
Emergent Periodicity in a Field of Chaos

Ralph Abraham∗

Abstract

The synchronization of nonlinear oscillators is well-known and is a tra-
ditional topic in complex dynamical system theory. The synchronization of
chaotic attractors is less well-known, but is of obvious interest in many appli-
cations to the sciences: physical, biological, and social.

In a recent experimental study of coupled lattices of Rössler attractors,
(jointly with Michael Nivala) we were surprised to discover global periodic
behavior in large regimes of the parameter space. This emergent periodicity
in a field of chaos may be of significance in the origin of life, and in many life
processes.

In this talk we will explore the emergence of global periodicity, and also the
periodic windows in the bifurcation diagram of the Rössler attractor, which
may be the local cause of this global behavior.
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Introduction: Periodicity and Life

Living organisms are complex systems, and have been modeled by complex dynamical
systems. A biological organ, for example, may be simplified as a two- or three-
dimensional lattice of cells or nodes, each modeled by identical dynamical schemes,
with each node coupled mutually to its nearest neighbors.1 Lattices of oscillators,
for example, abound in the literature of biological modeling.

However, biological cells frequently exhibit chaotic behavior, so we have been moti-
vated to explore two-dimensional lattices of Rössler schemes. An amazing natural
phenomenon, crucial to life, is the emergence of global periodicity in such a complex
system, that we call a field of chaos. For instance, we may cite swimming bacteria,
respiration, the beating heart, and the regular rhythms of the brain.

In this talk I will demonstrate the ubiquity of periodic behavior in three related
contexts.

1. One Rössler

This system is known as the simplest chaotic flow (continuous dynamical system),
and exhibits an oscillation in the plane, together with spiking behavior in a third
dimension.

The basic scheme

The scheme is defined by the equations,

x′ = −y − z

y′ = x + Ay (1)

z′ = B − Cz + Mxz

The usual values of the control parameters are, A = B = 0.2, C = 5.7, and M =
1.0. The attractor is shown in Figure 1, in which the speed along the trajectory is
indicated by the colors, from blue (slowest) to red (fastest).

1A dynamical scheme is a family of dynamical systems (in this case, flows) parameterized by
control variables.
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Note the simple rotation in the (x, y) plane, and the spike in the z direction.

Bifurcations and Periodic Windows

As one of the four control parameters is varied while the other three are held constant,
the behavior of the attractor changes through slightly different chaotic states, with
occasional windows of periodic behavior. These are shown in abbreviated form in
Figure 2. All four exhibit periodic windows, but note that they are most conspicuous
in the B plot. There, as B is decreased from the right, a unit periodic attractor
undergoes a period doubling bifurcation, and then another and another, as in the
familiar route to chaos of the logistic family.

2. Two Rösslers

There are several ways of coupling to identical dynamical systems. We will be mostly
interested in the /em direct coupling method, due to a geometric theory of synchro-
nization. In this method, a proportion of the z-value of each trajectory is added to
the z-component of the other vectorfield. This is expressed precisely in these equa-
tions, in which we have assumed identical values of the four control parameters in
each of the coupled systems.

Synchronization

The 0-system now includes a z1-dependent perturbation in the third component of
its vectorfield, with coupling coefficient, D0,

x′
0 = −y0 − z0

y′0 = x0 + Ay0 (2)

z′0 = (B + D0z1) − Cz0 + Mx0z0

Similarly, the 1-system now includes a z0-dependent perturbation in the third com-
ponent of its vectorfield, with coupling coefficient, D1,

x′
1 = −y1 − z1
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y′1 = 1x + Ay1 (3)

z′1 = (B + D1z0) − Cz1 + Mx1z1

Note the addition of two additional control parameters, D0 and D1, the coupling
coefficients. Also, we have grouped together the terms (B + D0z1) and (B + D1z0)
to foreground the fact that the forcing terms effectively modify the B coefficients
of each system. We call these terms effective B0 and effective B1 for the coupled
Rössler systems.

We are interested in two special cases.

In the case D0 = 0, the 0-system is called the master, and the 1-system is the slave.
The master system forces the slave, while the master behaves as if the slave did not
exist.

In the case D0 = D1 ≥ 0, we say the two systems are mutually and symmetrically
coupled.

In both of these special cases, increasing the coupling coefficients produces synchro-
nization of the z-spikes, even though these spikes occur chaotically in time and in
strength as well, as shown in Figure 3, for the master and slave.

Bifurcations and Periodic Windows

We now consider the double Rössler system in the second case of symmetrical cou-
pling. A simulation with NetLogo 3D, showing the two trajectories side-by-side, one
green, the other blue, reveals the chaotic synchronization. The trajectories may be
clarified by indicating a Poincaré cross-section. For this we have chosen the positive
half of the X − Z plane. When the green trajectory pierces this half-plane it leaves
a red drop. And when the blue transits the section, it leaves a yellow drop. A bi-
furcation movie of this system, as D = D0 = D1 increases from 0.0 to 4.0 reveals
an extensive periodic window around D = 2.0. This emergent periodicity, seen from
the positive Y -axis, is illustrated in Figure 4.

3. Many Rösslers

Finally we consider a regular lattice of 160, 000 usual Rösslers, in a 400 by 400 square
grid, on a two-dimensional torus. Each node is mutually and symmetrically coupled
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to each of its four nearest neighbors. Thus, at each node, we have,

x′ = −y − z

y′ = x + Ay (4)

z′ = (B + Dzs) − Cz + Mxz

where D is the common coupling constant, and zs denotes the sum of the z-coordinates
of the four neighbors.

Synchronization

Extensive simulations of this system, the 2D-toral Rössler lattice, by Michael Ni-
vala of the UCLA have been recorded as movies, with each frame representing an
instantaneous state revealing the z of each node as a color, from blue (0) to red (25).
Three frames of such a movie2 are shown in Figure 5. The colors, especially in the
third frame, reveal islands of z-synchronization, which move around with advancing
simulation time.

Global Periodicity

A surprising feature of these simulations is a robust global periodicity. This may
be observed by averaging the z-values of all the nodes, and plotting as a function of
time. As we see in Figure 6, there is a periodic fluctuation in this average value.

Conclusion: Future Work

Our interest in the emergence of global periodicity in a field of chaos is heightened
by the crucial role of periodicity in life processes, and we feel justified in thinking
that nature has selected for attractors with shapes that facilitate synchronization,
and bifurcation diagrams with periodic windows. And yet, these periodic windows
are quite surprising from the point of view of pure mathematics. We began our
investigation with the idea of observing patterns of chaotic synchronization, and
were astonished to discover global periodicity by accident.

2Nivala’s a14
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We have by now a large number of related simulations, and will be filing more progress
reports as time goes on. But at this point, we may say that global periodicity is
ubiquitous for Rössler lattices. In the future, we plan to explore other fields of chaos,
such as Lorenz and Ueda lattices, to discover their secrets as well.

Figures
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Figure 1: The usual Rössler.
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Figure 2: The four bifurcation plots: Poincaré-z vs A, B, C, M.

Figure 3: The master (black) and slave (red) z’s vs time.
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Figure 4: Visualizing the Poincaré cross-section.

Figure 5: Three frames of the Rössler lattice.
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Figure 6: Periodic temporal fluctuations in the z average.
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