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Abstract

Complex dynamical systems models have been used (and misused) in ser-
vice of the sustainability (or tragedy) of a commons. Their misuse results from
the widespread ignorance of chaos theory. Here we consider this problem in
general, and study the special case of the tragedy of the oceans in detail. We
go on then to relate the mathematical model for fisheries, due to Beverton and
Holt in the 1940s, to the chaos revolution that followed. Finally, a potential
role of education in commons management is proposed, in which participative
simulation using NetLogo might be an integral part.
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1. Introduction

Many of the systems within which we live, such as ecosystems, are difficult to com-
prehend because their complexity strains our cognitive capacity. Mathematical mod-
eling (and computer simulation) of a complex system as a complex dynamical system
(CDS) is a powerful strategy to bring understanding of such complex systems within
our grasp.1 But the CDS modeling approach has been sometimes misused for mak-
ing predictions, even though chaos theory has shown that CDS models are generally
incapable of making predictions.

A crucial problem in the practical world of environmental management for sustain-
ability is the conundrum known as the tragedy of the commons. In this article we
will apply the CDS strategy to this problem, especially in the exemplary case of the
tragedy of the oceans: overfishing.

After some math preliminaries we review the prehistory of the modern environmental
movement, 1957-1962. Along the way we will review the parallel developments of the
fisheries model in the domain of applied mathematics (Gerhardsen, 1952; Gordon,
1954; Schaefer, 1957, and Beverton and Holt, 1947-53, 1957), and the pure math of
quadratic iterations (Myrberg, 1958-1965). These developments led the way to the
chaos revolution (May, 1974), which is crucial to our story of the misuse of math
modeling in the tragedy of the oceans.

We end with some suggestions for training students for stewardship of common-
pool resources, using the participatory simulation feature of the NetLogo software
package. The inclusion of systems theory in a school curriculum may enhance student
understanding of the complexity and interconnectedness of the world around us. This
strategy fits well into a school curriculum.2

2. Systems

A complex dynamical system is a formidable mathematical object. And yet, a simple
and intuitive approach was provided in its early history.

1We distinguish complex systems, as found in nature, from complex dynamical systems, which
are mathematical models for complex systems. Technical definition are relegated to a appendix.

2This has been abundantly proven at the Ross School of East Hampton, NY.
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Intuitive CDS

The state of a system is visualize as a set of stocks. A stock is a number representing
an amount of fluid or grain in a tank or silo. The tank has an input pipe and an
output pipe controlled by valves. This visual icon represents an ordinary differential
equation.3 A visual representation of such system is shown in Figure 1.

Chaos theory

Chaos theory is a popular name (since the chaos revolution around 1974) for the
branch of mathematics devoted to the behavior of dynamical schemes. This branch,
known to mathematicians as dynamical systems theory, originated with the French
mathematician, Henri Poincaré, around 1880. The theory is of special importance
to the mathematical sciences due to its main implication for CDS models, namely,
their unpredictability.

There are two reasons for this implication, both discovered by Poincaré, sensitive
dependence and bifurcation. In both cases, a minor change in the system definition
results in a major change in its behavior.4

3. The environmental movement

It is sometimes said that the history of the environmental movement began in 1962,
with the publication of Rachel Carson’s controversial and amazingly popular book
on toxic pesticides and weed killers, Silent Spring. While that may be true, there
was of course a prehistory that served as a springboard for her success.

Environmental prehistory

1957. The gypsy moth was endangering the northeastern forests. The USDA began
spraying millions of acres with DDT, killing birds, fish, and crops. Long Island

3Experience has shown that this concept is easily understood by young children, and CDS models
have been taught in this fashion even in elementary schools.

4Again, these are usually learned by the study of special cases.
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residents filed a suit, which was denied.5

1958. Fire ants in the American South were annoying farmers. The USDA began
seeding millions of acres with pesticide pellets more toxic than DDT.

1959. The Secretary of Health, Education and Welfare announced that some Long
Island cranberries were contaminated with aminotriazole, a weed killer thought to
cause cancer, and had to be withdrawn from the market.

1961. Thalidomide, a sleeping pill supposed to be safe for pregnant women, was
withdrawn from the market after it was implicated in a rash of birth defects.

Rachel Carson

Rachel Carson (1907-1964) was born in Springdale, PA during the height of the
US movement for women’s’ suffrage. Always interested in writing and nature, she
switched from writing to biology in college, and earned a masters degree in zoology
in 1932. Her thesis was a study of the larvae of catfish. She worked in the US Bureau
of Fisheries from 1935. Her first sea story, Undersea, was published in The Atlantic
Monthly of September, 1937.6 There, in a scant eight pages, we are conducted on
a guided tour of the whole watery system, including food chains, sensations, and
the interconnection of all living things. The phenomenal literary style and beauty
of these pages contributed to the success of the piece. In its final paragraph, she
concludes:

Thus we see the parts of the plan fall into place: the water receiv-
ing from earth and air the simple materials, storing them up until the
gathering energy of the spring sun wakens the sleeping plants to a burst
of dynamic activity, hungry swarms of planktonic animals growing and
multiplying upon the abundant plants, and themselves falling prey to
the shoals of fish; all, in the end, to be redissolved into their component
substances when the inexorable laws of the sea demand it.

This success urged her on to write a trio of books on the sea – Under the Sea Wind;
a Naturalist’s Picture of Ocean Life (1941), The Sea Around Us (1951), and The
Edge of the Sea (1955) – which became best-sellers. The success of The Sea Around

5(Gartner, 1983; p. 86)
6Reprinted in (Brooks, 1972; ch. 3, pp. 22-29).
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Us made her a literary celebrity, and she resigned from the Bureau of Fisheries in
1952.

In January 1958, at the height of the DDT battle on Long Island, Rachel Carson
heard from her friend Olga Owens Huckins that the birds in her private refuge were
dying from the DDT spraying. This set her on a two-year path of research and writing
that culminated in the publication of Silent Spring in 1962, and the consequent
explosion of the environmental movement. Suffering poor health all her life, she
learned in 1960 that she had cancer, and ironically, finished her argument that DDT
contributed to cancer as she was dying of the disease. She lived to see the advance
of anti-pesticide legislation, received many honors, and passed away in 1964 at age
56.

Her early love of the birds and the sea lead directly to the regulation of pesticides on
land. Like vertebrates, environmental sensitivity evolved from the sea to land, from
fish to birds.

Silent Spring begins with a fable, in which she continues the strongly poetic voice of
her sea trilogy. Some excerpts:

I. A Fable for Tomorrow
There once was a town in the heart of America where all life seemed

to live in harmony with its surroundings. The town lay in the midst of
a checkerboard of prosperous farms, with fields of grain and hillsides of
orchards where, in spring, white clouds of bloom drifted above the green
fields. In autumn, oak and maple and birch set up a blaze of color that
flamed and flickered across a backdrop of pines. Then foxes barked in the
hills and deer silently crossed the fields, half hidden in the mists of the
fall mornings.

.....
Then a strange blight crept over the area and everything began to

change. Some evil spell had settled on the community: mysterious mal-
adies swept the flocks of chickens; the cattle and sheep sickened and died.
Everywhere was a shadow of death.

.........
In the gutters under the eaves and between the shingles of the roofs,

a white granular powder still showed a few patches; some weeks before it
had fallen like snow upon the roofs and the lawns, the fields and streams.

No witchcraft, no enemy action had silenced the rebirth of new life in
this stricken world. The people had done it themselves.
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........
What has already silenced the voices of spring in countless towns in

America? This book is an attempt to explain.

Following this poetic transition, she immediately changes her tone to a coldly scien-
tific report, almost a legal brief, on the pollution of the oceans.

Due to her untimely demise, she missed the rapid evolution of the environmental
movement around the world, and global condemnation of chemical pesticides, that
she had spawned. Nevertheless, toxins are still seeping into the hydrosphere, where
they will remain for centuries.

Toxins in the sea today

In Silent Spring, Rachel Carson argued against chemical pesticides, and promoted
integrated pest management as an alternative. One of her primary concerns was
DDT. Its use on land leads to contamination of the oceans, the entire food chain of
the sea, and through the fishing industry, to the human population at the top of the
chain. Where does this stand today? According to Sea Web,7

It is estimated that over 70,000 chemicals are currently in common
use as industrial compounds, pesticides, pharmaceuticals, food additives,
and other purposes, and that this number is increasing by approximately
1,000 each year. Of particular concern to the health of marine mammal
populations are the halogenated hydrocarbons (HHCs) such as the PCBs,
DDT, chlordane, dioxins and furans, and the chlorinated and brominated
diphenyl ethers. Other chemical groups of concern include trace metals
such as mercury and cadmium, organometals such as tributyltin, poly-
cyclic aromatic hydrocarbons (PAHs), and radionuclides. Those coastal
populations near intensive agriculture operations may be exposed to pe-
riodic pulses of carbamate and organophosphate pesticides.

We also have to consider the increasing concentrations of such chemicals as Prozak,
Roundup, antibiotics, and CO2, as well as oil, sewage, noise pollution, and plastic
debris. More information may be found online, for example, at Ocean Health Index8

and Blue Voice.9 The latter provides a list of the twelve worst Persistant Organic

7www.seaweb.org/resources/briefings/chempol mammal.php
8www.oceanhealthindex.org/
9www.bluevoice.org/pdf/POPsFactSheet.pdf
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Pollutants (POPs), including DDT, PCBs, and Dioxins.

4. Tragedy of the commons

A commons, also known as a common resource or common pool resource (CPR) is a
resource shared by a community of people or agencies that exploit it for gain. Thus,
a commons is a complex system composing a resource (CPR) and its exploiters.

Examples

Here are some exemplary commons of current interest.

1. Atmosphere (Climate, Energy)

2. Hydrosphere (Oceans, Aquafers, Rivers)

3. Terrasphere (Topsoil, Minerals, Beaches)

4. Biosphere (Forests, Savannas, Flora, Fauna, Fisheries)

5. Infrastructure (Networks, Electromagnetic fields)

Sustainability

A problem of sustainability arises if agents over-exploit the common pool resource,
taking more than it can replenish by its natural functions. While this problem has
been known since ancient times, it became a topic of academic discourse and research
after the appearance in 1968 of an article by Garrett Hardin. It’s title, The tragedy
of the commons, gave a new name to the problem, as well as a pessimistic theory. For
in Hardin’s view, human greed would always lead to the destruction of the commons,
that is the tragedy. From its abstract:

The tragedy of the commons develops in this way. Picture a pasture
open to all. It is to be expected that each herdsman will try to keep as
many cattle as possible on the commons. Such an arrangement may work
reasonably satisfactorily for centuries because tribal wars, poaching, and
disease keep the numbers of both man and beast well below the carrying
capacity of the land. Finally, however, comes the day of reckoning, that
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is, the day when the long-desired goal of social stability becomes a reality.
At this point, the inherent logic of the commons remorselessly generates
tragedy.

In the ensuing debates, a positive outcome was proposed, called the comedy of the
commons, and thus evolved a whole spectrum of cases, called the drama of the com-
mons. And this in fact is the title of an important book of 2002, in which the
interdisciplinary field of commons studies, rapidly expanding since 1968, is summa-
rized.10 An introductory section provides an excellent history of commons studies.11

The particular commons most frequently encountered in this literature are forests,
agricultural fields, and fisheries. In these contexts, the tragedies are over-cutting,
over-grazing, and over-fishing, respectively.

A formal theory of the commons preceded Hardin. An influential model of a fishery
due to H. S. Gordon (1954) and M. B. Schaefer (1957) is summarized in Figure 6.12

By the way, this image is suggestively similar to that of the logistic function, an icon
of chaos theory since 1958.13 More about this below.

The drama of the commons owes much to the pioneering work of the late political
economist Elinor Ostrom, winner of a Swedish Bank Prize in Economics in 2009.
She had faith in human nature to resolve the problem of sharing a common pool
resource by spontaneously evolved agreements, called institutions, for sustainable
management. She supported her ideas with extensive field work in actual commons
in Africa and Nepal, and identified eight design principles for commons management
institutions.

5. Tragedy of the oceans

We consider now an exemplary case of CPR mismanagement, the tragedy of the
oceans. The oceans comprise the largest and most complex CPR on earth, including
its water, living systems such as coral reefs, zooplankton, fishes of all sizes up to tuna,
as well as sharks and marine mammals such as whales. Preying upon these systems
are huge fleets of commercial fishing boats, some almost as large as aircraft carriers,

10(Ostrom, 2002)
11(Dietz, 2002).
12See (Dietz, 2002; p. 9-10). Also, (Gordon, 1954) contains a reference to (Gerhardsen, 1952),

which may be the original source of this model.
13See (Myrberg, 1958-1965) and (Mira, 1987; ch. 3).
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as well as millions of sport fishers world-wide. They remove from the oceans billions
of fish and millions of metric tons of fish (the catch) every year, while egg producing
fish try in vain to replenish the loss annually. As the larger fish are decimated, the
fishers concentrate on smaller fish.

Fishery defined

Here are some definitions of fishery from the expert literature.14

• A stock or stocks of fish and the enterprises that have the potential of exploiting
them. (Anderson, 1977)

• A socioeconomic technological system in interaction with a marine ecosystem.
(Spochr, 1980)

• Activities through which people link themselves with aquatic environments and
renewable resources. (Anderson. 1982)

Thus, a fishery is a complex dynamical system consisting of two things, fish and
humans, as a predator-prey system: fish as prey; humans as predators. Thus humans
are at the top of a food chain, which is conventionally divided into discrete links,
called trophic levels.

Trophic levels

Fisheries are understood in terms of these levels. The biggest predators on top, with
the small fry on the bottom. These are the levels in the language that fisheries
scientists use for the sea.

• Level 5: including humans, marine mammals

• Level 4: large carnivores, predatory fish

• Level 3: small carnivores, fish

• Level 2: herbivores, jellyfish, herring, smelt, mollusks

• Level 1: plants, zooplankton

The large predators include:

14See (McGoodwin, 1990; p. 65).
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• Sharks

• Tuna, billfish (swordfish, marlin, sailfish)

• Cod, halibut, groupers, sea bass

• Salmon

The large predators are prized for sport fishing as well as commercial (food) fishing.
Overfishing leads to declining populations of these levels.

The declining catch

For a given fish, the catch refers to that total mass – usually measured in thousands
or millions of tonnes (metric tons) – of fish caught and taken ashore, to home or
to market. The by-catch is the mass of fish killed in the fishing process and thrown
overboard. Fishing effort refers to the magnitude of the collective fishing process,
measured by the total number of hours of fishing, including all fishing vessels, nor-
malized to a standard size and type of gear.15 According to fishery scientists, ocean
stocks of large fish are declining, and some species are in danger of collapse, that is,
extinction or near-extinction. Catch sizes are declining despite ever-increasing effort.
In Figure 2 we see a graph of declining catch versus time for large North Atlantic
predators from 1950 to 2000.16 This also shows the rising rate of fish mortality (catch
plus by-catch) as a percentage of total fish stocks per year.

In Figure 3 we see the catch for some individual species, increasing in parallel from
1950 to about,1977, then declining. Note the especially precipitous decline of the
North Atlantic cod fishery. It collapsed actually, in 1992.17 The politics of this
collapse will be discussed in the next section.

The declining trophic level

As the larger fish are generally more valuable, their numbers and weight decline
earlier, and the fishery becomes concentrated on a lower trophic level. This progres-

15(Beverton and Holt, 2004; pp. 29-33).
16See the graph in (Pauly and Maclean, 2003; fig. 10). A similar plot in (Palumbi and Sotka,

2011; p. 90) shows the earlier collapse of the sardine industry in Monterey Bay, California, in 1946.
At the time, this was the largest commercial fishery in the world.

17(Pauly and Maclean, 2003; fig. 6)
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sion, known as fishing down, is shown graphically in Figure 4. Here, fishing down is
depicted on both sides of the North Atlantic, from 1950 to 1998.18

6. Codfish chaos

The collapse of the North Atlantic cod fishery in 1992 provided a significant shock
to fishery management agencies worldwide. Its analysis reveals major problems in
management politics, which are important to other fisheries, especially those of tuna
and salmon.19

One of these major problems involves the misuse of mathematical models to intim-
idate and obfuscate those who are uninformed regarding the implications of chaos
theory. We begin our fishy tale with the politics, following (Pilkey and Pilkey-Jarvis,
2007). Then we will examine the mathematical model of (Beverton and Holt, 1957),
in relation to its contemporary chaos theory in some detail.

The politics of decline

Orrin H. Pilkey (b. 1934) was Professor of Earth and Ocean Sciences at Duke Uni-
versity, and Founding Director of the Program for the Study of Developed Shorelines
(PSDS). He was a master of the dynamics of shoreline movements due to coastal
processes. He pioneered the understanding of the weaknesses of the mathematical
models used in coastal geology.

The book, Useless Arithmetic: Why Environmental Scientists Can’t Predict the Fu-
ture. written by Pilkey and his daughter Linda Pilkey-Jarvis, a geologist in the State
of Washington’s Department of Ecology, is devoted to a number of cases in which
mathematical models are abused by politicians to mislead the public and legislators,
including the collapse of the cod fishery, the safety of nuclear material stored in Yucca
Mountain, the rising sea level, toxicity from abandoned mines, and plant invasions.
The cod collapse of 1992 is described in detail in the first chapter. Regarding this
they have said:

One example from our book is the ”fig leaf” coverage provided by
quantitative modeling in the Grand Banks fishery. The Canadian Grand

18(Pauly and Maclean, 2003; fig. 15)
19See (Safina, 1998) and (Clover, 2004/2006) for these.
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Banks fishery has been described as the greatest in the world. It provided
cod to the Western world for 500 years. In our lifetime, we watched the
wild and senseless overfishing lead to the demise of an industry that
employed as many as 40,000 people. The models, which many realized
were questionable, provided a fig leaf behind which politicians could hide
to avoid making the unthinkable decision to halt fishing.20

We move on now to an oft-misused model for a fishery, and its evolution in par-
allel with that of chaos theory. This fishery model, originally due to Beverton
and Holt in the interval, 1947-1953, was reported in the book (Beverton and Holt,
1957/1993/2004), still in print and much used by fishery scientists. Its cover, shown
in Figure 5, features the graph of their key equation, to which we now turn.

Definition of the fishery model

The dynamic model of Beverton and Holt consists of the iteration of a one-dimensional
function. Its graph is highly reminiscent of the logistic function much studied in chaos
theory since 1954. They give some credit to Michael Graham, director of the Fish-
eries Research laboratory at Lowestoft, 1945-1958.21 Figure 6 shows a prequel of the
key graph, from (Gordon, 1954) and (Schaefer, 1957). This graph shows the catch
(here called landings, L) and the cost (C) as functions of effort (E), all supposed to
be totals for a given fishing fleet for an entire season.

We must pause here to give definitions of the basic variables, according to Beverton
and Holt. The fleet may consist of vessels of different size, speed, fuel usage, gear,
and so on. The catch of a vessel or fleet is the total weight of fish caught and taken
ashore. This is sometimes indicated by YW , the yield by weight, in contrast to YN ,
the yield by number.

Each vessel is to be assigned a factor called its fishing power, PF , the catch per unit
fishing time, relative to a standard vessel. The fishing effort of a fleet, F , is the
total hours of fishing time for the whole fleet, measured in standard vessels, for a
year.

The basic equation and key graph of Beverton and Holt, the foundation of their
discrete dynamical model, is shown in Figure 7. Here three cases are shown. In each

20Found online at https://cup.columbia.edu/static/Interview-pilkey-orrin, September 2014).
21See (Graham, 1952). The papers (Gerhardsen, 1952) and (Gordon, 1954) also belong to the

early literature of this model.
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case, the upper part shows the graph of the basic function, and below, a time series
of values obtained by iteration, as we shall explain.

The basic function here shows recruitment, R, as a function of egg production, E.
Both R and E are measured in numbers of individual fish and eggs, respectively.

The reproductive cycle of a fish begins with egg production (spawning) by a mature
fish. The eggs settle to the bottom, produce larvae, which feed on zooplankton, and
hang out in a nursery area. This is called the pre-recruitment phase. At a certain
age (or time) t, all surviving members of this brood or year-class enter the region in
which capture may take place. This is called recruitment, and the number entering
this post-recruitment phase is denoted, R. Somewhat later, at time t′, a marginally
reduced number, R′, become eligible for capture. This is the exploited phase. A
natural mortality is assumed with exponential rate of decline, M .

The recruitment, as determined by egg-production and growth in the function R(E),
is depicted in Figure 7. The nonlinearity of this function, shown by its single-humped
graph, is due to the inclusion of a nonlinear density-dependent growth function due
to von Bertalanffy, The basic equation, ascribed to (Becking, 1946), is the compound
exponential 22

R(E) = αEe−βE

where α and β are positive constants. This is very similar to the iteration studied in
(May and Oster, 1976).23

Iteration of the fishery model

The iteration of this discrete dynamical system is obtained by assuming a constant
egg production from each individual in the post-recruitment phase. This constant is
shown as the diagonal line labelled γ in the upper graphs. This is the line through
the origin, (0, 0), with slope 1/γ.

Each year sees recruitment, eggs, and growth. Next year, new recruitment, new eggs.
new growth, and so on. The three graphs differ only in the slope of the γ line, which
varies among the three cases, decreasing from left to right.

22See (Beverton and Holt, 2004; eqn. 6.16, p. 56).
23See Fig. 4 on P. 578.
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The iteration of the discrete dynamical system goes like this.24 Our explanation
refers to the enlargement of the graph in the upper left corner of Figure 7, which is
shown in Figure 8.

The red point labeled fp, at the intersection of the humped curve and the diagonal
line, is a fixed point of the process. Its coordinates are (E0, R0).

Now choose a starting value for egg production, E1, at time, t0. This would have
been the egg production of an initial recruitment, R1. This event is represented in
our figure by the blue point labelled a, with coordinates (E1, R1), which is on the
diagonal line directly above the value E1 on the horizontal (E) coordinate axis.

After an epoch (∆, the duration of the growth phase from eggs into recruits) we
obtain a new recruitment, R2 = R(E1), at time, t1 = t0 + ∆. This is represented
in Figure 8 by the blue point labelled b, with coordinates (E1, R2), which is on
the humped curve directly above the point, a. At this time, there is a new egg
production, E2 = γR2. This is presented in Figure 8 by the blue point labelled c,
with coordinates (E2, R2), which is again on the diagonal line.

We may think of our dynamic operating in two steps, in which the point a on the
diagonal moves to the point c also on the diagonal. The two steps are: vertical to
the humped graph at b, then horizontal to the diagonal.

After another epoch, a recruitment R3 = R(E2) is produced at time t2 = t0 + 2∆,
and so on. Thus:

• The point a = (E1R1) is on the diagonal, the graph of the linear function,
E → E/γ.

• The point b = (E1, R2) is on the humped curve, the graph of the function,
E → R(E).

• The point c = (E2, R2) is on the diagonal line.

• The sequence of points, a, b, c, . . ., define the cobweb of horizontal and vertical
line segments in the upper three plots of Figure 7.

• The sequence of points (R1, t0), (R2, t1), . . ., define the solid lines in the lower
plots of Figure 7.

• The sequence of points (E1, t0), (E2, t1), . . ., define the dashed lines in the lower
plots of Figure 7.

24(Beverton and Holt, 2004; p. 52)

14



Beneath the key graph in each case, the time series showing R and E as functions of
time exhibits, respectively, static, periodic, and chaotic behavior. In the first case,
the fixed point, fp, is an attractor, the cobweb converges to it.

Bifurcations of the Berverton and Holt model

Note that the decline of the egg-production rate per fish, γ, is the bifurcation param-
eter, creating the changes in behavior from fixed, to periodic, to chaotic behavior.
This parameter, for fish in the ocean, is highly sensitive to environmental factors
that are unpredictable. Hence, the predictions of the model are highly unreliable,
according to chaos theory.

Note that if the egg-production, γ, decreases, the diagonal line, having slope 1/γ,
becomes steeper, and the attractive fixed point moves to the left. At a certain critical
value of egg-production, this fixed point arrives at the origin. This represents the
death of the fishery. It occurs when γ = 1/α, the reciprocal of the lead coefficient of
the compound exponential Becking equation above. This parameter represents the
survival rate of larvae into recruits.

On the other hand, as γ increases, the diagonal line drops, and the fixed point moves
to the right. Eventually, we will find the period doubling sequence leading to chaotic
behavior. This is characteristic of a healthy fishery.

This is the basic setup of chaos theory, as it developed for the iteration of one-
dimensional functions, from 1954 in the work of Myrberg.25 Understandably, this
work would not be known to Beverton and Holt during their evolution of the fishery
model. But a generation later, we have experienced the chaos revolution following the
publications of (May, 1974) and (Li and Yorke, 1975). May, a theoretical ecologist,
mentions population models even in the title of his 1974 paper. And this becomes
even more explicit in the joint paper (May and Oster, 1976). The graph of the
function studied therein is shown in Figure 9. Note the similarity to Beverton and
Holt, shown in Figure 5.

But in the work of May and Oster, the full paraphernalia of chaos theory is applied
to the model. So it seems that fisheries scientists should be well aware of the chaotic
behavior of their fundamental model well before the demise of the North Atlantic
cod fishery in 1992.

25See the wonderful exposition of this work in (Mira, 1987; Ch. 3.).
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7. The early days of chaos theory, 1959-1974

In The Chaos Avant-Garde a scheme for the history of chaos theory was proposed,
based on the idea that chaos theory began with a revolution, the ”chaos revolution”,
in which the word ”chaos” was attached to the branch of mathematics known as dy-
namical systems theory, as a popular name. All the prior background, from Poincaré
up to this historical bifurcation, is regarded there as the prehistory of chaos theory,
also known as ”the early days of chaos theory.” The book comprises the memories
of the pioneers of the early days, beginning with Steve Smale in 1959.26 One of the
early threads of chaos theory concerns the iteration of a one-dimensional function,
as above.27

The chaos revolution

This bifurcation moment is placed in early 1974 by Li and Yorke:

Each academic year, the Math Department of the University of Mary-
land routinely organized a special year program. The topic of the program
for the academic year of 1973-74 was mathematical biology. Robert May,
who was trained as a physicist but had become a professor of biology at
Princeton University, was one of the distinguished invited speakers of the
program. During his visit in the first week of May, 1974, Professor May
delivered five lectures, one per day. The subject of his fifth talk was the
Logistic Model,

Ta(x) = ax(1− x), x ∈ [0, 1], a ∈ [0, 4]

He described his discovery, the now well-known doubling period bifurca-
tions as a varies. He did not know what happened in the chaotic region,
the region beyond the main cascade of period doubling! . . .

In the summer of 1974, Professor R. May was invited to give talks
by many institutions in different countries of Europe. He adopted our
use of ”chaos” as a mathematical term, and Period three implies chaos
therefore began to attract considerable worldwide attention by his strong
advocacy in talks and papers.28

26See the preface in (Abraham and Ueda, 2000).
27The several texts of Robert Devaney provide elementary explanations.
28See (Li and Yorke, 2000; pp. 204-205).
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The work of Myrberg

At that time, in 1974, these pioneers did not know of the earlier work of P. J. Myrberg
of Helsinki, who published much of what is known today of the logistic map family
in a series of six papers in German and French, in the interval 1958 to 1963.29 By
1976, May was crediting the priority of Myrberg’s papers of 1958 and 1963.30

The results of Myrberg concern the periodic attractors of the logistic family of
quadratic real mappings, and their convergent cascade to a limit point in the pa-
rameter interval (see a in the equation above), beyond which the chaotic behavior of
the model was discovered later, perhaps by Metropolsky, Stein and Stein in 1973. In
any case, the bifurcation cascade was known to May, and independently to Li and
Yorke, in early 1974. And the chaotic behavior was known to Li and Yorke, and
communicated by them to May, in 1974.

8. The shape of the Beverton-Holt function

The function,

f(x) = αxe−βx

where α and β are positive constants, and x represents the current fecundity of the
fish (average annual egg production per fish).31

So given a time t0, an increment ∆t (e.g., equal to one year), and the time sequence,
{t0, t1 = t0+∆t, t2 = t0+2∆t, , . . .}, we have a corresponding sequence of egg counts,
{E0, E1, . . .}, with E1 = f(E0), and so on. This is the basic iteration of Beverton
and Holt, which we now wish to study.

First, we consider the graph of this function, restricted to the unit interval, [0, 1].
From the first derivative,

f ′(x) = α(1− βx)e−βx

29The results of Myrberg are covered in detail in (Mira, 1987; Ch. 3), including the rediscovery
in part by Metropolsky, Stein and Stein in 1973, and by Milnor and Thurston, 1977, and others.

30(May, 1976)
31(Beverton and Holt, 1957; p. 56)
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we see that there is a unique critical point at x = xc = 1/β, and this will be within
the unit interval providing β > 1. The value of the function at this point is α/βe,
which will be within the unit interval as long as α < βe. Recall that e = 2.72,
approximately.

Evaluating the second derivative,

f”(x) = −β(α + 1)e−βx

at the critical point, xc = 1/β, we find

f”(xc) = −β(α + 1)/e

which is negative. Thus, the unique critical point is a maximum, and the function
has a single hump, at the point,

(1/β, α/βe)

.

This is the sort of function which is well studied in chaos theory. If is known, for
example, that the iteration of this function on the unit interval has a single basin,
and a single attractor.

In summary, we have an endomorphism of the unit interval (that is a mapping of
this interval into itself) defined by the function,

f(x) = αxe−βx

wherein the two positive constants are restricted, β > 1 and α < βe . There is a
unique local maximum at the point, (1/β, α/βe). This point is indicated on a plot
of the function in Figure 10, with α = 10 and β = 5.

9. Bifurcations of the Beverton and Holt itera-

tion

Increasing the amplitude, α, for a fixed rate of decay, say β = 8.0, we observe:
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• first a fixed point attractor, with α = 6.0, shown in Figure 11,

• then a two-periodic attractor, with α = 9.0, Figure 12,

• and a period doubling sequence leading to chaos, with α = 15.0, Figure 13,

all shown for β = 5. A full sequence is shown in the response diagram, Figure 14, as
α is increased from 0 to 20 and β = 8.0.32

Here the periodic doubling sequence, familiar from the much studied logistic system,
leads to chaos around α = 14. Note the prominent five-periodic window around
α = 18.5.

10. Interpretation of the response diagram

Regarding the relation between the model data and real fish data, compare the
recruitment of North Sea haddock (the main focus of Berton and Hold in the 1950s)
show in Figure 15 (dashed line) with the model data of Beverton and Holt (lower
right of Fig. 7, solid line). The similarity is striking. Note that the variation defies
linear thinking, in that prior to the overfishing of the 1990s, recruitment jumps from
one extreme to the other are typical.

Our amplitude coefficient, α, is a combination of the two factors, α′ and γ, in the
original equation of Beverton and Holt, where α′ is a fixed constant, and γ is the
relative fecundity, or average egg production of a single fish in some units. That is,
α = α′γ. Thus if we follow the behavior of the unique attractor as γ decreases from
a healthy value of γ = 20 down to γ = 0, we observe the behavior declining from
chaotic behavior over a full range of total egg populations, to a fixed-point attractor
declining to zero (collapse of the fishery).

Further, as γ declines, the complexity declines as well. First healthy chaos, then
worrisome periodicity, and finally stasis, declining to zero. This is evident in the
Berverton-Holt model, Figure 7, in real data, Figure 15.

According to Carl Safina (1998; p. 355),

Overfishing not only directly depletes fish, it can rob other fish of
food, lowering overall abundance across many species. Fishing can lead
to shifts in the community, rearranging the neighborhood by pulling out

32This may be regarded as an extension of Fig. 8 in (May and Oster, 1976).
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key species, causing cascading effects as the rest of the species adjust.
This is called ”ecosystem overfishing.”

This is supported by the ”fishing down” data, showing declining trophic levels of
the annual catch, Figure 4. Complexity, and thus sustainabiity, of the entire ocean
ecosystem at large, is on the way down.

We have seen that the earliest application of chaos theory, in the case of one-
dimensional iterations, began in the interval 1947-1953, in the fishery model of the
applied mathematicians Beverton and Holt, working at the Fisheries Research Lab-
oratory in Lowestoft, on the North Sea coast, north-east of London. Meanwhile, the
pure mathematics of this field was undergoing independent development by Myrberg
in Helsinki, about 1000 miles away.

Beverton and Holt were aware of the bifurcations of the model from point attractor,
to periodic attractor, and ultimately to chaotic attractor. Yet it was up to Myrberg
to map out the full bifurcation sequence of the model for the first time, including
the cascade of period doubling bifurcations in the runup to chaos.

It is understandable that the full implications of chaos theory were unknown to the
early workers in fisheries science. But by the time of (May, 1974) and (May and
Oster, 1976), there was really no excuse. So the use of this model for setting the
total allowable catch (TAC) for fisheries at risk of collapse, which was (and continues
to be) the case for the cod and tuna fisheries in the North Atlantic, must be due to
inexcusable ignorance (or duplicity) on the part of the scientists and/or the politicians
involved.

11. Systems thinking

Part of the problem here is the widespread ignorance – on the part of all the actors
in the drama of the commons – of the basic concepts of complex dynamical systems
theory. This might be remedied by changes in our school curriculum. adding an
extensive thread on systems thinking.

Another part of the dilemma concerns the state of morals in our global culture. A
giant bluefin tuna, its catch forbidden by law, might be worth $180,000 in Tokyo.33

What to do? This is a strong case of markets versus morals. Mathematical economist
Daniel Friedman, in his excellent book, Morals and Markets, devotes a chapter to

33See (Safina, 1998; p. 114).

20



”Environmental markets and morals,” in which the North Atlantic cod collapse of
1992 is carefully analyzed. While we might hope for morals to be improved in our
educational system, Friedman concludes:

The point should now be clear. Environmentalists were naive to be-
lieve that a moral crusade will, by itself, secure a sound and durable
environmental policy. Laws may be passed and bureaucracies built, but
inevitably, they will be eroded when they conflict with market impera-
tives.34

A system dynamics model for the tragedy of the commons is included in the NetLogo
Model Library that is freely distributed along with the NetLogo computer language
system. This model runs in participatory simulation mode (using a NetLogo feature
called HubNet) in which students with laptops may participate in a simulation of the
management of a commons. A screen shot of this model is shown in Figure 16.

A more realistic and informative model might be built upon the NetLogo model,
be enclosing it within a larger system, combining the commons with political and
environmental-activist nodes. Such a scheme is indicated in Figure 17.

12. Conclusion

The plight of the ocean ecosystem is a classic example of the tragedy of the commons.
The best hope for recovery seems to be conservation institutions made by local
interest groups. The development of those agreements require new levels of morality,
which are difficult to create, and/or new levels of understanding of ecosystems as
complex systems, which may be addressed through education. In this direction, we
have proposed an educational thread on systems thinking for K-12 schools using
complex dynamical systems and chaos theory.35

34See (Friedman, 2008; p. 164).
35This thread has been implemented successfully at the Ross School, of East Hampton, New

York.
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Appendix: CDS Definitions

We begin with some necessary background definitions from mathematics. These need
not be understood in detail, but must at least be recognized.

Simple dynamical systems occur in three flavors: flows, cascades, and iterations.

A flow is a continuous-time dynamical system defined by a vectorfield, that is, a
system of ordinary differential equations on a space, the state space, state space.

A cascade is a discrete-time system defined by the iteration of an invertible function
(a diffeomorphism) from a space onto itself.

An iteration is a discrete-time system defined by the iteration of a noninvertible
function, (an endomorphism) from a space into itself.

A dynamical scheme is a family of simple dynamical systems depending on parame-
ters, that is, control variables.

A complex dynamical system comprises a number of simple dynamical systems (it-
erations or flows) linked by functions from the state space of one to the control
parameters of another.36 The dynamical behavior of a CDS may be studied in terms
of its attractors and their basins. A bifurcation of a CDS occurs when a small change
in a control parameter results in a significant change in its configuration of attractors
and basins.37
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Figure 1: A one-dimensional flow in the NetLogo Systems Dynamics Modeler
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Figure 2: Fish decline, from Pauly and Maclean, 2003, Fig. 10, p. 36.
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Figure 3: Fish decline by species, from Pauly and Maclean, 2003, Fig. 6, p. 30.
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Figure 4: Fish decline by trophic level, from Pauly and Maclean, 2003, Fig. 15, p.
xx.
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Figure 5: Beverton and Holt, 1957; Cover.
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Figure 6: Summary of Gordon and Schaefer, from (Dietz, 2002; p. 10).
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Figure 7: Beverton and Holt, 1957; p. 57
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Figure 8: Beverton and Holt, 1957; p. 57, Fig. 6.6.1, upper, enlarged
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Figure 9: The key graph, from May and Oster, 1976; fig. 4, p. 578.
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Figure 10: Plot of Beverton-Holt function, β = 5.
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Figure 11: Beverton-Holt iteration, β = 5, α = 6.0. Compare (Beverton and Holt,
1957; Fig 6.6.1, p. 57).
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Figure 12: Beverton-Holt iteration, β = 5, α = 9.0. Compare (Beverton and Holt,
1957; Fig 6.6.2, p. 57).
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Figure 13: Beverton-Holt iteration, β = 5, α = 15.0. Compare (Beverton and Holt,
1957; Fig 6.6.3, p. 57.
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Figure 14: Beverton-Holt iteration, β = 8. Here, R = α (on the horizontal axis)
increases from 4 to 20, while the domain, the unit interval [0.1], is shown as the
vertical axis. For each value of R, the corresponding attractor is shown in red
directly above.
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Figure 15: Recruitment variability of North Sea cod (solid) and haddock (dashed).
Annual recruitment (one-year old fish) in millions of tonnes from 1950 to 1995. From
(Fogarty, 2001; Fig. 1).
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Figure 16: A NetLogo model for the tragedy of the commons.

42



Figure 17: A scheme for an all-encompassing model.
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Figure 18: The systems dynamics representation of the three-node model, from Net-
Logo. Here X, Y, and Z represent people, fisheries, and government, respectively.
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