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Abstract

We develop a financial market model focused on fund managers who continuously

adjust their exposure to risk in response to the payoff gradient. The base model has

a stable equilibrium with classic properties. However, bubbles and crashes occur in

extended models incorporating an endogenous market risk premium based on investors’

historical losses and constant gain learning. When losses have been small for a long

time, asset prices inflate as fund managers adopt riskier portfolios. Then slight losses

can trigger a crash, as a widening risk premium accelerates the decline in asset price.
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1 Introduction

Since their origin, financial markets have suffered from sporadic bubbles and crashes—

episodes in which asset prices rise dramatically for no obvious reason, and later plummet

(e.g., Penso de la Vega, 1688/1996; Mackay, 1841/1996). Recent examples include Japan’s

stock and land price bubbles in the late 1980s, and the US dot.com and telecom bubbles

in 2000. Such episodes are important as well as dramatic. As shorelines and river valleys

are shaped largely by ”100 year events,” so are financial markets, and the economy more

generally. For example, the US Securities and Exchange Commission, the segregation of

commercial banking from investment banking, and active monetary policy all arose in reac-

tion to the 1929 US stock market crash and subsequent Great Depression (e.g., Kindleberger,

2000).

Despite their intrinsic interest, financial bubbles and crashes as yet have no widely accepted

theoretical explanation. One reason is simply that they are so sporadic. They seldom recur

in the same country or market sector within the same generation of participants, so the data

are problematic. A second reason is that established models maintain the assumption of

financial market equilibrium. That assumption is difficult to reconcile with the dramatic

episodes.

The present paper introduces new models and techniques for studying bubbles and crashes.

Where possible, it adapts and streamlines standard ingredients. For example, it assumes a

single source of systematic risk, ignores inflation and taxes, and blurs the distinctions between

cash flow, earnings and dividends. Unlike most previous financial market models, the focus is

on professional fund managers who follow the profit gradient. Another non-standard feature

is constant gain learning (e.g., Cho, Williams and Sargent, 2002), also known as exponential

average expectations. That feature leads to an endogenous risk premium, and to investors

who chase returns and flee from losses.

Section 2 touches on several strands of literature. Our model draws inspiration from one

of the older strands, due to Keynes, Minksy and Kindleberger (KMK), as well as from the

emerging agent-based approach. The section concludes by listing a set of empirical facts

that influenced modeling choices.

Section 3 presents the basic model, beginning with the static ingredients and gradient dy-
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namics. It characterizes analytically a unique equilibrium and its comparative statics. These

are illustrated in an agent-based model that indeed appears quite stable dynamically over a

very wide range of parameter configurations.

Section 4 lays out an extension that incorporates some KMK-inspired features such as mean-

reverting, manager-specific skill (or luck), and investors who are constant-gain learners. An-

alytic approximations provide predictions of typical behavior and conjectures about failure

modes, or ”escape dynamics.” Simulations of the extended agent-based model confirm spo-

radic bubbles and crashes for a wide range of parameter configurations. Section 5 presents

further extensions of the model.

After a concluding discussion, an appendices collects technical details. Additional material,

including source code and executable code for the simulations, can be found at

http://www.vismath.org/research/landscapedyn/models/markets/

2 Existing Literature

Modern financial economists define the fundamental value V of an asset as its expected

present value, given all available information, of the net cash flows the asset generates. The

accepted definition of a bubble is a deviation of market price P from V . Crashes are episodes

when B = P − V rapidly decreases from a positive value to a zero (or negative) value.

Beyond these simple definitions, consensus is elusive. Most early accounts of bubbles and

crashes, e.g., Penso de la Vega and Mackay, emphasize the accompanying bursts of optimism

and pessimism, and often seem to assign a causal role to ”market psychology.” Absent some

insight into (or preferably predictions of) how the bursts of optimism and pessimism arise,

this approach doesn’t seem very fruitful.

Some economists deny that bubbles exist, and assert that financial markets are always in

equilibrium in the sense that B = P − V = 0. They explain famous historical episodes,

such as Tulipmania in 17th century Netherlands, as just unusual moves in the fundamental

value (e.g., Garber, 1989). Since V is not directly observable, and because the episodes are

so sporadic, it is hard to prove (or disprove) this view.

At the other extreme, a ”rational bubble” literature flowered in the 1980s (e.g., Blanchard
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and Watson, 1983, and Tirole, 1982). The models allow no intertemporal arbitrage oppor-

tunity from one period to the next and traders have the same beliefs, but with an infinite

horizon there might be a gap between P and V that grows at an exponential rate. A diverse

collection of later papers ascribe bubbles to problems with information aggregation (e.g.,

Friedman and Aoki, 1992) or to interactions of rational traders with irrational traders (e.g.,

De Long et al, 1990; Huberman et al., 1998; Brock and Hommes, 1998).

LeRoy (2004) concludes his extensive survey as follows.

We have considered four categories of accounts ...[for recent apparent bubble and

crash episodes]. As explanations, all four categories have problems. ... Within

the neoclassical paradigm there is no obvious way to derail the chain of reasoning

that excludes bubbles. An alternative to the full neoclassical paradigm is to think

about bubbles in a rational-agent setting—in particular to define fundamentals

using the present-value relation—but to break off the analysis arbitrarily at some

point rather than following the reasoning to implausible conclusions. The prob-

lems with this alternative are obvious: how does one write down formal models in

such a setting? Where does one break off the analysis? Which conclusions from

neoclassical analysis are to be accepted? We have no answers to these questions.

...(p. 801)

The present paper resolves LeRoy’s conundrum by modelling financial markets that are not

always in equilibrium. The agents always seek profit, and most of the time the market is

near a steady state, but investors’ ongoing learning processes occasionally push the market

far from equilibrium.

2.1 The Keynes-Minsky-Kindleberger Perspective

Hyman Minsky (1975, 1982), drawing on themes of John Maynard Keynes (1936), devel-

oped a distinctive view of bubbles and crashes, later elaborated in Charles Kindleberger

(1978/1989/2000). Although never fully formalized, this Keynes-Minsky-Kindleberger per-

spective helps identify features of financial markets that can make them vulnerable to bubbles

and crashes.
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The KMK perspective can be summarized informally as a sequence of phases. Phase 0 is

normalcy. Financial market participants share a broad consensus on the earnings prospects

for tradeable assets. Asset prices closely track fundamental values, and investors earn normal

returns, commensurate with perceived risk.

Phase 1 begins when an unusual opportunity arises, financial or real. Two famous early

examples: some investors saw tremendous profit opportunities for selling strikingly colored

varieties of tulips to rising middle class families in early 17th century Netherlands. The

South Sea Company seemed poised in early 1720 to purchase the British national debt,

opening unprecedented financial opportunities. More recently, in the late 1980s innovative

Japanese car and consumer electronic manufacturers gained world leadership in efficiency

and quality; and in the late 1990s the rapid rise of the Internet created a variety of new

business opportunities.

Normally, shared experience leads to rough consensus on the value of available opportunities.

However, opportunities sufficiently different from earlier events—the unusual opportunities—

can easily lead to a divergence of opinion. Optimists may think the unusual opportunity will

lead to once-in-a-lifetime profits for those who seize it, while pessimists may believe that it

will produce normal profits at best. Well-known Internet optimists included Mary Meeker

and Henry Blodgett, who predicted that dozens of startup companies would each be worth

hundreds of billions of dollars. Pessimists (including most economists) argued that, although

the Internet might attract a substantial share of commerce, it would tend to lower profit

margins and that few of the startup companies would ever generate much shareholder value.

Phase 2 begins if and when the optimists reap impressive profits. For example, the market

value of Netscape shares increased sixfold in five months from the initial offering in August

1995. Such returns attract trend-following investors, who in turn attract financial innovators.

Venture capital firms mushroomed in the late 1990s, inundated by new investors, and day

trading became popular.

Optimists get the new investment inflows. The flip side, often overlooked, is that pessimists

either play along or get left out. One of the authors observed top managers at major US

bank during the energy boom of the late 1970s as they decided whether to expand energy

lending, despite warnings that the sector was overextended. The clinching argument was

that the bank had to make the loans to remain a major player. Perhaps the classic example
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is Sir Isaac Newton his role as Master of the Mint. The immortal physicist sold the Mint’s

South Sea shares at a decent profit in April 1720 but then came under increasing to match

other investors’ returns. In midsummer, he bought a large block of shares just as the bubble

reached its maximum. The point of Keynes’ famous beauty contest metaphor and comment

on ”levels of play” is that sophisticated pessimists should sometimes mimic optimists.

Crucially, asset quality deteriorates as the bubble inflates. Recent experience encourages

some investors to pay high prices for promises that can only be fulfilled in good times, and

financial market innovators offer a ready supply of such promises. ”Sub-prime” home loans

are a recent example: the borrower has little equity, and will be able to make promised

payments only if home prices continue to rise briskly and refinancing remains easy to obtain.

The financial innovations and lending standards induced by a bubble tend to make the

financial sector increasingly vulnerable to unfavorable developments.

Phase 3 begins when the supply of dazzled new investors and financial innovation is ex-

hausted, as must happen eventually in our finite world. A minor event then can touch off

a cascade, as implicit (or explicit) defaults trigger further defaults and losses. It’s hard

to remember what event in March 2000 ended the runup of the NASDAQ index to over

5000, or what stopped Japan’s Nikkei index just short of 40,000 in January 1990. But once

asset prices started to decline, many leveraged investors had to sell, and the decline acceler-

ated. Such declines corrode collateral, and borrower defaults can cause lender defaults, so a

financial crash can be contagious. Phase 3 generally runs faster than phase 2.

A national or international recession may result. In modern jargon, the KMK story is

that Phase 3 financial distress increases uncertainty, which increases the value of deferral

options. Real investment therefore declines as financial distress spreads, and multiplier

effects produce a recession. Countercyclical monetary and fiscal policies are intended to

prevent such recessions, or reduce their severity, by shielding basically sound organizations

from contagion and reducing uncertainty.

Phase 4 begins when asset prices are so low that savvy investors purchase again and the

”bear market bottoms out.” The NASDAQ was a good buy at 1200 in Summer 2002. With

effective bankruptcy laws, the losses accrued in phase 3 are quickly parcelled out, productive

assets are redeployed, and recovery begins promptly, e.g., as in the US following the Savings

and Loan debacle of the 1980s. Consensus beliefs return, and financial assets are again
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grounded in reality. Phase 0, normalcy, begins anew and often lasts for decades.

By contrast, a protracted political struggle ensues when it is unclear who must bear the

losses accrued in a crash,1 as in Japan recently, or in Latin America in the 1970s and 1980s.

Phase 4 then can be quite long and painful. (The Great Depression of the 1930s arguably

involved inept countercyclical policy as well as inadequate bankruptcy laws.)

In our interpretation, the KMK perspective hinges on a learning process distorted by financial

market imperfections. Abraham Lincoln was right that you can’t fool all the people all the

time, but you can fool lots of them occasionally. Once a bubble starts inflating, financial

markets give investors little economic or psychological incentive to slow it down. The eventual

crash completes the learning process, and innoculates investors. Hence bubbles tend not to

repeat themselves: it takes a rather different novel opportunity, probably much later or in

some distant location, to touch off the next episode.

2.2 Escape Dynamics

Drawing on mathematical results such as Freidlin and Wentzell (1984), evolutionary game

theorists such as Young (1993) and Kandori et al. (1993) showed that some particular

transitions among multiple equilibria are much more likely than others in the presence of

low-amplitude noise. Sargent (1999) used similar methods to show that even when there is a

unique equilibrium, there can be some particular ”dominant escape path” that temporarily

takes the economy far away from equilibrium. See Williams (2004) for a general exposition.

The key ingredient is constant gain learning: the weight assigned to the most recent obser-

vations remains constant over time. Such perpetual learning is optimal in an environment

where unobserved parameters drift over time, but not in a stationary environment (where

the optimal weight goes to zero as experience accumulates). Of course, the parameters of

an economy will typically shift over time when participants are learning, so constant-gain

learning tends to justify itself. It often approximates actual human learning (e.g., Cheung

and Friedman, 1997). As we will see in Section 4.1, constant gain learning is implemented

by taking an exponential average of historical data, a common practice among financial ana-

lysts. Yahoo Finance, for example, routinely displays exponential average returns at various

1I am indebted to Axel Leijonhufvud for this observation.
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gains.

There is an analytic downside, however. As Williams (2004, p.10) notes, ”in most cases even

the simplest specifications require numerical methods for solution.”

2.3 Agent-based Simulation Models

Agent-based computational finance has grown rapidly in recent years; LeBaron (2006) and

Hommes (2006) each survey more than 100 papers. In this approach, financial markets

are modeled as interacting groups of learning, boundedly rational agents, and behavior is

described mainly by computer simulations rather than by explicit solutions or theorems.

Hommes begins his survey with the analytic model of Zeeman (1974), which used catastro-

phe theory to characterize periodic financial market crashes. The dynamics arise from the

interaction of two trader types, called fundamentalists (who buy when B > 0 and sell when

B < 0) and chartists (who buy when P increases and sell when it falls). More recent papers

introduce more trader types and explicit learning or evolution, and often try to match quan-

titative empirical regularities. For example, the Santa Fe Artificial Stock Market (Arthur

et al., 1997) uses the genetic algorithm (Holland, 1975) so that agents explore a large finite

(discrete) space of technical strategies. With a sufficiently slow update rate the market price

converges to fundamental value, while with faster update rates it doesn’t converge and ex-

hibits realistic features such as high trading volume, clustered volatility and leptokurtotic

returns distributions.

Brock and Hommes (1998) is another prominent example of the genre. It models evolutionary

competition among two to four simple linear forecasting rules, and exhibits chaotic price

fluctuations. The last part of Hommes’s survey discusses what happens as the number of

active forecasting strategies (or trading rules) gets large; again, there can be chaotic price

fluctuations.

The model we present in this paper can be regarded as containing either two agent types (a

priori identical fund managers interact with a second type of agent not explicitly modeled,

as noted below in footnote 4) or a continuum of manager types ordered by ex-post choice of

risk stance. See Friedman and Yellin (1997) for a general discussion regarding evolution of

an ordered continuum of strategies.
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2.4 Some Suggestive Empirical Facts

The US financial sector currently comprises about $43.5 trillion of financial assets, of which

households (and nonprofit institutions) hold about $40.5 trillion (US Flow of Funds Accounts,

December 7, 2006, Tables L.1 and L.100). Several large pieces, including many sorts of

deposits and non-corporate equity, are not traded in financial markets. Most of the tradeable

assets are professionally managed. These include the largest piece, about $11.6 trillion in

pension funds as well as $4.6 trillion in mutual funds and $1.1 trillion in life insurance

reserves. Only $5.3 trillion is held directly in corporate equities, of which a large (but

undocumented) part is also managed professionally. Fund managers dominate two of the

most rapidly growing segments, private equity and hedge funds.

Fund managers care about relative as well as absolute performance. The Wall Street Journal

publishes rankings four times a year, and agencies such as Lipper Analytics and Morningstar

do so more frequently. Higher rank brings managers larger bonuses and more competing job

offers, and also increases their compensation by attracting more investment inflows.

On the other hand, large size tends to depress a manager’s returns. Chen, et al. (2004)

find that a 2 standard deviation increase in fund size implies that returns decline by almost

a percentage point. The reasons include liquidity (it is more costly to turn over a large

portfolio than a small one) and some sorts of organizational costs.

Investors in mutual funds chase returns, especially those funds that recently were top per-

formers (Sirri and Trufano, 1998; Karceski, 2002). Pension funds are less extreme in chasing

top performance, but are harsher on funds that incur losses (Del Guerco and Tkac, 2002).

Sirri and Trufano note that this cross-sectional effect is supplemented by an industry effect:

inflows/outflows from the equity mutual fund sector respond to bull and bear markets. Their

estimates imply that inflow drops 70% in an average recession and increases 50% following

an average bull market run.

Underlying such behavior are variations in the risk premium. Copeland et al (2005, figure

6.10) shows an average ex post premium of about 5%, but with considerable variability. The

figure shows spells of several years in negative territory and several years in the double digit

range.
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3 A base model

This section first lays out the main static elements of the model. Next it presents the

basic dynamic elements, and notes the steady state equilibria. Then it presents simulations

illustrating the stability of equilibrium.

3.1 Portfolios and Managers’ Objectives

To begin, assume that there is a single riskless (”safe”) asset with constant return Ro and a

single risky asset with variable return R1. Standard theoretical literature often refers to the

risky asset as the market portfolio or the unit beta portfolio. The safe asset can be thought

of as insured deposits or government securities.

The agents in the model are portfolio managers, each of whom chooses a single ordered

variable x ∈ [0,∞) that represents the leverage on the risky asset. Thus x = 1 means fully

invested in the risky asset, while x > 1 means leveraged investment (borrowing the safe

asset) and x < 1 means that the fraction 1 − x of the manager’s funds are invested in the

safe asset. The manager’s portfolio has size z ≥ 0.

Let F denote the cumulative distribution of choices x, weighted by portfolio size. Then the

mean choice among portfolio managers is x̄ =
∫∞

0
xF (dx) =

∫∞
0
xf(x)dx, where the middle

expression is a Stieltjes integral and the last expression is valid when F has a density f .

For a given realized yield R1 on the risky asset, the manager obtains gross return RG(x) =

(1− x)Ro + xR1. The manager’s cost of funds is the risk free rate Ro plus a risk cost c(x).2

The risk cost up to second order is c(x) = 1
2
c2x

2 + c1x+ c0. We will see later that, under the

maintained assumption of negligible trading costs, c(0) = c0 = 0 and c′(0) = c1 = 0, while

c2 = c′′(0) ≥ 0 can be interpreted as the market price of risk. In the basic model c2 is an

exogenous constant, but it can vary in extensions of the model. Either way, the risk-adjusted

2The standard interpretation is that the risk cost reflects the concavity of investors’ utility functions. An

alternative interpretation is that an insurance agency (e.g., the FDIC) charges a premium which increases

in the expected loss claims, or that investors self-insure. Either interpretation seems consistent with the

specifications to follow.
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net return enjoyed by a manager chosing leverage x is

R(x) = x(R1 −Ro)−
1

2
c2x

2. (1)

The manager’s objective or payoff function φ depends positively on the net return. It may

also depend on the portfolio size and on relative performance, but for now we ignore such

complications and write

φ(x, F ) = R(x). (2)

The current distribution F of choices by managers affects managers’ payoff via the R1 term

in (1), as explained next.

3.2 Asset Price and Return

The fundamental value V of a share of the asset is the present value of the per share earnings.3

In the basic model, earnings are a continuous stream that grows forever at a constant rate gs.

Future earnings are discounted at some rate Rs > gs, discussed below. The number of shares

is normalized so that per share earnings are 1.0 at time 0. The initial fundamental value is

the integral of the discounted earnings stream, V (0) =
∫∞

0
1egste−Rstdt = (Rs − gs)

−1. At

time t > 0 the fundamental value is similar except that the earnings stream starts at egst, so

V (t) = V (0)egst = egst/(Rs − gs). (3)

Asset price moves with fundamental value but also responds to buying pressure. That is,

other things equal, the asset price is driven higher when in aggregate the fund managers

demand more of it.4 Assume for tractability that the elasticity is a constant, α ≥ 0. With

appropriate normalization, the price of the risky asset then is

P = V x̄α. (4)

3Earnings means revenues less economic costs, including the reinvestment costs necessary to maintain

growth but excluding the rental rate of owned capital. Thus earnings are the residual cash flow available

to the owners of the underlying real assets. In this simple model, earnings are synonymous with dividends,

profit, return to capital, and net cash flow.
4Some other traders must accommodate the fund managers; implicitly we assume that they are ”fun-

damentalists” who are betting that price will return to V . These other traders could be issuers of stock,

individual investors, foreigners, etc.

11



Thus asset price is equal, less than or greater than fundamental value whenever mean leverage

x̄ is equal, less than or greater than 1.0.

It is now straightforward to calculate R1, the return on the risky asset. By definition, it is

the dividend yield plus the capital gains rate. The dividend yield in this model is simply

earnings per dollar invested, egst/P (t) = (Rs − gs)x̄
−α. Use the notation ẏ = dy/dt and take

the log-derivative of (4) to obtain the capital gains rate Ṗ /P = V̇ /V + α ˙̄x/x̄ = gs + α ˙̄x/x̄.

Hence the realized yield on the risky asset is

R1 = (Rs − gs)x̄
−α + gs + α ˙̄x/x̄. (5)

The first term is the dividend yield, the second term captures capital gains due to economic

growth, and the third term reflects capital gains due to financial market activity. Note that

R1 is higher when mean leverage x̄ is lower or is increasing more rapidly. It is equal to the

discount rate Rs when x̄ = 1 and is steady.

What is the discount rate Rs? It starts with the riskless rate Ro ≥ 0, which reflects investors’

marginal rate of time preference. It includes gs since economic growth is known and economy-

wide. Including a third term es to account for other possible factors yields the specification

Rs = Ro + gs + es. (6)

To ensure that fundamental value is well defined in (3), we assume that es > −Ro. It will be

convenient in comparative statics exercises to write dR = gs + es and to analyze the separate

impacts of Ro, dR and gs.

3.3 Gradient dynamics

Each manager adjusts leverage x mainly by selling or buying the risky asset. To the extent

that the risky asset is not perfectly liquid, the per-share trading cost increases with the net

amount traded in a given short time interval. If the increase is linear, then the adjustment

cost (net trade times per share trading cost) is quadratic. It turns out that such quadratic

adjustment costs are the key condition to obtain exact gradient dynamics (Proposition 1 of

Friedman and Yellin, 1997), rather than approximate gradient or sign-preserving dynamics.

Hence gradient dynamics is a natural way to describe fund managers’ behavior and financial
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market impact.5

We shall assume gradient adjustment without explicitly modelling trading frictions, since the

frictions presumably are small relative to realized returns in (1). Thus portfolio managers

continuously adjust their leverage choice x, moving up the payoff gradient at a rate propor-

tional to the slope. Neglecting for now factors affecting the size of the manager’s portfolio,6

we obtain the master equation

Ft(x, t) = −Fx(x, t)φx(x, F ), (7)

where here the subscripts denote partial derivatives.

The master equation can be interpreted as conservation of mass since the size of each fund is

conserved as the manager reallocates between safe and risky assets. The equation explains

changes over time in the fraction F (x) of managed funds that have leverage x or less. That

fraction increases at rate Ft(x, t) as some managers decrease leverage from above x to below

x. The right hand side of the equation is the net flux, the density Fx(x, t) of funds with

leverage x times the (leftward, hence the minus sign) velocity given by the payoff gradient

φx at that point.

Plugging (1) and (5) into (2), we obtain the fund manager’s payoff function

φ(x, F ) = x[(Rs − gs)x̄
−α + gs −Ro + α ˙̄x/x̄]− 1

2
c2x

2, (8)

with gradient

φx = (Rs − gs)x̄
−α + gs −Ro + α ˙̄x/x̄− c2x. (9)

3.4 Equilibrium

We focus on steady states of (7), especially those in which all fund managers choose the

same leverage x = x̄.7 In steady state we must have φx = 0 and, of course, ˙̄x = 0 at that

5The standard literature suggests no alternative to gradient dynamics; it focuses on equilibrium and

neglects the adjustment process.
6That is, assume for now that the fund does not retain the gross (or net) return but remits it to its clients,

who never withdraw or invest additional funds. Soon we will relax these unrealistic assumptions.
7That is, we seek solutions to the master equation such that for all t ≥ 0, F (x, t) = 0 for x < x̄ and

F (x, t) = 1 for x ≥ x̄. We refer to such a distribution as clumped at x̄.
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point. Inspection of (9) shows that one trivial possibility is that c2 = 0 and x = x̄ = 1 for

all fund managers so (5) collapses to R1 = Rs = Ro and (1) collapses to R(x) = 0 ∀x. This

trivial equilibrium makes sense when there really is no risk.

One obtains a more interesting steady state with x = x̄ when the marginal risk cost c2x

equals the marginal steady state net return R1−Ro = (Rs−gs)x̄
−α +gs−Ro. We now show

that there is a unique such steady state x∗, and derive expressions for how it varies in the

underlying parameters c2, α, gs, Ro and Rs.

Proposition 1. Given fixed parameters c2 > 0, α > 0, Ro ≥ 0, and Rs > gs, there is a

unique point x∗ > 0 such that the distribution clumped at x∗ is a steady state solution to the

master equation (7). Moreover, x∗ decreases in c2 and Ro and increases in dR. It increases

in α and in gs iff x∗ < 1.

————figure 1 about here———–

See Appendix A for a formal proof and for the comparative static expressions; here we just

give the intuition. The key condition is that the payoff gradient is zero at x = x∗. Set x = x̄,

˙̄x = 0 and φx = 0 in (9), and rearrange slightly to obtain

(Rs − gs)x
−α + gs −Ro = c2x. (10)

As shown in Figure 1, the right hand side of (10) is a ray from the origin with positive slope

c2. The left hand side is a hyperbola with the y-axis as the vertical asymptote and the line

y = gs − Ro as the horizontal asymptote. Clearly there is a unique point of intersection

x∗ > 0.

Note that if c2 is sufficiently low (and if dR = Rs − Ro ≥ 0) then x∗ = x̄ > 1 and P > V .

The high steady state asset price reflects fund managers’ desire to leverage their portfolios

given the low risk cost. Likewise, higher values of the c2 parameter imply x∗ = x̄ < 1 and

P < V . There is some intermediate value of c2 (it can be thought of as a long-run steady

state) such that mean leverage is x̄ = 1 and P = V . One can see from (9) or (10) that this

implies Rs = R1 = Ro + c2. In this equilibrium, c2 looks like the standard risk premium,

e.g., the market price of risk in the Capital Asset Pricing Model.

Implicitly differentiating (10) with respect to parameters such as c2, one obtains expressions

such as ∂x∗/∂c2 = −x/[c2 +α(Rs−gs)x
−α−1] < 0. The last expression shows that increasing
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c2 always decreases x∗ by some proportion. The proportion is larger when c2 is small and x∗

is large (especially when α and Rs − gs are small). We will see in the next section that this

leads to behavior reminiscent of KMK phases 2 and 3 when c2 is endogenous.

3.5 Simulation Results

Using Netlogo (http://ccl.northwestern.edu/netlogo/), we created a simulation model that

closely parallels the basic analytical model just presented. Sliders allow the user to select

parameter values and display options. Full documentation as well as executable code can be

found at http://www.vismath.org/research/landscapedyn/models/markets/.

In brief, the simulation consists of fund managers i = 1, ...,M whose risk stance xi (horizontal

coordinate) and portfolio size zi (vertical coordinate)8 are floating point numbers that adjust

in discrete time. The user chooses the frequency (daily, weekly, monthly, quarterly, or annual)

and the number of time steps per period (up to 64). With N steps per year, the managers’

annual returns R are computed as specified above and adjusted to r = (1 + R)1/N − 1 per

time step.

———-figure 2 about here———-

Figure 2 shows a sample simulation of the basic model, using parameter values c2 = 0.02, Ro =

0.03, dR = 0.03, gs = 0 and α = 2.0. The simulation is at weekly frequency (Freq = 52) with

just one time step per period (u-steps = 1). The initial population of managers is M = 100,

uniformly distributed in the (x, z) rectangle [0.2, 1.4]× [0.4, 1.6], set via the sliders labelled

”population”, etc.9 The managers move smoothly towards x∗ ≈ 1.08 and maximal z, as asset

8The simulations assume that managers retain all earnings (and absorb any losses). Appendix A notes

the changes in the master equation required to accommodate this and other extensions described in later

sections.
9The ”center” slider sets the middle of the x (here called u) coordinate as a percent of screen width,

here 4.0. Likewise ”altitude” sets the middle of the initial z distribution, and ”width” and ”height” control

the bounds on the rectangle. The ”puff” button allows the user to build up arbitrary distributions from a

sequence of uniform rectangluar distributions. The ”step” button allows the user to see one time period (e.g.,

week) at a time, while the ”go” button allows the simulation to proceed steadily. Other display options are

controlled by green sliders, as explained in the on-line user’s manual. The tan graphs and monitors display

simulation results.
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price (displayed on the screen as DPM or detrended PM) converges to 1.082/(0.06−0) ≈ 19.4.

Figure 2 shows that they are fairly close within two decades.

Proposition 1 suggests smooth convergence towards a clump at x∗ and associated asset price

P ∗ for a wide range of parameter values. To test this suggestion, we moved each of the five

main parameters in turn, up to a rather high (but still admissible) level, and down to a rather

low level, e.g., c2 = 0.01, 0.20 compared to the baseline c2 = 0.05. For each configuration we

ran 10 weekly simulations each for 100 years. Table 1 shows the steady state predictions,

and the observed results (dropping the first 20 years, which depend more on arbitrary initial

conditions). Indeed, in every case the observed standard deviation becomes quite small and

the observed mean is quite close to the steady state prediction.

–Table 1 about here—–

4 Endogenous Risk

Dynamics become more interesting when we endogenize the risk cost c2. To do so, we

introduce three new features that play a prominent role in the KMK approach.

4.1 Streaks, losses, and learning

The first is that each manager can have streaks in which she underperforms or outperforms

the market. The idea is that not every portfolio with given leverage has the same realized

return; some managers are luckier (or more attuned to new opportunities) than others. Thus,

instead of receiving the uniform return in (1), manager i receives net return

Ri(x) = x(R1 −Ro + εi)−
1

2
c2x

2. (11)

The manager’s idiosyncratic component εi is Ornstein-Uhlenbeck, i.e., mean reverting in

continuous time. If the most recent known value is εi(t − h), then the current value is the

random variable

εi(t) = e−τhεi(t− h) +

√
1− e−2τh

2τ
σν, (12)

for some given volatility parameter σ > 0 and decay parameter τ > 0, and an independent

realization ν from the unit normal distribution. (Feller, 1971, p 336). Baseline values are
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σ = 0.20, roughly the historical annualized volatility on the S&P500 stock index, and τ = 0.7,

implying a half-life of about 1 year for the idiosyncratic component.

The second new feature is loss, defined as negative gross return. Now RGi = (R1 − Ro +

εi)xi + Ro is the gross return that manager i currently earns on his portfolio, so her loss is

Li = max{0,−RGi}, the shortfall from zero.

Constant gain learning is the third new feature. Investors seem to judge managers by the

overall historical track record, with greater emphasis on more recent results. The natural

formalization is an exponential average. In continuous time the exponential average loss for

manager i is

L̂i(t) = γ

∫ t

−∞
e−γ(t−s)Li(s)ds, (13)

where the parameter γ is the memory decay rate. Using the definition (13) and a little

calculus, the reader can verify that over a time horizon h in which L is constant (or only

observed once), the exponential average is updated from the previous exponential average

loss L̂i(t− h) as follows:

L̂i(t) = e−γhL̂i(t− h) + (1− e−γh)Li(t). (14)

Update rule (14) defines ”constant gain learning” with gain (1− e−γh).

We now specify perceived risk c2 as proportional to market-wide perceived losses,

c2 = βL̂T (t), (15)

where the parameter β > 0 reflects investors’ sensitivity to perceived loss, and L̂T (t) is

the perceived loss L̂i(t) averaged across managers i weighted by portfolio size zi. Baseline

parameter values are β = 2 and γ = 0.7.

4.2 Equilibrium

Steady states in the current model are more intricate than in the base model. The new

parameters for memory decay (γ) and sensitivity to losses (β) help determine the risk cost c2,

and it (along with the streak decay (τ) and volatility (σ) parameters) affects the perceived

losses. As a first step towards characterizing equilibrium, the next proposition computes

expected (hence, in steady state, perceived) loss for given c2.
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Proposition 2. In steady state with given c2, a manager with leverage x incurs expected loss

q(x|c2) = (xσ/
√

2τ)ψ(zo(x)), where zo(x) = (−
√

2τ/σ)[Ro(1/x− 1) + gs + (Rs − gs)(x
∗)−α]

and x∗ is defined from c2 in Proposition 1.

The ”wedge” function ψ is the definite integral of the cumulative unit normal distribution

Φ; see Appendix A for an explicit formula and a proof of the proposition.

Corollary. The expected loss is zero and has derivative zero at x = 0. It is a convex

increasing function for x > 0.

The corollary justifies the approximation first used in equation (1) that the risk cost c(x) is

quadratic with c(0) = c′(0) = 0. The proof of the corollary in Appendix A works even when

an arbitrary distribution function replaces Φ in the formula for ψ. Thus the specific formulas

of Proposition 2 come from the Ornstein-Uhlenbeck process, but the qualitative features are

rather general.

Proposition 2 allows us to approximate a steady state as follows. Fix the exogenous parame-

ters α, β, γ, σ, τ, gs, Ro and Rs, and choose a reasonable initial estimate ĉ2 of steady state c2.

Suppose that all managers clump at x = x∗(ĉ2), where x∗(.) is defined implicitly in equation

(10). Using the function q(.|.) defined in Proposition 2, note that q(x∗(ĉ2)|ĉ2) approximates

the steady state average of L̂T . Inserting that approximation into equation (15), one obtains

a more refined estimate č2 of steady state c2. On iterating (or using Newton’s Method), one

obtains consistent values c∗∗2 = βq(x∗(c∗∗2 )|c∗∗2 ) and x∗∗ = x∗(c∗∗2 ).

For example, with baseline parameters we have c∗∗2 = 0.058 and x∗∗ = 0.866. To check that

these values are consistent, note that (Rs−gs)x
−α+gs−Ro = (.06)(0.866)−2−0.03 = 0.050 =

0.058 ∗ 0.866 = c2x so equation (10) holds, and that βq(x∗∗|c∗∗2 ) = βx∗∗(σ/
√

2τ)ψ(zo(x∗∗)) =

2∗ 0.866∗ 0.2∗ 1.4−0.5ψ(zo(0.866)) = 0.293ψ(−0.501) = 0.293∗ 0.198 = 0.058 = c∗∗2 . We used

zo(0.866) = −((2 ∗ 0.7)0.5/0.2) ∗ (0.03 ∗ (1/0.866− 1) + 0 + (0.06) ∗ (0.866)−2) = −0.501 and

numerically integrated the cumulative unit normal distribution to obtain ψ(−0.501) = 0.198.

4.3 Dynamics

Of course, the distribution clumped at x∗∗ can’t be an exact solution of the model with

σ > 0, since the model is stochastic. The real question is whether the actual distribution
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remains nearby. To answer that question, we incorporate the new features into the simulation

described in the previous section.

—figure 3 about here———-

Figure 3 shows typical asset price behavior in the extended model with idiosyncratic returns

and an endogenous price of risk, using the baseline parameter values. In the simulation, the

managers circulate constantly, mostly in the range 0 < x < 3, but their average fluctuates

around x∗∗ ≈ 0.866. Asset price usually bounces around the predicted steady state value

P ∗∗ = V x∗∗α = (Rs − gs)
−1(x∗∗)2 ≈ (0.06)−10.8662 ≈ 12.5, but occasionally it rises much

higher or falls much lower.

The simulation software allows us to re-examine dramatic price movements after they occur,

using the rewind button. Using baseline parameter values in the first example tried while

writing this passage, asset price P rose to 14.7 > P ∗∗ = 12.5 by the end of year 12. Year

13 began with the managers somewhat extended at x̄ = 0.94 > 0.866 = x∗∗. Losses had

begun to increase, and c2 rose modestly from 6.2% at the beginning of the year to 9.0% by

April. At that point, P began to decline at an accelerating pace. By the end of that unlucky

year, the market was in free fall with c2 approaching 100% and P half its former value. The

market bottomed out in the first quarter of year 14 with P under 3 and x̄ below 0.4. A

gradual recovery then brought P near P ∗∗ = 12.5 by year 21, where it hovered for the next

several decades.

The apparent mechanism is that a run of good luck for a few traders, and the absence of

very bad luck for most others, puts P on a steady to rising trend. If the trend persists,

the perceived loss L̂T (t) declines and so does the risk premium c2. As shown in Figure 1,

this increases x∗ and, as managers increase their average risk stance x̄, it also increases P .

As x̄ gets large relative to x∗∗, the effect attenuates, as in late phase 2 of KMK. At that

point, the market is vulnerable to a string of moderately bad luck striking some of the larger

investors. Once P starts to decline, the process goes into reverse and accelerates. Returns

turn negative and losses mount, so c2 rises and x∗ declines, dragging down P and leading

to more negative returns and losses. As in late phase 3 of KMK, the vicious cycle slows

when x∗ gets so low that it becomes relatively unresponsive to further increases in c2 (recall

Figure 1). As x̄ stabilizes at a low level, returns turn positive, perceived losses decline, and

P gradually heads back towards its steady state value x∗∗.
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4.4 Statistical analysis

To investigate these impressions, and to check their robustness, we examined 18 variants of

the baseline parameter configuration. As in Table 1, we ran 10 centuries of weekly simulations

for each variant. Somewhat arbitrarily, we defined a crash as a decline in the asset price

(detrended to remove the capital gains from gs) by at least 50% from its highest point within

the last half year.10

–Tables 2 and 3 about here—–

Table 2 reports the results. Under baseline parameters, average asset price and risk position

are modestly higher than predicted by the clumped steady state, and (severe) crashes occur

on average only once every other century. Changing the population size has no effect on

the steady state predictions, but it does change the simulation averages slightly, and has

a substantial effect on crash frequency. Raising population size to 100 eliminated crashes,

while lowering it to 15 tripled their frequency.

Recall that the (detrended) fundamental value V = (Rs− gs)
−1, so shifts in the components

Ro and dR of the discount factor Rs shift V in the opposite direction. The table shows the

impacts on predicted asset price P ∗∗ are partially offset via x∗∗. Actual average P barely

responds to Ro but tracks the dR predictions fairly well, and crash frequencies shift modestly

in the expected direction. The underlying growth rate parameter gs operates similarly, except

that the impact via x∗ reinforces the impact via V , and the average price when gs = 0.4 is

considerably higher than the already high forecast and has a very high standard deviation.

Recall that the unconditional variance of a manager’s luck is σ2/(2τ). Lowering the instan-

taneous volatility σ to 0.05 reduces the risk cost and substantially raises steady state risk

stance x∗∗ and price P ∗∗, and the actual averages stay rather close to these predictions.

Raising the decay rate τ to 3 produces roughly similar predictions and actual results. Rais-

ing σ to 0.40 moves everything in the opposite direction, and increases crash frequency and

variability slightly above the baseline. The most interesting exercise here is lowering the

10The maximum drawdown of the Nikkei index was a bit less than 50% from December 1989 to September

1990, so it didn’t quite crash by our definition. Likewise, the initial decline in Nasdaq from its 5048 peak

in March 2000 was less than 50%, but the index fell 59% from September 2000 to March 2001, which does

meet our definition of a crash.
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decay rate to 0.1. The clumped steady state prediction reflects the greater risk arising from

the 7 year half-life of luck. However, in the simulations we see large, long-lived bubbles

punctuated by occasional crashes (17 over the observed millennium), resulting in extremely

high and variable risk stance and asset price.

Results for the remaining three parameters are also dramatic. When investors have a long

memory (low gain), crashes disappear and prices are steadier (and a bit higher) than in the

baseline. With short memories (high gain, half-life about 3 months), serious crashes hit every

couple of decades. Changes in β, investors’ sensitivity to realized losses, affect predicted and

actual performance in the direction one might expect but not as strongly; the direct effect on

risk cost is partially offset by endogenous response via x∗∗. Finally, the predicted impact of

the elasticity or price pressure paramater α is as one might expect, while the actual impact

is somewhat stronger. In particular, crashes are frequent and prolonged when α = 4.

The logit regressions reported in Table 3 provide a complementary perspective. To interpret

the coefficient estimates, suppose that the initial probability of a crash is 1%, so initial log

odds are ln(.01/.99) ≈ −4.6. The coefficient estimate of 1.94 on RDPM-M then implies that,

other things equal, were asset price P to rise 20%, then the log odds would increase by about

0.2 ∗ 1.94 ≈ 0.4 to -4.2, implying a crash probability of p = e−4.2/(1 + e−4.2) ≈ 1.5%, i.e.,

the probability would increase by about 50%. The coefficient estimates on the parameters

confirm that the effects noted earlier are statistically significant, most at the 1% (or even

0.01%) level. The exceptions are that σ’s effects are significant at the 4% level and those of

dR are insignificant. We have also run regressions with asset price normalized by fundamental

value V and by predicted price P ∗∗, and with more or less stringent definitions of crashes. The

results are roughly similar; in some specifications the dR and σ coefficients gain significance,

often at the expense of the price coefficient and the Ro and τ coefficients. We conclude that

crashes are indeed more likely when asset price is high and that sampling error plays no

important role in the crash frequencies reported in Table 2.

4.5 Summary and Interpretation

The simulation results suggest that the Model 1 has three distinct modes of behavior. The

first mode is stable convergence, similar to behavior in Model 0. From reasonable initial
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states, the market converges to a neighborhood of the clumped steady state and remains

there. Lucky (or unlucky) streaks are not large enough to break away. Parameters conducive

to this mode include a large population, low volatility σ, high decay rate τ for luck, and a

low γ. In terms of the KMK perspective, the last parameter suggests that investors are not

easily dazzled and the other three suggest that unusual opportunities (modeled as positive

individual luck) are small and fleeting relative to the size of the market.

In the baseline and several other parameter configurations we observe something close to

stable convergence, but to prices and risk positions somewhat higher than in the clumped

steady state prediction. That prediction seems downward biased to the extent that managers

are heterogeneous rather than clumped. In the simulation, the luckier managers tend to have

larger portfolios z and choose larger x than in the clumped steady state (CSS), pushing up

weighted average risk position x∗ and asset price P .

A second behavioral mode, occasional bubbles and crashes, can be seen even in the baseline

confituration. (The CSS prediction ignores crashes, so for this mode it has an upward bias

that can offset the downward biases due to ignoring heterogeneity and bubbles.) As described

in subsection 4.3, this mode has phases reminiscent of KMK and an underlying mechanism

reminiscent of escape dynamics. It prevails for moderate parameter values, covering most of

the range a priori considered plausible.

A third behavioral mode can be detected for parameter configurations at the opposite ex-

treme to those conducive to the first mode. In particular, for very large α or γ, the observed

asset price is usually high above its CSS value or far below, in alternating irregular cycles.

KMK’s normalcy phase 0 is relatively rare.

5 Model Extensions

The model still lacks some realistic features that might affect performance. Investors chasing

the highest returns plays an important role in the KMK narrative, and can be seen in recent

field data. Likewise for scale effects, and rank-based incentives for managers. This section

sketches how such features are incorporated into the analytic and simulation models.
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5.1 Extension: fickle investors

Managed funds routinely reinvest positive returns and seldom ask investors to cover negative

returns. Hence, other things equal, the fund grows at the fund’s gross rate of return, viz.,

żR
i /zi = RGi = (R1 −Ro + εi)xi +Ro.

More importantly, as noted in the empirical facts section, investors chase returns. Managers

with large perceived losses L̂i(t) and small perceived returns should lose investors, and those

with small losses and large returns should gain. This can be formalized in many ways.

For simplicity and consistency with available evidence, we say that the defection rate is

proportional to the perceived loss. Thus the outflow rate is żO
i /zi = −δL̂i, where the

defection parameter δ ≥ 0 reflects how strongly investors respond by withdrawing part or

all of their funds. The outflow of funds initially goes to a pool zo not allocated to any fund

manager.

Recruitment of new investors depends on relative perceived returns. Recycle the exponential

average technique from (13) and apply it to net returns in (11) to get perceived net returns,

R̂i(t) = γ

∫ t

−∞
e−γ(t−s)Ri(s)ds. (16)

The empirical papers cited at the end of section 2 suggest that a disproportionate share

of new investment goes to managers with the very best perceived returns. To capture this

effect, we use a logit specification, with fund inflows proportional to eλR̂i rather than to R̂i

itself. When the logit parameter λ = 0, inflows are unrelated to perceived returns, and larger

values of the parameter indicate greater sensitivity to relative performance.

The inflow rate is also proportional to zo, the pool of funds available for investment. Thus

we obtain the following expression for fund inflows: żI
i /zi = ρzoe

λR̂i . In the current version

of the simulation, the parameter ρ > 0 is inversely proportional to the sum (or integral)

over managers of eλR̂i , so the overall outflow rate is constant from the unallocated pool

zo. To capture the actual tendency of investors to allocate more funds in bull markets, the

parameter ρ could be made less responsive to the sum of the eλR̂i .

Putting the three terms together, the overall rate of increase in fund i is

żi = [żR
i + żO

i + żI
i ]zi = [Ro + (R1 −Ro + εi)xi − δL̂i + ρzoe

λR̂i ]zi. (17)
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Remark. A much simpler specification, less consistent with the evidence, is replicator

dynamics e.g., Weibull, 1995). Here zo = 0 and

żi = k(R̂i(t)− R̂T (t))zi, (18)

where R̂T is the z-weighted average of R̂i across managers and k is a rate constant.

5.2 Scale effects, exit and entry, and more

As noted at the end of section 2, evidence suggests that large size tends to depress a manager’s

returns. We can accommodate that feature by including a quadratic penalty for the size xzi

of the risky portfolio. Thus net returns in (11) become

Ri(x) = x(R1 −Ro + εi)−
1

2
c2x

2 − κ(xzi)
2, (19)

where the default value of parameter κ is 0.01. That is, a standard size fund fully invested

in risky assets incurs costs of 1% per annum.

Funds don’t last forever, especially hedge funds. They tend to liquidate when investors leave.

One could make the hazard rate a smoothly decreasing function of size or growth rate, but

to keep things simple we simply decree a minimum size zlim, and say that fund i disappears

(with its funds going to the unallocated pool zo) whenever zi < zlim. Otherwise the firm

survives.

New funds appear occasionally, especially when the pool of unallocated funds is large. To

keep things simple, we count the number of funds liquidated over the last year, and at the

beginning of the new year we create the same number of new funds. The size z and initial

risk stance x of each new fund is independently drawn from the uniform distribution on

[xSS −W/2, xSS + W/2] × [zL, zU ]. Default choices are zL = 2zlim, zU = 2zL, and width

W = xSS/2, where xSS is the steady state leverage in Proposition 1 given the current price

of risk c2.

Model 83.05 incorporates effects for size (”gravity”) and entry and exit. Since the total mass

of investor funds is no longer constant, the master equation must be modified slightly. This

is spelled out in the Appendix. Models 82 and 83 exhibit bubbles and crashes similar to

those of model 81.
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Further extensions of the model have been contemplated but not implemented so far. One

could include a Markov process that occasionally shifts the underlying state of the economy

s. For example, there could be three states (say poor, good and great) and phase 1 of a KMK

bubble could be touched off by a transition to the great state, with maximal gs. Another

extension would include other realistic components of the fund manager’s objective function

(2) that reflect absolute size or relative vs absolute returns and losses.

6 Discussion

We explore a perspective on financial market bubbles and crashes originating in the informal

writings of Keynes, Minsky and Kindleberger (KMK). After writing out a basic formal model

and a gradient process for adjustment, we extend the model to capture some financial market

features that loom large in the KMK perspective.

The basic model is very stable. Analytic results, confirmed by simulations, show that for a

wide range of exogenous parameters, the asset price converges quickly and reliably to a level

proportional to the fundamental value. The proportion is a decreasing function of the risk

cost parameter c2. There is no scope for bubbles and crashes.

Model 1, the first extension of the basic model, features an endogenous risk cost driven

by constant gain learning, our formalization of a feature central to the KMK perspective.

This extension also has a unique steady state, but has much different dynamics. Although

the model typically spends most of the time in the vicinity of the steady state, there are

recurrent episodes in which overall market valuations rise substantially (typically 20-50%

above normal levels) and then crash (often to a third or less of normal levels within a few

months). Such bubble and crash episodes occur over a wide range of ”realistic” parameter

values.

The episodes become rarer when parameter configurations give investors longer memories

or smaller (or more fleeting) unusual opportunities. In opposite configurations the episodes

become more common, and with extreme parameter values normalcy becomes rare and the

market alternates between bubbles and crashes.

The occasional bubble and crash episodes seem related to escape dynamics, which identifies
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the ”particular most likely way” in which the economy temporarily leaves the vicinity of

a steady state (Williams, 2004, p. 7). However, Model 1 lacks the linear structure and

explicit belief formation of the macro theory literature, and its continuous action space puts

it outside the evolutionary game theory literature cited in section 2.2. Evidently new efforts,

well beyond the scope of the present paper, are needed for analytic characterization of Model

1 dynamics.

Model 1 seems to vindicate the KMK perspective. Clearly bubbles and crashes would only

be intensified by incorporating other KMK features, such as the heterogeneous expectations,

rank-sensitive managers, and exogenous shifts in economy-wide growth opportunities.

Much work remains. We have not yet fully explored the extensions already programmed,

intended to capture fickle investors and other realistic KMK features of financial markets.

Perhaps other realistic features should be written into the simulations and explored.

The most important task, however, is cross-validation. Simulation models are most valuable

when they work in tandem with analytic results, empirical studies and/or laboratory exper-

iments with human subjects. We hope that our work inspires new analytical, empirical and

laboratory studies that deepen understanding of bubbles and crashes.

7 Appendix: Mathematical Details

Proposition 1. Given fixed parameters c2 > 0, α > 0, Ro ≥ 0, and Rs > gs, there is a

unique point x∗ > 0 such that the distribution clumped at x∗ is a steady state solution to the

master equation (7). Moreover, x∗ decreases in c2 and Ro and increases in dR. It increases

in α and in gs iff x∗ < 1.

Proof We first show that the equation (10) has a unique solution x∗. Rewrite the equation

as

U(x) = (Rs − gs)x
−α + gs −Ro − c2x = 0. (20)

Note that U is a continuous real valued function which is positive (indeed unbounded) as

x ↘ 0 and is negative as x → ∞. Hence by the Intermediate Value Theorem, U(x) = 0 at

some intermediate value x∗. Since U ′(x) = −α(Rs − gs)x
−α−1 − c2 < 0 for all x ∈ (0,∞), it
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follows that U(x) = 0 has at most one solution, i.e., x∗ is unique.

The next step is to show that (20) is necessary and sufficient for a clumped solution to the

master equation. That step proceeds exactly as in Friedman (2005, Proposition 2). It is

omitted here because it requires several technical details tangential to the concerns of the

present paper.

To complete the proof, write Rs = Ro + dR, differentiate (20) with respect to the given

parameter and solve to obtain

∂x∗/∂Ro = −1/[c2 + α(Rs − gs)x
−α−1] < 0,

∂x∗/∂dR = x−α/[c2 + α(Rs − gs)x
−α−1] = −x−αdx∗/dRo > 0,

∂x∗/∂gs = (1− x−α)/[c2 + α(Rs − gs)x
−α−1] = (x−α − 1)dx∗/dRo,

∂x∗/∂c2 = −x/[c2 + α(Rs − gs)x
−α−1] < 0, and

∂x∗/∂α = −(Rs − gs) ln x/[c2x
α + α(Rs − gs)/x].

Inspection shows that x∗ is increasing in α and in gs iff x∗ < 1. •

The ”smoothed wedge” function ψ used in the next proposition is the definite integral of the

cumulative unit normal distribution function Φ. Expressed in terms of the normal density

Φ′(y) = 1√
2π
e−y2

, it is

ψ(x) =

∫ x

−∞
(x− y)Φ′(y)dy =

∫ x

−∞
Φ(y)dy. (21)

The second expression in (21) is obtained from the first via integration by parts. The graph

of ψ lies slightly above the graph of the simple wedge function w(x) = max{0, x}.

Proposition 2. In steady state with given c2, a manager with leverage x incurs expected loss

q(x|c2) = (xσ/
√

2τ)ψ(zo(x)), where zo(x) = (−
√

2τ/σ)[Ro(1/x− 1) + gs + (Rs − gs)(x
∗)−α]

and x∗ is defined from c2 in Proposition 1.

Proof. Recall that a loss is defined as the shortfall from 0 of gross returns, RGi = (R1 −
Ro + εi)x+Ro. The unconditional distribution of εi (obtained as the h→∞ limit in (12)) is

normal with mean 0 and standard deviation σ/
√

2τ . Drop the non-steady state term in (5)

to obtain R1 = (Rs − gs)(x
∗)−α + gs. Plug this into the expression for RGi to conclude that

its unconditional distribution F is normal with mean µ ≡ [(Rs − gs)(x
∗)−α + gs −Ro]x+Ro

and standard deviation s ≡ xσ/
√

2τ . That is, gross returns can be expressed as r = µ+ sz
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where z is a unit normal random variate. Since gross returns are negative for realizations of

z that fall below zo ≡ −µ/s = (−
√

2τ/σ)[Ro(1/x− 1) + gs + (Rs − gs)(x
∗)−α], the expected

loss is ∫ 0

−∞
[0− r]F ′(r)dr = s

∫ zo

−∞
[zo − z]Φ′(z)dz = sψ(zo) = (xσ/

√
2τ)ψ(zo). (22)

•

Corollary. The expected loss is zero and has derivative zero at x = 0. It is a convex

increasing function for x > 0.

Proof. Equation (22) gives the expected loss as Q(x) = axψ(zo(x)), where a = σ/
√

2τ >

0 and zo(x) = −b/x + k for b = Ro/a > 0. It is immediate from (21) that ψ′(y) =

Φ(y) ≥ 0, ψ′′(y) = Φ′(y) ≥ 0, and ψ(y) → 0 as y → −∞. It now follows that q(0) =

0aψ(−∞) = 0. Straightforward computations show that q′(x) = a[ψ(zo) + (b/x)ψ′(zo)] ≥ 0

and q′′(x) = (ab2/x3)ψ′′(zo) ≥ 0. Hence q is increasing and convex. By L’Hospital’s rule,

q′(0) = abΦ′(−∞) = 0. •

Modified master equation. Let Z(x, t) denote the total value at time t of all managed

portfolios with leverage ≤ x, and let Z(t) = Z(∞, t) denote the overall total value. The

distribution described in the master equation is just its normalization F (x, t) = Z(x, t)/Z(t).

When the overall total Z(t) is not constant over time, the master equation becomes

Ft(x, t) = −Fx(x, t)φx(x, F ) + [

∫ x

0

Zxt(y, t)dy − F (x, t)Zt(t)]/Z(t). (23)

Here subscripts denote partial derivatives, and Z(x, t) includes birth and death rates as

well as the fickle investor effects in (17). To verify, differentiate the identity F (x, t) =∫ y

0
Zx(y, t)dy/Z(t) in the case that Z(x, t) has a density. For other cases (where there are

mass points) take limits of cases with a density.
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Figure 1: Equilibrium risk position x∗. Parameter values determining the hyperbola are

Ro = 3%, Rs = 6%, g2 = 2% and α = 2.0. The two rays are for alternative c2 values 1% and

10%. The equilibrium risk position is the horizontal component of the intersection of the

ray and hyperbola.
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Figure 2: User interface for base simulation
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Figure 3: Detrended Asset Price. A 100 Year Simulation of Model 1 using baseline parame-

ters M = 30, Ro = dR = 0.03, gs = 0, α = 2, σ = 0.20, β = 2.0 and τ = γ = 0.7.
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Variable Value V P* x* P x

Baseline  see note 16.67 13.37 0.896 13.37 ±0.01 0.896 ± 0.001

Population 15 16.67 13.37 0.896 13.37 ± 0.02 0.896 ± 0.001
100 16.67 13.37 0.896 13.36 ± 0.02 0.895 ± 0.001

Ro 0.01 25.00 18.76 0.866 18.75 ±0.02 0.896 ± 0.001
0.05 12.50 10.45 0.914 10.45 ±0.01 0.896 ± 0.001

dR 0.01 25.00 14.65 0.765 14.64 ± 0.01 0.765 ± 0.000
0.05 12.50 12.50 1.000 12.49 ± 0.02 1.000 ± 0.001

gs -0.04 10.00 8.59 0.927 8.59 ± 0.01 0.927 ± 0.000
0.04 50.00 32.79 0.810 32.77 ± 0.06 0.810 ± 0.001

c2 0.01 16.67 23.83 1.196 23.47 ± 0.49 1.187 ± 0.013
0.2 16.67 6.47 0.623 6.47 ± 0.00 0.623 ± 0.000

Note: Baseline values are Pop=30, Ro=dR=0.03, gs=0 and c2=0.05.
Each mean ± standard deviation is taken over 41600 observations: 10 centuries of weekly observations,  
with the first two decades deleted to reduce the impact of the initial population distribution.

Table 1. Simulation Results for Model 0
Simulation Mean ±Std. DevParameters Clumped Steady State Prediction



variable value V P* x* P x
Crashes / 
Century

Baseline 16.7 12.5 0.87 14.8  ±3.4 0.94 ±0.11 0.5

Population 15.00 16.7 12.5 0.87 13.8  ±4.1 0.90 ±0.14 1.6
100.00 16.7 12.5 0.87 15.3  ±1.6 0.96 ±0.05 0

Ro 0.01 16.7 16.2 0.80 14.2  ±3.3 0.92 ±0.11 0.9
0.05 16.7 10.3 0.91 14.9  ±2.8 0.94 ±0.09 0.2

dR 0.01 16.7 14.3 0.76 17.4  ±3.9 0.83 ±0.10 0.7
0.05 16.7 11.4 0.95 13.2  ±2.5 1.02 ±0.10 0.3

gs1 -0.04 16.7 9.2 0.74 9.2  ± 1.5 0.96 ±0.08 0
0.04 16.7 18.0 1.04 38.8 ±14.1 0.86 ±0.17 1.3

sigma 0.05 16.7 23.7 1.19 23.1  ±1.2 1.18 ±0.03 0
0.40 16.7 8.7 0.72 14.7  ±3.6 0.93 ±0.12 0.6

tau 0.10 16.7 7.5 0.67 57.1 ±26.9 1.78 ±0.51 1.7
3.00 16.7 17.9 1.04 16.4  ±1.2 0.99 ±0.04 0

eta 0.10 16.7 12.5 0.87 14.9  ±2.3 0.94 ±0.07 0
3.00 16.7 12.5 0.87 13.5  ±4.5 0.88 ±0.18 4.5

beta 1.00 16.7 15.2 0.95 18.2  ±3.8 1.04 ±0.11 0.2
5.00 16.7 9.7 0.76 11.0  ±2.6 0.81 ±0.11 1.4

alpha 1.00 16.7 13.4 0.81 15.8  ±1.9 0.95 ±0.11 0
4.00 16.7 11.8 0.92 10.4  ±5.7 0.86 ±0.14 6.1

                                     
Note: Baseline values are as in Figure 3.                
Means ± standard deviation are over 10 centuries of weekly observations. 

Table 2. Simulation Results for Model 1
Clumped, Steady State Prediction Simulation Mean Parameters



Table 3. Logistic regression for crashes. 
 
                                              Standard          Wald 
              Parameter     DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
              Intercept      1     -9.5614      1.0802       78.3497        <.0001 
              population     1     -0.1088      0.0212       26.3342        <.0001 
              R0             1    -48.8239     18.0990        7.2770        0.0070 
              dR             1    -29.2605     19.3792        2.2798        0.1311 
              gs1            1     34.2313      7.9701       18.4467        <.0001 
              sigma          1      4.0874      1.9500        4.3935        0.0361 
              tau            1     -2.6528      0.5230       25.7308        <.0001 
              eta            1      1.1475      0.1066      115.8002        <.0001 
              beta           1      0.4975      0.1084       21.0684        <.0001 
              alpha          1      1.2995      0.1236      110.5284        <.0001 
              RDPM_M         1      1.9366      0.1584      149.4600        <.0001 
 
Note: The dependent variable Crash=1 in a given week if the price falls to less than 50% 
of current value within the next 26 weeks, and otherwise Crash=0. The data are all 
observations from Table 2, except a string of consecutive Crash=1 observations is counted 
only once. The explanatory variables are model parameters defined in the text, except for 
RDPM_M. It is the detrended weekly asset price (DPM) divided by its mean conditioned on 
the parameter values. (The means are from Table 2 with the first two decades deleted from 
each simulation, to reduce the impact of the initial population distribution.)    
 




