HAMILTONIAN MECHANICS ON LIE GROUPS
AND HYDRODYNAMICS

J- MARSDEN AND R, ABRAMHAM

Introduction. Some of the most classical and important examples in mechanics
are systems whose configuration space is a Lie group. The particular examples
we have in mind are the rigid body (on the Lie group SO(3)) and the perfect
fluid (on the Lie group of volume preserving diffeomorphisms).

Most of what we have to say is classical and well known. What we do is to
put it in the language of global analysis with perhaps some simplification. Our
sources are mainly the papers of Arnold and Blancheton [3], [4].

The paper is divided into two parts. In the first we present the general theory.
In the second we describe the case of hydrodynamics. Some connections will be
made with the calculus of variations in the future. In addition, a more complete
exposition of the present work will appear in lecture note forms shortly [11].!

1. Abstract theory. Let G be a Lie group.? By this we mean that G is a smooth
manifold modelled on a locally convex topological vector space (locally convex
since, amongst other reasons, the Hahn-Banach theorem is needed) and is also
a group such that group multiplication and inversion are C* mappings. The
tangent bundle of G is denoted TG and the fiber over x e G is written T,G,

Let g be a (weak) Riemannian metric’on G. This means that the tensor g is an
inner product on each T,G, but inducing a different topology in general. For each
x€G, e,€ TG and f, € T,G we write {e,,f,> = g(x)(e,.[.).

A weak symplectic form on a manifold M is a closed two form w such that the
mapping @,: TM — T*M defined by wyle,) f, = a(x)-(e..f,) is injective on each
fiber. (If w, is an isomorphism on each fiber, we call w a symplectic form.)

For infinite dimensional mechanics (continuum mechanics and quantum
mechanics for example), if one wishes to work with a symplectic form it is neces-
sary to use domains for vectorfields in the same sense as occurs in semigroup
theory; see [8). If, however, one wishes to exploit differentiability directly and
have the vectorfield defined and smooth in the usual sense, then it is necessary
to use weak symplectic forms instead. The reason will become evident shortly.
We shall use weak symplectic forms here.

Except in unusual and artificial circumstances (these can be obtained for the
wave equation using the spaces in [10]), the manifolds one needs to get a smooth

! See also [14].

# The term “Lie Group” may be misleading since, in the infinite dimensional case, the usval Lie
theorems do not hold. The term ILH Lie Group, or Fréchet Lie Group may be better.

? g is assumed smooth.

237



238 J. MARSDEN AND R. ABRAHAM

vectorfield are usually Fréchet and not Banach, the C* functions for example.
In that case the standard flow theorem for vectorfields is false. Instead one must
use techniques of Browder, Kato and others. For the case of hydrodynamics with
viscosity a good part of a classical book [6] is needed. Also, the flow is possibly
only local, that is, cannot be extended for all time. For the nonviscous case we are
concerned with, see Kato [5].*

Let M be a manifold and w a weak symplectic form. A one form « can be lifted
when there exists a vectorfield (unique) X on M such that X* = a, where
X¥m) = 2wy(m)- X(m), me M. We write X = a*.

For a smooth function f: M — R, such that df can be lifted, we write X , = (df)*,
and we call X, a Hamiltonian vectorfield.

It will be necessary to recall a few theorems about Hamiltonian systems.

THEOREM 1. Let (M, w) be a weak symplectic manifold and X a Hamiltonian
vectorfield with a local smooth flow E. Then

(i) H+ F, = H (conservation of energy), and

(ii) F¥w = e, or F, is symplectic (preserves the form w).

See [1] or [8] for the proof.
Recall that if M is a manifold then T*M admits a natural weak symplectic
structure given by (locally)

e ((ey, 2y), (&3, 25)) = [ale,) — a,(e,)]/2

for e, TM and ;e T*M. [w is symplectic iffl M is modelled on a semireflexive
space.] See [8, Theorem 2.4).

THeoREM 2. Let G be a Lie group and M a manifold with ®:G x M - M a
smooth action of G on M, which extends naturally to an action ®* of G on T*M.
Suppose Xy is a Hamiltonian vectorfield on T*M and H is invariant under the
action ®*. Then the following functions Py are invariant under the flow of X .
Let X be an infinitesimal generator of ®, so X is a vectorfield on M and define
Py:T*M — R by Pyla,) = o (X(m)). (We call Py the momentum of X.)

For the proof see [8, Theorem 5.3]. This is the basic conservation law of
mechanics.

In case g is a weak Riemannian metric on M inducing a map g,: TM — T*M,
then we deduce (using [8, Theorem 5.2]) that if X, is a Hamiltonian vectorfield
on TM (with respect to the form w(e,) ((e,. /,), (e2,./2)) = [{fa e,> — {f1,€21/2)
and H is invariant under the induced (adjoint) action on TM then the function
Pyle,) = {e,, X(m)} is invariant under the flow of X,

The latter situation is the one which arises naturally in the case of a Lagrangian
system and will be of concern to us below,

Let us now return to the setting of Lie groups. We shall require our group and
metric g to have certain regularity properties introduced as follows.

* The general nonviscous existence problem is setiled in [14],
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DEFINITION.” Let G be a Lie group and g a weak Riemannian metric on G. We
say that g is compatible with G iff

(i) g is left invariant; that is, for each x € G, L*g = g where L, is the diffeomor-
phism defined by L (y) = xy;

(ii) the kinetic energy function T: TG — R defined by Tle,) = {e,, e /2 can
be lifted to a {smooth) vectorfield X using the weak symplectic form

wyley,fi) (enfi)) = [{fu ey — {fi,e,»]/2; and

{iii) Xy possesses a local smooth flow (called the geodesic flow of g).

Also, we say that G is a regular Lie group iff every (smooth) left invariant vector-
field on G has a flow.

In the finite dimensional case these conditions are of course redundant. In the
infinite dimensional case it is (iii) above which is difficult to verify.

The main conservation theorem is the following (the cases of hydrodynamics
and a rigid body are due to Euler):

THEOREM 3. Let G be a regular Lie group and Xy a Hamiltonian vectorfield on
TG with H invariant by left translations (H « TL, = Hforeachxe G, TL,: TG - TG
being the tangent map). Then for each ve T,G (e = identity element of G) the function
B, is invariant under the flow of X, where

B:TG—= R
is defined by
Fou) = (TR, v,up

where u e TG, R, is right translation by x and T,R, is the tangent of R, evaluated
at ee G

COROLLARY 4. Let G be a regular Lie group and g a compatible weak Riemannian
metric. Then the functions P, are invariant under the geodesic flow of g. Further,
this flow is a symplectic (local) diffeomorphism and conserves (kinetic) energy.

PROOF. Let G act on itself by left translations. Each ve T.G determines an
exponential flow on G by assumption, and its derivative is the infinitesimal
generator X. Let E, be the exponential map of v. Then

X(y) = d(E(y))/dt = d(E[e) y)/dtat 1 = 0.

Now Efe)'y = R, = Ffe) and so by the composite mapping theorem, d(E (¢e)- y)/dt
= T.R,-d(Efe))/dt = TR, -v. The result is now an immediate consequence of the
conservation theorem. Il

In practice it is usually most convenient to work in the Lie algebra T,G by
pulling back the flow to T,G by left translation (in the so called “‘body coordinates™).
The pull back of the vectorfield X, to T,G is the Euler equations. They are
determined as follows:

* In the rest of section one, “left" and “right" can be interchanged, and this introduces a minus sign
in Theorem 5 and Lemma 6.
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Tueorem 5. Let G be a (regular) Lie group, g a compatible metric and X ; the
corresponding Hamiltonian vectorfield with flow F,: TG — TG (which may be just
local). Define H, on T,G by

H{v) = TyyLyy-1Fo

(where defined), where Fve T,,,G. Then H, is a smooth flow on T,G and has vector-
field Y uniquely determined by: Y: TG — T,G, {Y(u),v) = {[u, v], u} where [u,v]
is the Lie bracket in T,G.

Proor. It is easily checked that H, is a flow. To compute ¥ we must compute
dH (v)/di at t = 0. For this we use the following:

LemMa 6. Let x(t) be a smooth curve in G, ve T,G and v(t) = Ad,,-. v where
Ad, = T,R,-*T.L, = T,R,-.L): T,G - T,G.
Then we have
dvfdt = [Ut), Ty Ly~ (dx/d1)].

We omit the proof, as it is more or less standard; see [11] or [13].
To prove the theorem, we start with

d (Fu, T,R yw/dt = 0
by the conservation law, for each u, v e T,G. By left invariance of g,
CFaty, TR 0> = (T Liggy-1- F oy Ady- 10
= {Hu, Ad,-v}.
Differentiating, using Leibnitz’s rule and the lemma, givesat t = 0,
(Yluhvd + u,[v,u]) =0

where we use the fact that dx/dt = F,u (which is because we have a second order
equation). Il

If one finds the flow of ¥ on T,G, the problem of finding F, is solved using the
equation

dxjdt = T.L,, Hu= Fu

and the fact that F, is left invariant. For groups of diffeomorphisms and in
particular for hydrodynamics, this is just a problem in ordinary differential
equations.

CoroLLarY 7. If v, is a critical point of ¥ on T,G then x(t) = expltvg) € G is
the geodesic with initial value vy,

Proor. We have Hv, = v, and so
Fy = T,L, ., vy = dx/dt.
This is the equation for x{r) = exp(rv,). M
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By left invariance, the conservation law and conservation of energy pull back
to the Lie algebra T,G.

For many circumstances it is important to work in a Hilbert space. Therefore
we could complete T,G with respect to {, », to obtain a Hilbert space H. It is
absolutely crucial to recognize that on H, the vectorfield ¥ is not smooth and is
not everywhere defined. Also, the flow H, is not defined on all of H. (This can
be seen for the diffeomorphism group where T,G corresponds to C* vectorfields,
so H would be L, vectorfields. For flows of nonsmooth vectorfields see [9].)

In the finite dimensional case, or if the energy function T had D*T continuous
on H (so ¥ would be smooth on H say), then definiteness of the quadratic form
D*T*® at a stationary point v, would imply its stability (the quadratic form is
computed in Arnold [3]). Unfortunately for hydrodynamics this is not the case,
s0 it is unknown whether or not this criterion for stability is valid, as far as we
know.

2. Hydrodynamics of perfect fluids. Let D be a compact orientable n-manifold
with boundary (or without boundary). Let g, be a Riemannian metric on D and
€1 a volume (orientation) on D (that is, a nonvanishing n-form) which is generally
one derived from g, For tangent vectors on D we write v-u or {v,u) for the
inner product with respect to g,

Let G be the group of volume preserving diffeomorphisms on D. Leslie [6],
and Omori [11] show that the group of all difftomorphisms has a structure
modelled on a Fréchet space for which the group is a Lie group. The procedure
has become a more or less standard one in manifolds of maps. See also [2]. A
recent theorem of D. Ebin” tells us that G is also a Lie group (in fact a Lie sub-
group). Then T,G may be identified with C* vectorfields X on D such that

(i) divgX = 0, and

(ii) i, = 0 where i: bd{D) — D is the inclusion map.

For the full diffeomorphism group, (i) is omitted,

Condition (ii) means that X is parallel to the boundary. Also, the Lie bracket
in T,G is the negative of the usual Lie bracket of vectorfields. This requires the
observation that, under an action, the map taking the Lie algebra to the infinitesi-
mal generator is an antihomomorphism, a standard result [13]. Letting G act
naturally on D gives the stated result,

Define a weak Riemannian structure for G or all difffomorphisms by setting

(X, Y= LX— YQ

for X, Y vectorfields. Extend by right translation to all of G.®
CoNJECTURE.® On the regular Lie group G, < ,> is compatible with G.

® On the foliation described in [3].

7 Sec [14] for the proof.

® For hydrodynamics one must use right invariant metrics, while it is customary to use left invariant
ones for the rigid body,

# This conjecture is proven in [14],



242 1. MARSDEN AND R. ABRAHAM

That & is regular is simple. Namely if X € T,G, and X has flow F, then the map
f = foF, is the exponential map of X. This is easily seen. One cannot do this for
general X which are just in L.

For compatibility of g = ¢, > one must show that we get a vectorfield X and
that it has a local flow. From §l, it is enough to work with the Euler equations.
We shall just show how to get the Euler equations Y (Theorem 5). Conjecture 8
is true for the full diffeomorphism group and suitable metrics. Details may be
found in [11].

Tueorem 9. For G described above, the vectorfield Y of Theorem 5 is given by:
for each vectorfield X, there are C* functions [ and g (unique up to constants) such
that

Y(X) = —iyd(X) + df = =L, X + dg
where X denotes the one form obtained from X via g, iy is the inner product, and

Ly isthe Lie derivative. Traditionally p,definedbyp = f— (X, X3/2=g + {X, X3/2
is called the pressure.'”

Proor. First, we note that for vectorfields X, X, ¥ that
ID {X,, [XDF Y]}ﬂ = J‘D !-Ixm r]in = J; {j[xu.ﬂ + Lrllxn}jﬂ

since {5, Ly{iy X)Q = 0 by Stoke’s theorem and the boundary condition i,Q = 0
on bd(D). But iy, 4 + Lyiy, = iy, Ly (see [1]), and so we finally obtain

Lm (X0 XD0 = iii%a = [ (XL D0.

Of course in this the fact that the vectorfields are divergence free is essential.
(On the full diffeomorphism group the equations are a little different.)!" If this
condition were omitted, the pressure term would be absent.

It is a classical theorem (Hodge theory)'? that a vectorfield Z can be written
uniquely

Z = Z, + grad(f)

where grad(f) = df, and Z,; and grad(f) are orthogonal and divgZ, = 0, and Z,

is parallel to the boundary. (The function f is obtained by solving Laplace’s

equation V2f = div Z.) One easily sees the orthogonality directly, as follows:
For any X in T,G, observe that {X, grad(f)} = [ X-grad(f) = 0 since

[x-erana = [Lora = [Lao = [a =0,

' The equations for ¥ are usually written in the equivalent form du/di+V,0 = dp where ¥ is the
covariant derivative and v 15 an integral curve of ¥

! For the right invariant metric on the full diffeomorphism group, the equations are do/dr + Wdioy)
4+ Lv = 0. The existence problem is unknown for these equations.

' CI. Morrey, Multiple integrals in the calculus of variations, Chapter 7 and also [11], [14].
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using Stoke’s theorem and ixQ = 0 or bd(D). Now for the theorem we let f be
such that iyd(X) — df is divergence free and then observe, by our remarks, that

— (V0. Xo> = <X X X5 = [ ingudlR0
= (ixdX, Xo)

= (iydX — grad(f), Xo>.

Note that iyd(X) might not be parallel to the boundary but L,(X) is, and these
differ by a gradient. By nondegeneracy we conclude the result.

The pressure thus constrains the motion to being divergence free.

Observe that the motion of a stationary point X is just its own flow. See
Corollary 7. This holds for harmonic vectorfields for example.

Finally we give a theorem classically known as Kelvin's circulation theorem.
One should note that the theorem as proven in standard hydrodynamics books
lacks rigor.

Tueorem 10. Let X(t) be the velocity vectorfield in T,G above. Let [ be a smooth
closed loop in D (a compact 1-manifold) and I, = F(l), where F, is the motion of the
fluid (geodesic). Then §; X(t) is independent of 1.

ProoF. Since F, is a diffeomorphism,
X = Iﬁ'i’[t},
I 1

Now d(F*X(1))/dt = F*L,X + F*dX/dt, which by Theorem 9 equals F*dg =
d(Ftg). Thus by Stoke’s theorem,

L]
dt),,
Curiously this is not true for the geodesic flow on the full difftomorphism group.

This theorem is quite analogous to the circulation theorem for mechanics. It
also holds for TG, so we give it

THEOREM 11. Let M be a (weak) symplectic manifold with form w = df. Let F,
be a smooth Hamiltonian flow (or local flow) on M. Let A be a compact two manifold
in M with boundary | = bd(A), and |, = F(l). Then |, @ is independent of t.

ProOF. By Stoke's theorem,

famf o] mes
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