NONGENERICITY OF Q-STABILITY
R. ABRAHAM AND S. SMALE

We prove here that in general, Q-stable diffeomorphisms are not dense in
Diff{M), the space of C" difeomorphisms on a C* manifold M, with the uniform
C" topology, 1 < r < oo. Recall from [1] that if fe Diff M), then xe M is a non-
wandering point of f if and only if for every neighborhood U of xe M there is a
nonzero integer m € Z such that f™(U) n U # . The set Q = Q(f) of all non-
wandering points of fis a closed invariant set. If A = M is a closed invariant set,
A has a hyperbolic structure if and only if the tangent bundle of M restricted to
A, T (M), splits into a sum of C° subbundles E* and E*, invariant under the tangent
of f, Tf: Ty(M) — T,(M) such that Tf is expanding on E* and contracting on E*
(see [1] for complete definitions). Then f satisfies Axiom A if and only if:

(Aa) £ ) has a hyperbolic structure, and

(Ab) The periodic points of fare dense in £( f).

If f, g e Diff{ M), they are Q-conjugate if and only if there exists a homeomorphism
h:€ f) — Q(g) such that gh = hf, and fis Q-stable if and only if there is a neigh-
borhood N( f) of fe Difff M) such that every g e N(f) is Q2-conjugate to f.

In this paper we construct an open set N < DiffiT? x §%) such that every
g € N violates both (Aa) and Q-stability. The basic idea is to construct fe Diff{ M)
with disjoint closed invariant sets A, and A,, having hyperbolic structures of
different dimensions, such that an orbit goes from A, to A,, and another goes
from A; to A,. This implies that A, A,, and the two orbits are contained in £X ),
which therefore cannot have a hyperbolic structure. Further, this “pathology™ is
stable under perturbations of f in the C! topology.

In §1 we establish a criterion for the behavior described above, and in §2 we
construct a difftomorphism satisfying the criterion. §3 establishes Q-instability
for this example.

1. We begin by recalling some aspects of the Stable Manifold Theorem [1, §7.3],
or [2], or [3).

If A is a compact invariant set of fe DifffM) with hyperbolic structure, T (M)
= E* + E then there is defined for each xe A, a stable manifold W*x) which
is a one-to-one immersed cell in M, and consists of points y € M with the property
that d(f™(x), /™)) — 0 as m — oo. Then W*(x) is defined as the stable manifold
at x€ A for f~'. Then define W¥%A) = | J,,, W*(x). Finally, W*(x) varies smoothly
On compact sets as x varies in A.

The type of A is the pair (a, b) where a = fiber dim E* and b = fiber dim E*,

DeFmNITION. A subbasic set for fe Diff{M) is a compact invariant set A = M
with hyperbolic structure such that f/A is topologically transitive and the periodic
points are dense in A.
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If A; and A, are disjoint subbasic sets of f, we write A, < A; when W¥A,)
N W4A,) # @, and A; <€ A, when there are points p, e A, such that W¥(p,) and
W¥p,) have a point of transversal intersection.

THEOREM. If A, and A, are disjoint subbasic sets of fe DiffM)and A, < A, < A,,
then

WA n WHAy) = Q = ).

CoroLLARY. If A, and A, are disjoint subbasic sets of fe DiflilM), A, € A, < A,,
and type (A,) # type (A;), then f does not satisfy Axiom A.

ProOF. Suppose fsatisfies Axiom A.Il A, € A; < A; and xe WYA,) n WYA,),
then x € £ f) by the theorem above, while f™(x) = A; as m — co, and f™{x) = A,
as m — — oo, As the orbit closure O(x) = €Xf), A, and A, must be in the same
basic set £); of f (that is, the same indecomposable piece of Q4 f), see [1, 6.2]).
As € has a hyperbolic structure and is indecomposable, dim EZ is constant for
all x e {2, a contradiction.

The proof of the theorem requires the following

Lemma. Let f:A — A be a topologically transitive homeomorphism of a compact
metric space with periodic points dense in A. Then given nonempty open sets V,, V,
in A, there is a periodic point pe V, such that f™(p)e V, for some m.

Proor. From the topological transitivity f™(V,) n ¥, # & for some m. Let g
be a periodic point in this intersection and p = f ~™{(g).

PROOF OF THE THEOREM. Let x € W'(A;) n W*(A,) and let U be a neighborhood
of x.

Now by the hypothesis A, <€ A, W¥(p,) and W*(p,) have a point of transversal
intersection for p,e A, p,e A, Let ¥, be a neighborhood of p, in A, U, a
neighborhood of p, in A, such that for every pe V;, ge U,, W*(p) and W*(g) haye
a point of transversal intersection. Choose an open set ¥ in A,, U, in A, such
that if ¢’ € V,, p' e U,, then W*(g') and W™(p') intersect U.

Now apply the previous lemma to obtain periodic orbits y, meeting V,, ¥,
and y, meeting U,, U;. Thus W¥(y,) and W¥y,) have a point of transversal inter-
section while W*(y,) and W*(y,) both meet U. Now apply the argument of [1, 7.2]
to obtain that f™(U) n U # & for some m. This proves the theorem.

2. We now construct a diffeomorphism fe Diff{iT? x 5?) having a subbasic
set configuration A; € A; < A,. Let ge Diff{iT?) be the Thom diffeomorphism,
defined by the linear isomorphism of R? having matrix

1 2
11

(see [1, §1-3]), and p e T? the fixed point corresponding to the origin, which is of
type (1,1), that is, dim E} = 1, dim E¥ = 1. Let he Diff(5?) be the horseshoe
diffeomorphism [1, §1-5], which has two fixed points, g, and g,, of type (1, 1), at
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each of which the map h is linear in a C* coordinate chart. In addition, recall
that {q,} < {q,} < {q,} with respect to h. Let f, = g x he Difff T* x §%). Then
A, = T* x {q,} is a 2-dimensional subbasic set of type (2,2) and A, = {(p, g2)}
is a one point subbasic set of type (2, 2). Using local coordinate charts on T? and
52 at p and g, respectively, with respect to which g and h have linear local repre-
sentatives, we modify f;, through a curve of linear maps so that the fixed point
A, becomes fixed of type (1, 3). We may do this in such a way that the new local
diffeomorphism at A, can be extended so as to agree with f; outside a small neigh-
borhood of A, and so that the new diffeomorphism f satisfies :

Wi (Az) = WiHA,)

and W7{A,) contains a connected part of the |-dimensional stable manifold
W%g,) in 5% which contains g, and a point ye §? of transversal intersection,
ye Wig,) n W¥g,).

Thus with respect to f, A; <€ A; < A, completing the construction.

Finally we claim there exists a neighborhood N of fe Diff T? % §%) such that
for all g e N, there are subbasic sets A,(g), homeomorphic to A, i = 1, 2, such that

A, lg) € Ajlg) < Aylg)

First, we observe that the local Q-stability Theorem [3, Proposition 3.1] applies
to yield the following: There is a neighborhood N, of fe Difi T? x §?) and for
every ge N, subbasic sets A,(g) and a conjugating homeomorphism h{g):
Ajlg)w Aslg) = Ay u Ay, fhig) = higlg. Furthermore, the stable manifolds
W7 A,(g)) depend continuously (C" topology on compact subsets in the fibers,
C” topology on A (g)) on g (C" topology, r = 1). This follows from the continuity
conclusion of the Stable Manifold Theorem [2]. Thus A, < A, is always an
open condition. The relation A, < A, can in general be destroyed by arbitrarily
small C' perturbations, but for this particular diffeomorphism fe Difi T? x §%)
both A, and A, are submanifolds, so W*{A,) and W*%A,) are smoothly immersed,
with W*(A,) transversal to W%A,). But nonempty transversal intersections are
preserved even by C° perturbations of the submanifolds (that is, intersection but
not transversality is preserved), so in this case A, < A, is an open condition also.
Thus there is a neighborhood N of fe DiffiT? x §%) contained in N, such that
every g € N has a configuration of subbasic sets of the form A,(g) < A.lg) < A,lg),
and A,(g) has type (2, 2), while A,(g) has type (1,3). Thus every ge N violates
condition (Aa) by the corollary of §1, and thus violates Axiom A.

3. In this section we show that the neighborhood N of fin Diff{T? x 5?) has
the property that every diffeomorphism ge N is not Q-stable.

We argue that if ge N = N(f), then either

(a) WA,) n WYA,) contains at least one point in some W¥A,) n W*z) where
ze A, is periodic or

(b} not (a),



Mongenericity of Q-stability now follows from the following facts:

(A) A diffeomorphism ge N satisfying (a) may be approximated by one
satisfying (b).

(B) A diffeomorphism ge N satisfying (b) may be approximated by one
satisfying (a).

(C) If g, g’ e N satisfy (a), (b) respectively, then g, g’ are not Q-conjugate.

Mow (A) is a consequence of a general approximation theorem (see for example
[4, p. 100]). Fact (B) is proved easily since the periodic points are dense in A, and
the W*(z) for z periodic are dense in W¥(A,).

Finally we see the truth of (C) by following the orbit of W*A,) n W*(z) and its
image under a possible conjugacy.
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