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Abstract

The macroscopic spacetime (or its underlying mesoscopic or microscopic substratum) has
been shown to emerge from a more fundamental concept, a cellular network. A NetLogo model
of spacetime that self-organizes from such a microscopic cellular network is described here. This
will shed new light on understanding spacetime at the Planck scale.
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1 Introduction

Recent developments in quantum gravity1 and string theory2 have raised lot of debates about the
very concept of spacetime and causality at Planck scale. The length and time at Planck scale are
the smallest length (10−33cm) and smallest time(10−43sec) below which no measurement is possible.
The Planck length and Planck time can be expressed as

lp =
√

h̄G/c3

and
tp =

√
h̄G/c5

respectively, where h̄, G, c are the Planck constant, the gravitational constant, and the speed of
light. The very concept of space, time and causality loose their meaning below this scale. The
spacetime behaves discretely at Planck scale. The metaphor that Nature behaves discretely at the
Planck scale is not at all clear to 21st century scientists. One of the present authors (SR) along
with Requardt3 described how macroscopic spacetime or its underlying mesoscopic substratum
emerges from a more fundamental concept, a fluctuating cellular network around the Planck scale.
Henceforth, we shall call it the RR model of spacetime after Requardt and Roy. It is generally
beleived that no physical laws that are valid in continuum space-time will be valid below or near
the Planck scale. RR proposes that geometry emerges from a purely relational picture a la Leibniz.
The discrete structure at the Planck scale consists of elementary nodes which interact or exchange
information with each other via bonds, playing the role of irreducible elementary interactions.

Essentially, the RR model is a two-level system. The microscopic level, QX, is a dynamical cellular
network of nodes and bonds. The macroscopic level, ST, that self-organizes from QX is an another
cellular network, in which the nodes, or supernodes, are the cliques (that is, maximal fully connected
subgraphs) of a graph, G(t), of the QX level, bound in a network by superbonds. The system of [RR]
ends with a metric space, but we wish to advance to a macroscopic cellular network embedded in
Euclidean space. Even though an isometric embedding is not possible, we will try to approximate
one using neural network technology.

First we will model the dynamical cellular network, QX, with its cellular automaton-like dynamics,
as described in RR. We introduce an extension of the theory by interpolating one step. Rather than
defining the emergent supernodes directly as the cliques of a graph G(t) of QX, we derive from G(t)
the permutation graph of a permutation, P (t). We then define the supernodes of the emergent ST
as the cliques of the permutation graph of P (t), rather than those of G(t). The purpose of this
extension is to achieve a manageable computational task.

Spatial geometry is going to evolve from the dynamics of the QX network. For the emergence of
spatial organization we use a neural network approach, based on the differences of finite sets, rather
than the random metric of RR based on fuzzy sets. This process is intended as a preliminary step,
that eventually will lead to an implementation and simulation of the [RR] scheme. Later, we intend
to go on to the emergence of a temporal geometry in a subsequent paper.
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2 The QX model

Let N > 1 be an integer. We consider a set of N nodes, ni, i ∈ N̄ = {1, · · · , N}. The linear
indexing scheme for the nodes is meant as a convenience for programming, and not as a spatial
lattice.

2.1 Notations

Nodes have internal node states, si ∈ q.Z, where q is a positive real number, the quantum of
information. For each i, k ∈ N̄ , with i < k, we have a link or bond, bik, having an internal bond
state, Jik ∈ {−1, 0,+1}, which might be interpreted as outgoing, off, or incoming, respectively4,5,6.
In this approach, the bond states are dynamical degrees of freedom which, a fortiori, can be switched
off or on. The wiring, the pure geometry of the network, is also an emergent, dynamical property
and is not given in advance. Consequently, the nodes and bonds are not arranged in any regular
way, e.g., a lattice, and there is no fixed near/far order. This implies geometry will become to some
extent a relational (Machian) concept and is not an a priori element of our formalism.

2.2 Local dynamical law

The node and bond states are to be updated in discrete steps of clock time, t = z.τ, z ∈ Z, and
τ ∈ R+ is an elementary interval of clock time. While various local dynamical laws might be
contemplated, we are going to use just one, which is Definition 2.1 of Requardt and Roy3. Assume
two critical parameters given, 0 ≤ λ1 ≤ λ2. Then these are the rules:

si(t + τ)− si(t) = q.ΣJki(t) (1)

Jik(t + τ) = 0 if |si(t)− sk(t)| =: |sik(t)| > λ2 (2)

Jik(t + τ) = ±1 if 0 < ±sik(t) < λ1 (3)

Jik(t + τ) = Jik(t) if sik(t) = 0 (4)

And if λ1 ≤ ±sik(t) ≤ λ2, then,

Jik(t + τ) = ±1 if Jik(t) 6= 0 else Jik(t + τ) = 0 (5)
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Of course, we must have initial conditions, si(0) and Jik(0) in order to begin a dynamical trajectory
of the cellular network.

2.3 Graphical displays

Our model will begin with random values for the node and bond states, and then evolve with
discrete steps of clock time according to the rules above.

Our first display will show the instantaneous state of the bonds of QX. Note that there are no
bonds Jik(t), i = k. Also, our bond states ±1 may be interpreted as arriving or departing directed
links in a directed graph, or digraph. Hence Jik(t), i 6= k comprise a skew- symmetric matrix, and
we need only display the case i < k. So our display will be an N ×N upper semi-diagonal matrix
of bond trivalues, which we may indicate with the color code, green for +1, red for −1, and yellow
for 0.

We use the diagonal of the triangular matrix to show the node-states with colors: red, orange,
yellow, or green, for decreasing values of node-state, si, which is the current charge on the i − th
node. Alternatively, we may show the node-weights on the diagonal. This is the number of links
at a node in the graph view.

Figure 1: The NetLogo graphics window showing bond-states and node-weights.

A second display shows the node-diffs, or relative potentials, sik = si − sk in a convenient color
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code. Here we are regarding the node-state si as a sort of charge density, that increases by a receipt
of charge when Jik = 1, and decreases when Jik = −1.

Figure 2: The NetLogo graphics window showing node-diffs and node-weights.

A third display shows the digraph as follows. For any (i, k), i 6= k, the corresponding position in
the display is illuminated if there is a directed link from the i− th node to the k − th.

The fourth and final display is the simple undirected graph underling the digraph, shown as a
symmetric matrix.

3 The ST model

The process by which the ST network self-organizes from QX, as described in [RR], uses, as su-
pernodes, the cliques of the graph G(t) that underlies the digraph D(t) of the dynamical cellular
network described above. We find this inconvenient as the computation of cliques for a general
graph is notoriously difficult7. Meanwhile, it is relatively easy to compute the cliques of a permuta-
tion graph. So we are going to modify the prescription of Requardt and Roy by the addition of an
intermediate step, as follows. The graph G is given to us with an arbitrary ordering of its nodes.
So we have a sequence of n nodes, [Q0, ..., Qn].
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Figure 3: The NetLogo graphics window showing the digraph and node-weights.

3.1 The supernodes

We define the it node-weight of a node as the number of its adjacent nodes, that is, the number
of links attached to it. Let wi denote the weight of the i − th node, Qi. Next, we form, for the
i − th, node, the pair (i, wi), and collect all of these in a sequence of pairs, A. Now we sort this
sequence of pairs in order of decreasing weights, obtaining a new sequence of pairs, B. Finally,
from B, we extract the sequence of first members, obtaining the n-permutation, P . We may now
easily compute the cliques of the permutation graph of P as the supernodes for the ST network.

One may object that the cliques of the graph of P are not intuitively motivated, but we feel that
they are at least as meaningful as the cliques of G. In fact, if we were to try to identify the cliques
of G by hand, we would probably start with the nodes of highest weight.

Our NetLogo model includes a button ”show permutation” that prints out, when pressed at time t,
the permutation, P (t). Our intention is to export this to an external program, such as Combinator-
ica, to compute the cliques, and then to submit these to a further NetLogo model (or self-organizing
map software) to obtain the ST model.
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Figure 4: The NetLogo graphics window showing the graph and node-weights.

3.2 The clique computation

The cliques of a permutation graph are just the inverse sequences of its permutation, which may
be found by inspection, or by software such as Combinatorica. We explain by considering a few
examples. Here we will follow [CDM; pp. 69-71] closely, except that we use parentheses rather than
brackets for vectors, that is, sequences of natural numbers.

3.2.1 Example 1

Let π be the permutation (6, 5, 4, 3, 2, 1) of the sequence (1, 2, 3, 4, 5, 6). Then the inversion vector
of π is the 5-vector v = (5, 4, 3, 2, 1). The permutation graph of π, Gπ, consists of the six nodes
with a link from i to j only if they are inverted, that is, i < j while π(i) > π(j). In this case, all
nodes of Gπ are linked: 6 ∗ 5/2 = 15 links.

In [CDM], a clique of a graph is a subset of vertices which are totally connected. We say a clique is
maximal-size if no node may be adjoined without destroying the clique property of total connection.
In [RR], a clique is always maximal-size, and we shall use this convention throughout. So in this
example, there is just one clique: the entire graph is totally connected. The unique clique is the
set, {1, 2, 3, 4, 5, 6}. This is a set of nodes (indices) of Gπ, not of values of the permutation, π.
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Figure 5: Permutation graph for Example 1 (one clique).

3.2.2 Example 2

Let π be the permutation (3, 2, 1, 6, 5, 4). Then the permutation graph, Gπ, has six links, for the
inversions: (1, 2) as π(1) = 3 > π(2) = 2, and similarly (2, 3), (1, 3), (4, 5), (5, 6), and (4, 6). There
are two cliques, each of the same size, 3, which are disjoint. The permutation graph is the disjoint
union of the two cliques, {1, 2, 3} and {4, 5, 6}.

Note that the cliques of Gπ correspond to maximal decreasing sequences of π, and these are observ-
able in reading π from left to right. It is easiest to reverse the sequence of π, and read its maximal
increasing sequences. In this case, Reverse(π) = (4, 5, 6, 1, 2, 3) from which we read immediately
the two cliques, {4, 5, 6} and {1, 2, 3}

3.2.3 Example 3

Let π be the permutation (3, 6, 2, 5, 1, 4). In this case, Reverse(π) = (4, 1, 5, 2, 6, 3) from which we
read immediately the two cliques, {4, 5, 6} and {1, 2, 3}, as before.

3.2.4 Example 4

Let π be the permutation (4, 1, 2, 3, 6, 5). In this case, Reverse(π) = (5, 6, 3, 2, 1, 4) from which we
read immediately the four cliques, (5, 6), (3, 4),(2,4), (1, 4).
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Figure 6: Permutation graph for Example 2 (two cliques).

3.3 The superbonds and weights

Given a permutation arising from our simulation of the QX cellular network, we are going to define
its cliques as the nodes of our ST graph. So we now need to connect these clique nodes with links,
the superbonds of our scheme. It is here that we diverge from RR, and follow our path to precise
sets and weights of entanglement, rather than fuzzy sets and random metric distances. We will use
Example 4 above to illustrate the concepts.

Given a finite set of natural numbers, S, define its span by the set,

span(S) = [min(S), . . . ,max(S)],

and its length as the natural number,

length(S) = card(span(S)) = max(S)−min(S) + 1.

Note that the empty set has length zero.

Next, given two finite sets of natural numbers, S and T , define their lap by the set,

lap(S, T ) = span(S) ∩ span(T ),

and their lapsize by the natural number,

lapsize(S, T ) = card(lap(S, T )),

that is, the cardinality of their lap. Note that if the two sets are disjoint, then their lapsize is zero.

Similarly, we define their span by the set,

span(S, T ) = span(S ∩ T ),
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Figure 7: Permutation graph for Example 4 (four cliques).

and their spansize by the natural number,

spansize(S, T ) = card(span(S, T )).

Finally, we define the weight of entanglement of the pair (S, T ) (not both empty) by the ratio,

weight(S, T ) = 1− lapsize(S, T )/spansize(S, T ).

Note that the weight of two sets with disjoint spans is one. Also, if span(S) = span(T ), then
weight(S, T ) = 0.

We may wish at this point to modify the definition of weight in the case of two sets with disjoint
spans, so that the weight may be greater than one, and actually measure the distance between the
two spans.

Now let’s compute the weights of pairs of the cliques of Example 4 above. Let K1 = (5, 6),
K2 = (3, 4), K3 = (2, 4), and K4 = (1, 4). We will compute the symmetric matrix W = [wij =
weight(Ki,Kj)]. Note that all the diagonal elements are zero.

We begin with w12. But this is one as K1 and K2 are disjoint. Similarly with w13 and w14, so we
have only three weights to compute from the definitions. Here we go:

w23 = weight(K2,K3) = 1− lapsize(K2,K3)/spansize)K2,K3),
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Figure 8: Computation of the weight of entanglement of two sets.

lap(K2,K3) = span(K2) ∩ span(K3) = span({3, 4}) ∩ span({2, 4}) = {3, 4} ∩ {2, 3, 4} = {3, 4}

lapsize(K2,K3) = card(lap(K2,K3)) = card({3, 4}) = 2

spansize(K2,K3) = card(span(K2 ∪K3)) = card({2, 3, 4}) = 3

so finally,
w23 = 1− 2/3 = 1/3.

Similarly, we compute w24,

lap(K2,K4) = span(K2) ∩ span(K4) = span({3, 4}) ∩ span({1, 4}) = {3, 4} ∩ {1, 2, 3, 4} = {3, 4}

lapsize(K2,K4) = card(lap(K2,K4)) = card({3, 4}) = 2

spansize(K2,K4) = card(span(K2 ∪K4)) = card({1, 2, 3, 4}) = 4
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so finally,
w24 = 1− 2/4 = 1/2.

Finally, we compute w34,

lap(K3,K4) = span(K3)∩span(K4) = span({2, 4})∩span({1, 4}) = {2, 3, 4}∩{1, 2, 3, 4} = {2, 3, 4}

lapsize(K3,K4) = card(lap(K3,K4)) = card({3, 4}) = 3

spansize(K3,K4) = card(span(K3 ∪K4)) = card({1, 2, 3, 4}) = 4

so finally,
w34 = 1− 3/4 = 1/4.

Displaying all our weights in matrix form, we have,


0 1 1 1
1 0 1/3 1/2
1 1/3 0 1/4
1 1/2 1/4 0



4 The spatial organization

The above simulations are preliminary to the emergence of spatial organisation. In RR framework,
the emergence of spatial organization has been formulated as a random metric space8,9. Instead,
we will seek an isometric embedding of our cliques and their entanglement weights. We now have
our cliques and weights, but notice that the triangle inequalities are not satisfied.

4.1 The isometric embedding problem

Even were the distances to satisfy the triangle inequalities, an isometric embedding into a Euclidean
space of a given dimension might not be possible. For example, consider the pyramid or tetrahedron,
the simplest of the Platonic solids. This is a system of four nodes with all six weights equal. We
may isometrically embed in Euclidean 3-space, but not in the plane. As in our case, we may have
a cellular system with millions of nodes and wish to embed as isomterically as possible in 3-space
or the plane, so we must adjust a random embedding by a dynamical process.

So we propose to regard the nodes and weights as a neural network, and try to embed the nodes in
Euclidean space (dimension two or three) such that the distances at least approximate the weights
as well as possible. One possible technique for this process is the neural network method of self-
organizing maps10. A simpler method, easily implemented in NetLogo, is a multidimensional variant
of least squares, as follows11. Let us begin with a random map of the nodes into Euclidean space.
Then, sum up the squares of the differences between the internodal distances and the weights, and
integrate the negradient of this sum function to minimize it.
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4.2 The method of least squares

We will illustrate this simpler method for the special case described in detail in the preceding
section. This case has four nodes. As above, let w12 = w13 = w14 = 1, w23 = 1/3, w24 = 1/2, and
w34 = 1/4. We are going to try to embed these four nodes in the Euclidean plane, as isometrically
as possible. We begin with an arbitrary map of the nodes into the plane, assuming only that all
the positions are distinct.

Let pi = (xi, yi) denote the current position of node Ki in the Cartesian plane, i = 1, 2, 3, 4, and
dij the Euclidean distance between Ki and Kj . Then there is a contribution eij = (dij − wij)2

to the square error we wish to minimize. Let E denote the total error, that is, the sum of the
six pair errors, eij , for pairs ij = 12, 13, 14, 23, 24, 34. We regard E as a function of the eight real
variables, (x1, y1, ..., x4, y4). We will adjust the positions so as to minimize this function, that is,
to find the most nearly isometric positions. In fact, we will integrate the negradient of E by the
Euler algorithm.

So we must now compute symbolically the partial derivatives of E with respect to each of the
eight coordinate variables. Note that E is the sum of six square terms. For any one of the eight
coordinate variables, there are three of the six square terms that yield zero. For example, the
square term involving p1 and p2, e12 = (d12−w12)2, has nonzero partial derivates only with respect
to the four variables, x1, y1, x2, y2.

For example: The partial of e12 with respect to x1 is

∂x1e12 = ∂x1(d12 − w12)2 = 2(d12 − w12)∂x1d12

while
∂x1d12 = ∂x1 [(x1 − x2)2 + (y1 − y2)2]1/2 = (x1 − x2)/d12

and thus
∂x1e12 = 2(d12 − w12)(x1 − x2)/d12 = 2(1− w12/d12)(x1 − x2)

as d12 6= 0. Note that if d12 = w12, which is the result we would like, then ∂x1e12 = 0. Likewise, if
x1 = x2.

All of the partial differentiations of E with respect to the eight coordinates are very similar to this
first case, we must only take care with the signs.

Thus we find the eight new coordinates, (X1, ..., Y4), by the Euler algorithm applied to the negra-
dient of the error, E, as follows. For the first of the eight coordinates of the adjusted configuration,

X1 = x1 − (∂x1E)∆t

where ∆t is chosen suitably small. Using the above template for all three nonzero terms,

∂x1E = ∂x1(e12 + e13 + e14)

we have,

X1 = x1 − 2{+(1− w12/d12)(x1 − x2) + (1− w13/d13)(x1 − x3) + (1− w14/d14)(x1 − x4)}∆t
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The other seven adjusted coordinates are found similarly,

Y1 = y1 − 2{+(1− w12/d12)(y1 − y2) + (1− w13/d13)(y1 − y3) + (1− w14/d14)(y1 − y4)}∆t

X2 = x2 − 2{−(1− w12/d12)(x1 − x2) + (1− w23/d23)(x2 − x3) + (1− w24/d24)(x2 − x4)}∆t

Y2 = y2 − 2{−(1− w12/d12)(y1 − y2) + (1− w23/d23)(y2 − y3) + (1− w24/d24)(y2 − y4)}∆t

X3 = x3 − 2{−(1− w13/d13)(x1 − x3)− (1− w23/d23)(x2 − x3) + (1− w34/d34)(x3 − x4)}∆t

Y3 = y3 − 2{−(1− w13/d13)(y1 − y3)− (1− w23/d23)(y2 − y3) + (1− w34/d34)(y3 − y4)}∆t

X4 = x4 − 2{−(1− w14/d14)(x1 − x4)− (1− w24/d24)(x2 − x4)− (1− w34/d34)(x3 − x4)}∆t

Y4 = y4 − 2{−(1− w14/d14)(y1 − y4)− (1− w24/d24)(y2 − y4)− (1− w34/d34)(y3 − y4)}∆t

Notice the pattern of signs: + + +,−+ +,−−+,−−−.

5 Possible Implications

The validity of the postulates of geometry has been questioned around or below Planck scale
during the development of modern physics in the late twentieth century. It is worth mentioning
that Riemann12 in 1854 discussed similar issues in connection with the validity of metrical relations
in indefinitely small regions. Here, we have started with a working hypothesis that a type of cellular
network exists at the ultimate level of the universe from which the usual spacetime emerges. On
the other hand, the people working on non-commutative geometry13 started with the proposition
that space is pointless and a kind of non-commutativity of algebra exists at the ultimate level.
However, they also discussed the concept of fuzzy space at Planck scale. In our present work,
we have shown the emergence of spatial organization using agent based simulations. Our goal
is to generate spatiotemporal organization i.e. four-dimensional spacetime starting with cellular
networks and their evolution. This will shed new light not only on understanding the postulates of
geometry at small scale but also the evolution of the universe and the theory of gravity

Acknowledgement : One of the authors (SR) is indebted to CEOSR, College of Science, George
Mason University, USA for the support during the last part of this work.
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