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A model of a simple electric power supply network involving two generators connected by a
transmission network to a bus is studied by numerical simulation. In this model, the bus is
supposed to maintain a voltage of fixed amplitude, but with a small periodic fluctuation in the
phase angle. In such a case, traditional analysis using direct methods is not applicable. The
frequency of the periodic fluctuation is varied over a range of values near a nonlinear resonance
of the two-generator network. When the bus fluctuation frequency is away from resonance,
the system has several attractors; one is a small-amplitude periodic oscillation corresponding
to synchronized, quasi-normal operation (slightly swinging), while others are large amplitude
periodic oscillations which, if realized, would correspond to one or both generators operating
in a desynchronized steady state.

When the bus fluctuation frequency approaches resonance, a new periodic attractor with
large amplitude oscillations appears. Although it does correspond to a synchronized steady
state, this attractor has a disastrously large amplitude of oscillation, and represents an unac-
ceptable condition for the network. Basin portraits show that this resonant attractor erodes
large, complicated regions of the basin of the safe operating condition. Under conditions of small
periodic fluctuation in bus voltage, this basin erosion would not be detected by traditional anal-
ysis using direct methods. Further understanding of such complicated basin structures will be
essential to correctly predict the stability of electric power supply systems.

1. Introduction

The stability of electric power systems is a well-
established subject with a long history of research
[Anderson & Fouad, 1994]. Stability problems have
become more complex as interconnections become
more extensive and systems operated closer to ca-
pacity. There is growing recognition that phase
space geometric concepts and dynamical bifurcation
theory can provide some of the tools necessary to
understand power system stability.

The question of transient stability has been
studied primarily through differential equation
models based on the swing equation or driven
pendulum. While realistic problems may involve
coupled systems of hundreds or even thousands of
equations, it is sometimes helpful to consider small
prototype systems where fundamental concepts can
be more clearly apprehended.

Here we propose to extend our previous re-
search in this area [Ueda et al., 1991, 1992] by again
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considering a model system consisting of two gen-
erators connected to a bus by a simple transmission
network. In contrast to the previous work, here,
we consider that the bus does not maintain a con-
stant voltage, but rather the bus voltage has con-
stant amplitude, with small periodic fluctuations in
the phase angle which act as a forcing term, unaf-
fected by the two generators [Yorino et al., 1985a,
1985b, 1988; Tamura, 1992].

We again focus attention on the basins of at-
traction of this model, maintaining as before that in
many practical situations the first true and proper
concern of the engineer should be the extent in
phase space of the basin of attraction of the safe
operating condition. For example, when a system
operates in a very noisy environment, such as a ship
in heavy seas, the engineer must be prepared to
consider the ultimate fate of a system trajectory
over time begun from a wide range of initial con-
ditions. Likewise in a power system, when a fault
occurs, the system may find itself in any of a wide
range of states immediately after the fault is de-
tected and cleared. The question is whether such a
state evolves under the dynamics of the post-fault
system to a stable and safe operating condition; in
other words, whether the immediate post-fault state
is in the basin of attraction of the safe operating
condition.

The particular phenomenon we consider here is
the possibility that a small swing in one part of a
large power supply network may excite a nonlin-
ear resonance and hence produce a disproportion-
ately large swing in another part of the system. We
represent the small exciting swing as a bus whose
phase angle has a small sinusoidal forcing term; the
excited subsystem is the two generators and their
associated transmission lines.

2. System Definition with
Parameters and Forcing

In this paper we consider the following system of or-
dinary differential equations for two coupled swings
under periodic forcing:

ds,

dr Bt

dwl

BN — by sin(sy, — &
7y — 1 b sin(d; — &2)

- blB sin(51 - (53) - D1w1

@ — w

dr 2

dw )

d—: = a{pz — b21 sin(d2 — &)

- bZB sin(62 - 53) — Dng}. (1)

Here the independent variable (normalized time) is
denoted by 7. The dependent variables 8, d2 are
the angular displacements of generators 1 and 2, re-
spectively, and w;, wp are the angular velocities of
generators 1 and 2.

The equations involve several parameters. The
parameter a is the inertia ratio of the two gener-
ators (which are assumed to have the same rated
capacity). The parameters p; and p; represent
the mechanical input powers to the generators, and
the parameters b1, b21, bip, and byp depend on
the electrical properties of the network. The coeffi-
cients D; and D, are damping constants; dg stands
for the phase of the bus voltage.

The derivation of this system of ordinary dif-
ferential equations from an electric network is given
in the Appendix A.

Table 1 shows the values chosen for the system
parameters in our present studies.

The goal of this study is to investigate the influ-
ence of bus fluctuations on the basins of attraction
of the system (1), and our aim is simply to illus-
trate basic phenomena which will be of fundamen-
tal importance in better understanding the stability
of electric power systems.

We considered two different types of fluctua-
tions. In one type, the voltage magnitude at the
bus is considered constant, while the phase angle
dp at the bus undergoes a sinusoidal oscillation
described by

ég = 0p sin Ot (2)

so that the system becomes

d_& —_— w
ar 1
dw .
E{ =p1— b12 s1n(61 — 52)
—biB sin(61 — 6p sin Qt) — Diw 5
# Q
dr w2
dw .
—d;g = a{p2 — b2 sin(d; — &)

— byp sin(dz — Op sin Q) — Dows}.
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Table 1. Numerical values chosen for the parameters in the
fluctuating bus model Egs. (1).

a P1 p2 bz by bip b2 D, D,

08 02 03 04 04 14 14 0005 0.005

In a second type of fluctuation, the phase angle
is assumed fixed at §p = 0 while the magnitude of
the bus voltage fluctuates. Thus b; 5, bog would be
replaced by

bi(1+¢sin Qt), bop(l+esinQt). (4)
Basin portraits obtained using both types of fluc-
tuation share many qualitative features. Since
the phase fluctuation in a real power system
is usually more significant than voltage fluctu-
ation, we present in this paper only the re-
sults of the phase fluctuation equations (3).I

0 1

-—b12 008(51 - 52) - blB COoSs 51 —Dl
0 0
ab21 COS(62 - 61) 0

Table 2 shows the numerical values of the equi-
librium point coordinates and their eigenvalues.

Equilibrium point 0 is the stable operating con-
dition. It has two eigenfrequencies or resonant fre-
quencies: )3 = 1.095 corresponds to a mode in
which the two generators oscillate in phase, while
the higher frequency Q2 = 1.415 corresponds to
a mode with the two generators oscillating out
of phase. The remaining equilibrium points are
unstable.

Traditionally, the stability of the system (5) has
been analyzed with the aid of the following first in-
tegral or energy function for the unperturbed sys-
tem without damping:

1 1
V (01, wy, 02, wo) = 5‘0% + —wi — p161 — P26y

2a
— b1 cos(dy — &2) — bip cos &;
— bap cos &, . (6)

This function has the property that along any
solution of the autonomous system

av

—aby; cos(d2 — 1) — abep cos &2

3. Unperturbed Case

We first consider the unperturbed case [Ueda et al.,
1991, 1992] in which there is no fluctuation in either
amplitude or phase at the bus. We then have the
autonomous system

d_

dr  *

dw . .
d—7_1=p1—b12 sm(61—52)—b13 s 51 —D1w1
déy

dr w2

dwy . .
E- =a{p2 —-bgl s1n(<52 —51) —-sz Sin 52 —D2w2} .
(5)
For our chosen parameter values, this system
has four distinct equilibrium point solutions. The

stability of each equilibrium is determined by the
eigenvalues of the matrix

0 0
b12 COS(51 - 52) 0
0 1

—aD2

Traditionally the stability analysis of the sys-
tem (5) uses direct methods based on the following
argument: Select the equilibrium point having the
second lowest value of V' (in this case, point 2), and
let this value of V be called V_; then the hyper-
surface V = V, represents a sufficient condition for
stability.

We now examine the basins of attraction of
the unperturbed system by systematic integrations
from a large number on initial conditions. A com-
plete basin portrait of the system would require
the full four-dimensional phase space; fortunately,
much information can be gained from a few two-
dimensional slices through the phase space. The fol-
lowing four slices will be used for all our basin por-
traits: In the plane (61, d2); in the plane (41, wy);
in the plane (82, w2); and in the plane (wy, wy). In
each case the section passes through the stable equi-
librium point 0.

Figure 1 shows the results of integrations in
these four sections. In each case, initial condi-
tions on a grid of 101 x 101 points were integrated.
Figure 1 is composed of 101 x 101 small squares,
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Table 2. Location and stability of the equilibrium points of the unperturbed system Eqgs. (5), with the
parameter values in Table 1.

Equilibrium Point 0

Equilibrium Point 1

Equilibrium Point 2

Equilibrium Point 3

Eigenvalues

0.156616
0
0.202549
0
—0.002 + j1.095
—0.002 — j1.095
—0.002 + j1.415
~0.002 — j1.415

3.100081
0
0.321134
0
—0.002 + j1.015
—0.002 — j1.015
—1.206
1.206

0.245942
0
3.027673
0
—0.002 + j0.898
—0.002 — j0.898
—1.350
1.350

3.047650
0
2.875112
0
— 1122
—0.717
0.713
1T sf

0
)

1

.0
-3.0 20 -1.0 0.0

R0 2:08+ 3.0

Fig. 1. Sectional basin portraits of the unperturbed system Egs. (5), showing the stable equilibrium point (white dot),
unstable equilibrium points (black dots), and intersections with the hypersurface V = V.. The basins are colored light
blue for the desirable steady operating condition, and red, orange and yellow for basins of undesirable desynchronized

attractors.
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Fig. 1. Sectlopal basin portraits of the unperturbed system Eqge (5}, showing the stable equilibriom point (white dot],
unstable squilibrium polnts (black dots), and iotersections with the hypersurface V' = Vi, The basins are colored light
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each colored according to the particular attractor
ultimately reached by the corresponding initial con-
dition. At these parameter values, the system has
four attractors. One attractor is equilibrium point
0, representing the stable operating condition; its
basin is colored light blue. A second attractor is
a stable periodic orbit, in which generator 1 steps
out and sustains oscillations desynchronized from
the bus; its basin is colored yellow. A third at-
tractor is similar except that generator 2 is desyn-
chronized; its basin is orange. The fourth attractor
represents a sustained oscillation in which both gen-
erators are desynchronized from the bus; its basin
is red. Of course none of the three periodic at-
tractors would be realized in an actual power sys-
tem: The desynchronized oscillations would destroy
the generator(s). But the basins themselves are of
paramount importance: if the state of a power sys-
tem immediately after a fault were within the yel-
low, orange, or red basins, intervention would be re-
quired to avoid a potentially destructive transient.

Also shown in Fig. 1 are the curves where each
two-dimensional slice of phase space intersects the
hypersurface V = V.. From these sectional views,
it appears that the hypersurface V = V, encloses a
convex region lying entirely in the light blue basin
of the safe operating condition, as guaranteed by
the theory for the unperturbed system.

4. Fluctuating Bus and Resonance

We now consider the system (3) in which the bus
is supposed to undergo a small sinusoidal swing in
phase angle. It is well known that sinusoidal forcing
may excite a nonlinear resonance in a system oper-
ating within a smooth potential well, if for exam-
ple the potential well departs from quadratic shape
due to a smooth potential barrier over which the
system may escape from the well. Such resonance
arises from the nonlinear softening of the restoring
force as the system is forced up the potential bar-
rier, and occurs for forcing frequencies somewhat
less than the natural frequency of small unforced
oscillation near the bottom of the well [Thompson,
1989; Soliman & Thompson, 1989; Stewart et al.,
1995].

The swing equation has just such a non-
quadratic potential well; crossing the potential
barrier is equivalent to stepping out. It should
therefore be no great surprise that the system (3)
exhibits nonlinear resonance associated with step-
ping out and desynchronization. With the small

amount of dissipation typical of power systems,
these resonances may be very strong, so that a jump
to resonance would be just as dangerous and poten-
tially destructive as desynchronization.

To analyze the resonant response of the sys-
tem (3), numerical solutions were approximated by
Fourier sine series expansions for the displacements

61 and 52:
81(7) = 610 + 011 sin(1 — é11)
+ 612 sin(2QT - ¢12) + -
52(7') = §29 + 821 Sin(QT — ¢21)
+ da2 sin(2Qr — d22) + - .

(8)

The Fourier coefficients é;5, ¢ = 1,2, j = 0, 1, 2,
were computed for many solutions at different val-
ues of 2. Figure 2 shows results plotted over a range
of Q values spanning the linear resonant frequencies
in Table 2, and with g = 0.01.

The resonance at the lower frequency, corre-
sponding to an in-phase oscillation, is very strong.
The first harmonic components &;; show dramat-
ically a typical nonlinear resonant response, bent
toward lower frequencies as expected for a soften-
ing of the restoring force. There is an extended
range of frequencies at which the resonant solution
coexists with the nonresonant solution. (The inter-
vening unstable solution branch is not shown.)

This and similar scans of approximate resonant
response guide our choice of conditions for which
bus fluctuations are of special concern, where basin
portraits should be examined. Here we present two
sequences of basin portraits. The first sequence,
shown in Fig. 3, was taken at g = 0.01 and a suc-
cession of frequencies () spanning the stronger res-
onance in Fig. 2. The basin colors are as in Fig. 1:
The basin of the stable operating condition is again
colored light blue. Also, we now use an additional
color, dark blue, to indicate the basin of attraction
of the resonant solution. Again we emphasize that
although this solution corresponds to synchronized
operation, with neither generator stepping out, nev-
ertheless the resonant solution may represent an in-
tolerable condition for the system.

Progressing in frequency 2 through the basin
portraits in Fig. 3, and comparing with Fig. 2,
we see that at frequencies such as Q2 = 0.84 and
= 0.88, where the resonant response has the
largest amplitude, the corresponding erosion of the
light blue basin by the dark blue resonant basin
is slight. However, for higher frequencies such as
© = 1.0 and 2 = 1.04, the resonant response
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Fig. 2. Low-order Fourier coefficients of nonlinear resonant solutions of the system Egs. (3) with fluctuating bus angle, for

0 = 0.01 and a range of frequencies .

amplitude is still large, while the light blue basin
has been severely eroded. Comparing with Fig. 1,
we see that the hypersurface V = V, is no longer
a conservative or even a sufficient condition for the
system to reach a desirable steady state, because of
erosion by the dark blue resonant basin.

At the highest frequency shown, namely Q =
1.08, the dark blue region has completely eroded
the light blue basin. Note however that here the
resonant response amplitude is not nearly so large;
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indeed, there are no longer two co-existing synchro-
nized attractors. So the dark blue region may now
represent the return to an acceptable steady oper-
ating condition. The significance of the dark blue
region in each basin portrait should be evaluated
with reference to the response amplitudes indicated
in Fig. 2. Taking this into account, it is still clear
that the energy function method may fail to detect
serious dangers which are clearly indicated by sam-

ple basin portraits.
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Fig- 3. Sequenon of sectlonnl basin portraits of the system Ege. (3} with Auctusting buas angle, for 8y ] el wght
different froquencies [0 poar the strongest resodinnce. Coses (a] 2 = 080, (b) 0 nEe, () f1 088, (d) [ = 0.92
(] 80 = 05, (F] 12 = 100, (g) 1 = 1,04, ancd (k) 11 = 1.08; sequences (1) in the plane (8, 8, (2) in the plane (§;, wy ], (3 In
the ploase (dy, we ) nnd (4] in the plune {uw, o). Basin colos for the desyachronized attrectors are as in Fig. 1; the color dark
blue s mdded for the basio of the resonant syachronized attractor, which erodes the Bght blise bosin of the desirable operating
condition
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A second series of basin portraits is shown in
Fig. 4. Here the frequency € of bus fluctuation
is 0.95 in every case, and the magnitude of bus
angle fluctuation increases to g = 0.05 in steps
of 0.01. Further approximate solutions similar to
those in Fig. 2 showed that the resonant response
at g = 0.05 is similar to that at 6 = 0.01. At
0p = 0.05 the out-of-phase resonance is somewhat
stronger; the frequency range and the peak response
amplitude of the in-phase resonance are about the
same as at g = 0.01, while the nonresonant re-
sponse amplitude has increased. The frequency
2 = 0.95 used for Fig. 4 still corresponds to an
unacceptable condition reached from the dark blue
basin, which further erodes the light blue basin.

Another disturbing aspect of the basin portraits
in Fig. 4 is that the light blue basin is eroded not
only by the dark blue resonant basin, but also by the
orange basin of a desynchronized attractor as well.
Further exploratory simulations of the system (3)
by numerical integration confirmed that a jump to
resonance provoked by slowly varying €2 may be in-
determinate [Thompson & Soliman, 1991; Stewart
& Ueda, 1991], with the outcome attractor (reso-
nant or desynchronized) depending very sensitively
on the details of how the jump is provoked, such as
the rate of scanning 2, or a small amount of noise.

Furthermore, we note that the yellow basin and
the red basin do not noticeably participate in the
erosion of the light blue basin. In other words, the
basin erosion threatens to cause step out of genera-
tor 2, but the threat of generator 1 stepping out is
negligible. (This is due to our choice of parameters,
which is not symmetric: The power output ps of
generator 2 is larger than the output p; of gener-
ator 1, and also the ratio of inertias a is not one.)
Thus the basin portraits in Fig. 4, sequence 2 in
the (81, w1) plane show the safe basin surrounded
by yellow basin (generator 1 steps out), but eroded
by the orange basin (generator 2 steps out). Al-
though resonance and basin erosion can occur in a
periodically forced one-machine system, the basin
erosion pattern in Fig. 4 can only be observed in a
system with more than one machine.
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Appendix A .
Derivation of the System of
Equations (1)

With the notation of Fig. A, the equations for the
network are written as

Ey - Eg = ja Iy + ja(fy + I)
Ey — Ep = jzo b + ja(ly + I2) .
From the above we get

I = X {~j(z +22)Ey + jzEs + je2 Ep}

I = X {-j(z + z1)E2 + jzE1 + jz1 EB}
where

A= (z+z1)(x+ 22) — 2°.
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E=E.e® jx, Now we may substitute the expressions for the
) ) output of the generators to obtain
Es=Eze™
wphird*6y Pin zE\E;
= - sin(d1 — d3)
Pg dt? Pg APp
r2E1Ep
— ———sin(6; — &
APB ( 1 B)
Fig. A. Schematic diagram of a power supPly networ]f with wphr d? 52 Py, zE\E, .
two generators connected by transmission lines to a slightly P a2 = Pr AP Sln(52 - 51)
fluctuating bus. B t B B
T1E2Ep
— ———sin(d, — §
APg (32 B)

The outputs of the generators are
where

T | )
P = R(ELT) = A {zE1 By sin(6y — 62) Pg = volt-ampere base quantity .

+ 2251 Ep sin(é1 - ép)} Rewriting this in terms of normalized quantities

. 1 ) gives
Pze = \SR(EQI) = Z {mElEz s1n(62 - (51) )
wplip d*§ . .

The equation of motion (without dissipation)  where
of the rotor of generator 1 is

d%e p = Hm
1
Lr —z = Dim = The Pg
where b1y = 2B\ By
APg
I = rotor moment of inertia
01 = rotor angular displacement big = E_Elﬂ
=wpgt+ 4§ APp
wp = system angular frequency and
T\m = mechanical 1nPut torque wplyp d26, ~ ' .
T, = electromagnetic torque —I?EQ— =p2—b2) sin(d2—61) —bzp sin(d2—4dB)

and similarly for generator 2. By definition

where
Py, = 0'1T1m _ P,
P =01T1e P2 = Ps
and zE By
. . bg1 = AP
01 =wp + (51 . B
Therefore we obtain by = z1E2Ep
d*6; d?6 1 APg
hr— = hr—% ~ — (Pim — Pi¢) . . :
dt dt The normalization of time appropriate for
and similarly for generator 2 generator 1 is
d*0, d?5, 1 _ Pg
ferg = b = o (Pom = Pac). "=\ sz
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which leads to the ordinary differential equations:

d?s . .
le =p1—- b12 sm(51 - 62) - blB sm(61 - 63)
d?5, . .
F = a{p2 — bo1 s1n(62 - 51) — bap Sln((sz - (5}3)} .
Here
_hr_H;
Q= — =_"=
Lrg H,

is the ratio of inertias, alternatively expressed as a
ratio of per-unit inertia constants Hy, H, defined
by

2H, _ wplir
wp  Pg

2H, _ wplp
wg  Pg

Note that in this paper the two generators are as-
sumed to have the same rated capacity.

Finally we include a damping term for each gen-
erator proportional to its angular velocity. In keep-
ing with the simple character of the model, we use
a constant damping coefficient. The final working
form of the differential equations is then

d26 .
le = p1 — b12 sin(d; — &2)
. dé
— g sin(6; — 6) — Dy d—rl
d26. .
Fj = a{pz - b21 sm(62 - 51)

dbo
— byp sin(d; — 6g) — Dy 2221 |
2B sin(dz — dg) — D, o }

Appendix B
Comments on the Numerical
Values of the Parameters

In Appendix A we presented the derivation of
the swing equations (1), including expressions for
the parameters b2, b21, b1, and byp in terms of
the network reactances z, z1, and z. It is also pos-
sible to reverse this procedure, and calculate the
reactances z, 1, and x3 from the values of the pa-
rameters in Table 1 together with values of E;, E,,
Ep, and Pg. The reader who is interested in real
power systems will be able to choose reasonable val-
ues for Ey, F, Eg, and Pp, and may then use the
following relations to get an idea of the system we

had in mind when we chose the parameter values in
Table 1:

S bgBEszEB
! Pg{(b12EB + bopE1)(bi2Ep + bigEs) — b%zE?g}
20 = b13E1E§EB
2 PB{(bleB + b2pE;)(b12EB + bipE,) — b%2E}23}
b12E1E2E%

* = Po{(b12E5 + b2 E1) (012E5 + b1pEs) — V,EL)

We note that the reactance values so obtained
include not only that of the transmission line, but
also the leakage reactance of the power station
transformer, and the reactance of the generator

in transient states, for appropriate values of E;
and Es.

A
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