - AEEg + AupPg + Prug
wvhere we have written A for the electromagnetic energy denslty, that 1s,

(.13) A = = 1/2 (DGE" + HyB®)

For the energy-momentum tensor, we substitute (4.12) into (2.7), obtalning
directly

d by (:;{:’ktég[tr L”i',iifn|{;:_;lﬁhﬂi5 3AN
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(h.14) Trs = (p*plupug - PErg + A((1+hu)upug - 8pg) = WipHg = AEEg +

+ Mi(u Py + Prug)

For the non-inductive case, Ay = 1, this reduces to the energy-momentum tensor
used by Fourés-Bruhat,” To complete this scheme by translating the equations
of conservation of energy (2.10) and of momentum (2.11) we must compute the
divergence of the Maxwell stress temsor (4.12). For this computation we now
make a digression to establish an identity for H™ 7.G, .

Differentiating the linking equation (2.1) term by term and contracting
the result with H™, we obtain

H VeGpn = (H Hy, - EHmukanun] Vo (1/u) + 2HPuyHyu Vh +3/u BFOGH  +

+ 2 22 ﬁmn{uk“n VgHim + Hikmun ?B“k - Hknﬂk Vgun)
T

(k.15)

Now collecting the terms containing derivatives of Hps and rearranging indices,
the coefficient is seen to be the right side of the linking equation (2.1) and
thus (4.15) is seen to be, if H By, 1s replaced by EW,

B Welpy = (H Hy, - 2EBy) Ve(l/u) + 2E'Ey Ve + G VgHy, +
¥ J+ =k E-mHmk ?H-u'k.

M

We wish now to translate the right side of this identity to the vector tetrad
description, so we must replace Hp, by means of (4L,2b). From that expression
we find

(k.16)

mncd b
u®B u_B,

(4.17) Hmnﬂmn = EEmE”‘+em

abe

It is known thntIS

T -2 (g8 - 838y

and therefore (L.17) may be written

(4.19) H By, - 2E'E, = - 28"B,

Also, forming the scalar product of (4.2b) with ET and ralsing the index of
the result, we find by (L4.8),

(k.20) EH™ = - E'Bu* - PF

Recalling that B™B, = | H™§_, and that ukﬁsuk = 0, we may substitute (L4.19)

{h. :LEJ Emhemc

and (4.20) into the first and last coefficients of (L4.16), respectively, ob-
taining finally the identity

9 LIrI m
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(h.21) H7,0, = 2EE T A - 2HRH Tou - b(L-M)P Vguy + GV Hy

We now return to the program and the divergence of the Maxwell stress
tensor. Taking the divergence term by term of (2.8), we get

r

(8.22) V7", = /b Hyy T6™ + 1/k O™ Vg, - (VG g - G Vel

and replacing the first term by (4.21), we have

. "s = 1/2 E"E, VoA - 1/2 B Vou - (1-A)P W uy +
+1/2 G Ty, + (V6" JHpg - G VpHpe

It is not hard to show that the sum of the fourth and sixth terms of the right
side of (4.23) vanish by virtue of the homogeneous Maxwell equation (2.2).0
The fifth term, vhich is interpreted by Pham Mau Quan as the Lorentz fnrtﬂ,a
may be written J"Hp. according to the inhomogeneous Maxwell equation (2.3).
Contracting equations (2.4) and (4.2b) and simplifying with (L.B) we find that
our assumption for the current ylelds for the Lorentz force

(4.24) JmEﬁE = BEg - nEFihpE - mPg

and thus (4.2%) becomes

(L.23)

?fTrE = bEg - ﬂEmEmus - nuPg + 1/2 EmEm Vgh = 1/2 Emﬁm Vau =

- {l-hu]Pk Vgux

Thies is the divergence of the Maxwell stress tensor expressed in the vector
tetrad description, and substitution of it into the relativistic conservation
equations (2.6), along with (4.12), completes the transcription. Specifically,
forming the scalar product of (4.12) with u®, we get

(4.25)

(4.26) 7.gu° = Au. + P,

Substitution of (L.12), (4.25), and (L4.26) in (2.10) and (2.11) ylelds the
equation of conservation of energy:

u Vo - 1/2 PHH VA - (1/2 X2ETR, + AHTH JuTVu + BTV (k) -

- MtEEp + (p + p + (1-AuwA)Veu" - 2(1-Ap)A Vg, = O

(k.27)

where we have wriltten
(5.28) Ang = - % (WpHg + AE.Eg)

and the equations of motlon:

10 Qi from
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(o + P - (L-Aw)Alu" = (1-Aw)PT )V + BE® - xuP® + (u™u® - &™)

(9.p - 1/2 E'BEy VA + 1/2 H™, Wou + (L-A0)P® Voug) = O

This completes the description of the charged flulid in terms of the clas-
sical fields, for the bivectors have been eliminated from all of the physical
equations.

(4.29)

11
orig 1m
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5. THE CHARACTERISTIC SPEEDS

In this section we shall obtalin the characteristic equation of the hyper-
bolle system comprising the equations of motion (4.29) and conservation (4.27)
of the vector tetrad description together with the adiambatic assumption (2.5).

Suppose S 1s a time-like hypersurface in space-time, and xi, i=0,1,2,3
are Gaussian coordinates’ for S, that is the equation of S is xU = 0 and the
metric takes the form:

- . - - e W . e

(5.1) Bpg =

and that the physical equations are expressed in these coordinates. Further,
suppose the physical parameters are continuous across 5, but may have smooth
Jump discontinuities in thelir partial derivatives. Finally, suppose the space-
time defined in such a way that Hadamard's theorem obtains, that is, if F, a
physlcal parameter, 1s continuous across S, then so also are 1is covarlant de-
rivatives tangent to B, that is

(5.2) [VoF1 = O

where [F] indicates the jump of F across S, and & takes values 1, 2, and 3
only. If F is a El funetion of p and 0, we have

(5.3) VP = %E Veo + %g V.o

and forming the scalar product with ua, we find by virtuve of the adiabatlic
assumption (2.5) that

(5.4)  u® U = g{u‘ Tgp
Taking the Jump of this equation, we get by means of (5.2)

(5.5) R = o [90)

and assuming throughout this section that u® £ 0, we have

(5.6) (%7 = & (%0)

For weak shocks an analogous result may be obtalned by taking the entropy to

be contlinuous across 5, and as the adlabatic assumption 1ls the only auxiliary
equation to be added to the conservation equations to cbtaln the square linear
system in thls scheme, it may be shown that this system 1s one for which weak

135 u
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shocks propagate along characteristics.

Using (5.4) and (5.6), the jump of the energy conservation equation

(b.27) 1is

(5.7) G‘“ﬂ ‘ Elfff P“")[‘?Dm + 890 - 20Vl = 0

where we have wriltten

(5.8) A

(5.9) B p+ P+ (1-AulA

Similarly, the jumps of the equations of motion (L4.29) are

(e + @-mE%) [T®l + (%° - &%)
(5.10)
(D[Vgp] + [l-lu}Pm[?ﬂum]] = 0

where

(5.11) € = p +p - (1-Au)A

- %, 2 O\ _ 3y
(5.12) D 3% 1/2 E > l,/EHEap

For s = 0, (5.10) is

(cu? + (1-au)F°) [V ou0) + (W& + 1)
(5.13)
(D{vge] + (1-M)P [Vguyl) = ©

and contracting (5.10) with FB and ﬁg, we obtain

(cu® + (1-au)PO) P Vgu,] - PO
(5.14)
(D[ Tge] + (1-Au)P™{Vougl) = ©

(cu® + (1-au)P9) A [7gug) - A%°

(5.15)
(D[ %gp] + (1-Aw)P"[Vgupl) = O

The equations (5.7), (5.13), (5.14), and (5.15) are the components of the

Jump of (2.6) in the directions of u®, the normal to the discontinuity hyper-
surface, the Foynting vector, and ﬂpa, respectively, and hence are in general
linearly independent. They comprise a square linear homogeneous system which

1k
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we may express in matrix form:

a4 i(’a*-pﬁ p0 B 0 -2(1-Mu) [Vop)

D(u® + 1) cal+(1n)B°  (1on) (1) 0 [V %]
(5.16)

-POD O E'HD 0 Pm[vu%]

ﬁﬁDGD 0 -(1ﬁlp}ﬂpn Euﬂ+{l-hp}PD hputﬁﬂnm]

The characteristic equation expresses the vanishing of the determinant of the
matrix of coefficients of the system (5.16), so evaluating the determinant and
equating to zero, we obtain after some simplification the characteristic equa-
tion in the form

[Euﬂ + (1-LHJPD]= [[ﬂE-BD]uUE + C éi%sl P e

(5.17)
-D [B + 2(1-Au)A%]) = o

The first factor ylelds a root

o (1-A)P°
(5.18) w P LB Y

Now 1t 1s known that if an observer with velocity v, passes through a
time-like hypersurface with normal vector Ny, the instantaneous 1lmage of the
hypersurface appears to him to be moving with a veloclty U given by

Vg
Wﬂr}i - HrHr

If N 1s taken to be a unit vector, and vy 1s urp, then U may be interpreted as
the speed of propagation of the spatial sectione of the hypersurface with re-
spect to the charged fluid, and (5.19) becomes in Gaussian coordinates

Yo

Vug + 1
Thus the characteristic root (5.18) corresponds to a characteristic
wave front moving through the fluid with the characteristic speed

I ¢ ) o [ a-2)p° A'_I’]_'” ‘
(5.21) U p+p - {1-}4.;)11{1 +p = (1-hu)

Now 1t is evident that if the index of refraction of the fluld approaches
unity, that i1s, M4 tends to zero, the speed of propagation of this characteris-
tic tends to zero, so this discontinulty may be interpreted as the electro-mag-
netic analogue of the contact surface or stationary discontinulty. Its speed
of propagation with respect to the fluld is generally small, and varies ap-
proximately linearly with PO, the flux of electro-magnetic enmergy through the
discontinuity hypersurface.

(5.19) U

(5.20) U =

15 |
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The second factor of (5.17) ylelds two roots and hence two propagation
speeds, Inspection discloses that these speeds will coincide if either the
index of refraction is independent of p, oO(Au)/d = 0, or PO = 0, If both
A and u are constant, the vanishing of the second factor of (5.17) may be ex-
pressed:

(5.22) & - 2 p+p+ (1 - (a+20%)
3 p+p - (1-Ma - {p +p + (1-Au)A) [3p/dp]

which corresponds to a characteristic propagating with speed, by (5.20)

(5.23) U = ,‘[SE (1 -E{iﬁm}z}'lfz
(o]

where we have written

4200 (1 -
e ( ap)
p + p + (1-au)(A+2A™d

(5.24) Z

Finally, if the index of refrasction is sufficiently close to unity, that is,
if (1 - Au) is sufficiently small, (5.23) ylelds the approximation

(5.25) U = ,‘/-% (1 + (1-ap)2)

This is the ordinary sound speed of the fluid, except for a small correction due
to the electro-magnetic interaction, and we therefore may lnterpret the char-
acteristic equation (5.17) by saying the first factor corresponds to a cor-
rected contact surface, and the second to a corrected sound wave. Both of the
corrections go to zero with the optical density (1 - Au).

It 1s interesting that no characteristics of purely electro-magnetic orl-
gin, such as Alven's wave, occur as characteristics of the scheme. This 1s due
to the assumptions of the scheme for bounded conductivity, and the correspond-
ing Ohm's law, (2.4). In the infinitely conductive scheme these two hypotheses
are dropped, and equation (L.2k) is replaced in the analysis by the inhomo-
geneous Maxwell equation, contracted with Hy..29"1 This means in effect that
the current J,. may be dilscontinuous even across a discontinuity hypersurface
of firig gﬁder, as 1t 15 no longer related by Ohm's law to continuous param-
eters. ! The characteristic system of this modified scheme has been found
bty Fourés-Bruhat to yleld the hydromegnetic waves of the classical ther.:rr:,r.5
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