Vibrations and the
Realization of Form

Ralph Abraham

Universal Form and Harmony
were born of Cosmic Will,

and thence was Night born, and thence
the billowy ocean of Space;

and from the billowy ocean of space
was born Time—the year

ordaining days and nights,

the ruler of every movement.
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1. INTRODUCTION TO MACRODYNAMICS

Macrodynamics is a synonym for kymatics. My preference for
Anthony's (1969) nomenclature over Jenny’s (1967) is just personal
taste. If any of this part seems too technical, skip directly to Section 2.
Morphogenesis, the evolution of form from chaos, has a high priori-
ty in the philosophical literature of many cultures: the Rigveda, I
Ching, Heraclitus, Cabala, and others. Up to this very volume, phenom-
enological descriptions of morphogenesis in various spheres abound in
our literature. On the other hand, morphedynamics—the study of the
mechanics of morphogenetic processes in the context of hard science—
is just beginning. It has been born of two recent developments: a suit-
able mathematical foundation, the theory of catastrophes of René
Thom (1973); and an adequate observational tool, the macroscope of
Hans Jenny (1967; 1972). Here, then, is a very concise introduction to
experimental morphodynamics, including a preliminary report on our
own macron observations through the first color macroscope. This
chapter is dedicated to Neemkaroli Baba, late of Uttar Pradesh.
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6. INTRODUCTION TO MACRODYNAMICS 135

Simple Macrons

Macrodynamic processes in nature take place in hierarchical systems of
compound (heterogeneous) macron organisms. To understand these
processes, we try to dissect them into fictitious categories of simple
(homogeneous) macrons. The three basic categories are physical (P);
chemical (C); and electrical (E). The physical macrons are further sub-
divided according to the material state of the macron medium: solid
(PS), isotropic liquid (PL), liquid crystal (PX), and gas (PG). Here we
discuss examples of these six types.

Physical Solid {PS): A flat plate is vibrated transversally by an
external force, usually electromechanical transducers coupled either
directly or through an intermediate fluid. A stable aspect of the system
is a spiderweb of motionless curves, the Chladni nodal lines, originally
observed by sprinkling sand on the plate. The complete vibration pat-
tern of the plate is best revealed by laser interferometry. This pattern is
the macron in this example. It depends upon control parameters of two
types: intrinsic controls, such as dimensions and elasticity of the medi-
um; and extrinsic controls, such as frequency and amplitude of the
driving force. Of course, this example is very special, as the medium is
more or less two dimensional. For a generic example in this category,
consider a rubber ball in place of the thin plate. Stable modes of vibra-
tion are characterized by symmetric distortions of shape, separated by
motionless nodal surfaces. If the medium is magnetic or piezoelectric,
driving forces may be applied directly with electromagnetic fields.

Physical Isotropic Liguid (PL): Beginning once again with a two-
dimensional approximation, suppose a round dish is filled with a thin
layer of isotropic liquid, and the bottom of the dish is heated. Soon the
liquid will begin to simmer. Careful observation will reveal a spiderweb
of nodal lines (actually, parallel lines—rolls and packed hexagons called
Bénard cells—are combined in patterns), within which the liquid con-
vects toroidally (up at the boundary of the cell, down in the center).
This Bénard phenomenon is a macron. Another type is observed by
vibrating the bottom of the dish in a (PL) macron. As the amplitude is
gradually increased, the liquid layer first behaves as a solid—the elastic
macron; then, after a certain critical amplitude is reached, the simmer-
ing point, a convection or Bénard-type simmering fluid flow begins—the
hydrodynamic macron. The macrons, or stable modes, depend on in-
trinsic controls such as shape, compressibility, and viscosity; and exter-
nal controls such as frequency and amplitude of the driving force. In
the general case of a thick layer of liquid, the elastic and hydrodynamic
macrons are three-dimensional generalizations of these effects. But
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there occurs at least one effect of a different type. If the dish is rotated
or the liquid is stirred, there may arise toroidal partitions, within which
a ring of fluid—a Taylor cell—flows spirally. These rings are also seen
when a drop of fluid enters another mass of fluid, as in smoke rings,
Hierarchical repetition of Taylor cells may be observed by dripping ink
into a glass of very still water. The von Karman vortex street also be-
longs to this class.

Finally, we include in this category isotropic powder, that is, dust
made of spherical solid particles of identical size. Jenny (1967;1972)
has produced Bénard cells in powders of moss spores.

Physical Liquid Crystal (PX): If the medium is in a liquid crystal
metaphase, any macrons of elastic or hydrodynamical type may be
induced in it. But two additional phenomena have been observed which
are peculiar to this phase, and other simple macrons will undoubtedly
be discovered which belong especially to this category. If a thin layer of
fluid is exposed to a transverse electrostatic field, simmering is induced
in approximately hexagonal cells—the Williams effect. Presumably, an
elastic macron is induced below the simmer point. In an oscillating elec-
tromagnetic field, piezoelectric waves are induced—the flexoelectric
effect. In this category we might also include anisotropic powder—dust
of identical aspheric solid particles.

Physical Gaseous (PG): In gases, we observe the macrons of iso-
tropic liquid, as well as (presumably) additional pattern mechanisms
belonging specifically to this category. Perhaps these gaseous macrons
are unique combinations of elastic and hydrodynamical macrons of the
(PL) category, possible in this context because of the high compressibi-
lity and low viscosity of the usual gases. The enormous dimensions of
these macrons make them hard to observe, and at present it is not
known whether or not exclusively gaseous macrons exist.

These four classes of macrons compose the category (P) of simple
physical macrons. This is the context of most of the research in experi-
mental morphology up to now. The remaining two categories, (C) and
(E), are therefore very embryonic at present.

Chemical (C): There are various macrons, or basic pattern phe-
nomena, which are fundamentally chemical in origin. These occur in
heterogeneous media, amid chemical reactions. Included are mecha-
nisms of change of state, such as patterns of precipitation, Liesegang
rings of crystallization, and opalescences like abalone shell. To this class
also belong the classical diffusion patterns as well as the newly discover-
ed patterns of periodic chemical reactions (see Chapter 5 by Prigogine).
This is a little-studied category, which will undoubtedly be explored
more thoroughly.
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6. INTRODUCTION TO MACRODYNAMICS 137

Electrical (E): The description of basic electrical macrons is in-
cluded here for the sake of completeness—in spite of being based almost
entirely on speculation—and because of my belief that it will figure
vitally in the understanding of the brain and in the engineering of arti-
ficial intelligence, sometime in the future,

Consider a heterogeneous medium of smoothly changing physical
properties, especially electrical conductivity, and possibly containing
sources of charge, This is an electronic spacework. An electronic net-
work may be thought of as a spacework with discontinuities, orasa
retraction of a spacework onto its skeleton of dimension one. A semi-
conductor device is an example of a genuinely three-dimensional space-
work. However, this concept must be allowed to include matter in all
phases, especially charged fluid (plasma, ionized gas, etc.). Thus, classi-
cal magnetohydrodynamics (MHD) is included in this context.

In an electronic spacework, subject to controlled external electro-
magnetic fields or to controlled charge exchange with the environment,
macrophenomena of categories (P) or (C), as well as other unique phe-
nomena, may be observed. Those macrons occurring uniquely in the
context of spaceworks include category (E). For example, the Stérmer
orbits and Alfvén waves of magnetogasdynamics and northern lights are
macrons of type (E). As in ionized fluids, rolls comprise transformers,
Bénard cells are toroidal induectors, Taylor cells combine linear and
toroidal induction, membranes are capacitors, and so forth. It may be
expected that an entirely new discipline of engineering could be based
upon a full understanding of macrons in specific spaceworks. The idea
of a liquid crystal transistor, combining fluid, electronic, and MHD
technologies, is not too far-fetched.

Macrons of type (E) will be known better in the future, when the
development of specific MHD machines will make systematic observa-
tion possible.

Complex Systems of Macrons

The macrodynamics of a real event is complex in two ways. First, a
single organic structure may exhibit a macron in which physical, chemi-
cal, and electrical modes are combined. This is especially the case with
biological organisms. Second, two distinct structures may be weakly
coupled, forming a larger, compound organic unit. Here we discuss
compound modes and coupling separately. .

Since basic macrons are of three types, (P), (C), and (E), there are
only four types of compound macrons: (P-C), (P-E), (C-E), and
(P-C-E).
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Physical-Chemical (P-C): A typical situation of this type is a mix-
ture of fluid reagents. While a stable pattern of chemical origin exists,
an elastic or hydrodynamic macron is excited. Since convection is faster
than diffusion, the hydrodynamic macron dominates the patterns of
reagent concentration and reaction rate. For example, Lew Howard and
Nancy 592@_ (1976) observed Bénard cells with purple hexagonal
boundaries and red central cell bodies in the Zhabotinsky reaction,
when the surface of the fluid was cooled by evaporation. The separa-
tion of the reagents is accomplished by a separation mechanism, which,
for this Howard-Kopell phenomenon, is undoubtedly centrifugation of
the reagents. The separation mechanism is also well illustrated by an
analogous experiment carried out by Jenny (1967; 1972): Sand is
sprinkled on a vibrating plate; it gravitates, very slowly, to the Chladni
nodal lines. These motionless curves outline cells of transverse vibra-
tion, each with a center, or nucleus, of maximum motion. Now spore
powder is sprinkled on the vibrating plate. This moves to the nuclei,
forming small piles of powder at each nucleus. Furthermore, each pile
can be seen to roll constantly in a toroidal eddy, exactly as in a Bénard
cell. In the latter case, I believe the separation mechanism is differential
response of the reagents to flotation in invisible Bénard cells excited in
the air over the plate by the vibration.

Physical-Electrical (P-E): As in the previous discussion of basic
macrons of type (E), we.can only speculate on this case, which is exem-
plified by plasma. The production of a toroidal inductor in a fluid
spacework by intentional excitation of a Bénard cell is an example of a
compound (P-E) macron. The generation of electromagnetic waves by
physical vibration of a cholesteric flexoelectric liquid crystal is another.

Chemical-Electrical (C-E): Spaceworks designed specifically to
separate ionized components into a particular spatial pattern could be
used to grow semiconductor crystals, specialized lenses, or any frozen,
precipitated, or crystallized solid in a given pattern. These media are
electrochemical spaceworks.

Physical-Chemical-Electrical (P-C-E): Physical macrons in fluid
reagent mixtures, including liquid crystal and solid components, some
of which are charged or otherwise electroactive, comprise the patterns
of living organisms. Embryology provides countless examples. This gen-
eral case may therefore also be called bioplasma.

Whereas in the laboratory, macrons of a pure, basic type can be
created, in the real world of phenomena only the general case is
found. Suppose now that two single systems of bioplasmic (P-C-E)
type are at hand, and their separate stable modes are known. Let these
two now be weakly coupled, by physical contact, chemical mixing in
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6. INTRODUCTION TO MACRODYNAMICS 139

small exchanges, interaction through the electromagnetic field, ora
combination of these means. The coupled system will now have its own
stable modes. How are the combined macrons related to the original
separate macrons? This relation, which we call the algebra of macrons,
is the most intriguing problem of morphology. The classical ideas of
resonance, sympathetic vibration, and so on, serve as clues. The experi-
ment of Jenny (1967; 1972), showing the vibrating plate and the over-
lying air in related macrons (revealed by the eddying piles of powder at
the nuclei of the plate macron), gives a more useful example of macron
addition.

In fact, there are no pure macrons. In order to study the stable
modes of one system, we must couple it to another. Thus, all experi-
ments in morphology are actually examples of coupled macrons, and
because the number of organic units in a coupled system of the phe-
nomenal universe is always large, we shall one day be led to a probabil-
istic, or statistical-mechanical, theory of complex macrons for hierar-
chical systems, However, this is far off at the moment. We have, at
present, only a very rudimentary preview of the mathematical theory of
basic macrons.

Geometry of Macrons.

A full understanding of the mathematical description of macrons would
require a knowledge of the theory of dynamical systems up to the cur-
rent research frontier and beyond. For those who wish to pursue this
exciting hobby, the introductory book of Hirsch and Smale (1974)
provides a good starting point. For our presentation, we shall require
but a single concept of that theory, that of attractor, which is easily
grasped on an intuitive level.

Suppose that a particular medium is to be studied, for example, a
bowl of salty jelly. We have to assume (1) that a suitable mathematical
space has been described, called the phase space, such that each point in
the phase space corresponds tb a completely satisfactory description of
a configuration, or geometrical posture, of the jelly; and conversely,
that each posture of the jelly corresponds to a unique labeling point in
the phase space. Therefore, jiggling the jelly defines a curve: a point in
the phase space, moving along a path. Next, we have to assume (2) that
the particular experimental situation of the jelly—for example, if it is
stirred in a precise way—is described by a dynamical system in the
phase space. This is a mathematical structure with the following proper-
ties:
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(a) The phase space is divided into a number of different zones, called basins of
attraction (see also Chapter 4 by Holling, Section 3);

(b) In each basin there is a distinguished set, its attractor, which is a sort of
atomic, or basic, representation of a dynamical system;

(e} 1If the jelly, in the chosen experimental situation, is set going in any original
state, its corresponding curve of successive states in the phase space will pro-
ceed in a unique fashion toward a final equilibrium motion near the attractor
of the basin in which the curve started.

If we ignore here the nonequilibrium states—which is justified for
structures for which the approach to equilibrium is very swift—then all
we need to know about dynamical systems is their attractors, which is
excellent, because all dynamical systems may then be represented by
the same types of “‘atomic" attractors, in different ““molecular” clus-
ters. Further, these common attractors are classified by a system which
begins with a simple sequence, starting with the simplest. Here are the
first three attractors in this sequence:

1. asingle point, corresponding to static equilibfium—the jelly ceases to jiggle, or
dies;

2. acircle, with a parameter, corresponding to a cyclic repetition of states, an
oscillation in the jelly with a single period, or frequency;

3. atwo-dimensional torus, with a curve spiraling indefinitely around it, as in
toroidal inductors—corresponding to an almost periodic motion, a compound
oscillation with two independent frequencies, irrationally related.

This sequence continues with tori of increasing dimension and more
complicated compound oscillations, until very chaotic motions are in-
cluded. The full description of this list of attractors is, in my view, one
of the great achievements of mathematics in the twentieth century.

This completes our excursion into dynamical systems theory, and
its concept of attractor. By now the intention of this excursion is prob-
ably clear: the mathematical description of a macron is an attractor. In
itself, this does not help us much to understand macrodynamics or mor-
phogenesis.! It is actually the theory of transitions of attractors, or
catastrophes, as developed by René Thom (1973), which is the basis for
the geometry of macrons, as it has developed so far. Here is the concépt
of catastrophe, as used in dynamical systems theory.

Returning to our original experimental situation, we have supposed
that the medium of the experiment—salty jelly (or an economy, an

'1t should be noted that “atomic” attractors, at this stage of theory building,
represent global stability and therefore cannot, by themselves, adequately describe
nonlinear behavior, in particular, the amplification of fluctuations which may drive
the system to the point of a catastrophe, or qualitative change from one attractor
to another, (Comment by E. J., editor)
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6. INTRODUCTION TO MACRODYNAMICS 141

electronic black box, or whatever)—is described by a phase space; and
that the specific experimental situation—comprising the fixed values of
the various intrinsic and extrinsic control parameters—is described by a
particular dynamical system, with its molecular cluster of basins and
attractors. It follows, then, that changing the values of the controls will
change the dynamical system, the basins, and the attractors, which cor-
respond to observable states, or macrons. Thus, as the controls are
smoothly changed, the attractor under observation must be expected to
change. But the attractors belong to a discrete list, and can only change
in jerks. These are the catastrophes and they may be considered as
boundaries of particles, providing a mathematical (nonlinear spectral
theory) version of particle-wave duality. In fact, an esoteric quantum
field theory based on this analogy has been suggested by Thom, and
may one day be developed.

Dynamical systems theory provides us, in addition to the classifica-
tion of attractors—point, circle, torus, and so forth—, with a classifica-
tion (not yet complete) of catastrophes, or allowable (i.e., generic)
transitions of attractors. This classification also begins with a discrete
list of increasingly complex phenomena. We end this mathematical
aside with a description of the two simplest types of catastrophes: the
leap and the wobble.

Suppose the system is observed in a certain macron (attractor) and
the control parameters are gradually changed. The macron is gradually
distorted, but undergoes no definite change of type. Suddenly, at a
critical value of the controls, it changes instantaneously into a com-
pletely different macron. This is a leap. In the simplest case, it is a point
(steady-state) attractor which leaps. The steady state suddenly changes
to a radically different steady state. For example, the onset of Taylor
cells in rotating fluids is a leap catastrophe.

The wobble is a subtle catastrophe, almost unnoticeable. In the
simplest case, called Hopf excitation, a point attractor changes into a
circular attractor, as the control parameters are changed through a crit-
ical value, At first, the circle is very small, corresponding to a wobble,
or oscillation of very small amplitude. As the controls continue to
change, the circle (and wobble) grows until the oscillation becomes
noticeable. For example, the fluttering of the boundaries of Taylor cells
in rotating fluids is an example of a wobble catastrophe.

It is possible to organize all the attractors and catastrophes, refer-
ring to a given experiment with controls, in a single geometric model.
This is called the logos. The structure of these models, the geometry of
macrons, is the triumph of Thom’s theory of catastrophes. Unfortu-
nately, it is unapproachable without technicalities. In an experimental
situation, however, it is possible to construct a map of the logos more
or less empirically by exploration. The confusing feature is a kind of
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hysteresis: the observed state, for a given control setting, may depend
on the direction of approach to that control setting. For each control
value (such as rate of stirring of the salty jelly), many attractors may
exist. The geometry of macrons can be a great help to the experimenter
at this point. This will become clearer in the context of the example
discussed in the next section.

For those who would like to know more of macron geometry, the
basic references are included in the bibliography. My “Introduction to
Morphology™ (R. Abraham, 1972) includes some helpful illustrations.
Warning: The classical literature of catastrophe theory (Thom, 1973,
and Zeeman, 1971) assumes that the phase space is finite dimensional.
This is not the case in macron theory. The extension to the infinite-
dimensional case, technically very difficult and not completely satisfac-
tory, is discussed by Ruelle and Takens (1971) and by Marsden and
MecCracken (1976).

Techniques of Macroscopy.

The study of macrodynamics must be founded on the observation of
basic macrons of types (P), (C), and (E), and their coupling behavior.
Here we describe the construction and operation of the macroscope, a
universal tool for the observation of transparent macrons of physical
(P) types based upon prototype instruments built by von Békésy
(1960), Jenny (1967}, Schwenk, Settles (1971), and others.

The instrument combines five units (see Figure 6.1): (1) a color
schlieren-optical system, of Settles-Toeplitz type, with a four-inch field
of view, terminating in a rear projection screen; (2) a transparent vibra-
ting dish, driven by a high-fidelity loudspeaker outside the field of view;
(3) a sine-wave generator, controllable in the rectangle: 0-1000 Hertz
by 0-15 watts; (4) a control rectangle monitor, including cathode-ray
tube and two digital meters; and (5) a xenon arc lamp, capable of mi-
crosecond flashes up to 1000 Hertz at 100 watts average power, trig-
gered by (i.e., synchronous with) the sine-wave generator, with adjust-
ible phase lag.

In operation, the fluid or elastic medium (which must be perfectly
transparent) is placed in the transparent dish. The instrument is
switched on, and the experimenter steers the control parameter around
the rectangle with two knobs, while watching the colored image on the
screen. Leap and wobble catastrophes are readily observed, and can be
plotted on the face of the CRT control monitor with a wax crayon. The
geometry of the logos is easily discovered by exploration. The explora-
tion of different media indicates the effect of the intrinsic control
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FIGURE 6.1. Schematic view of the four-inch macroscope of the University of
California, Santa Cruz. (Diameter, 4 in.; F, 48 in.)

parameters—for example, physical dimensions and viscosity—upon the
logos.

But what is the relationship between the colored image on the
screen, the physical macron within the medium, and the mathematical
attractor which describes it? Theoretically, the physical parameter rep-
resented on the screen is the horizontal gradient vector field of the in-
dex of refraction of the medium, expressed in polar coordinates of
color and intensity. In practice, interpretation in macroscopy, as in
radiology, is learned by experience. Two separate causes of coloring
must be distinguished: deformation of the surface of the medium (len-
ticulation) and pressure waves within it (pressurization). Normally, two
separate images are superimposed on the screen, the A-image (due to
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lenticulation) and the w-image (due to pressurization). Fluid flow with-
in the medium is not revealed, but can be observed directly by the usual
technique: dusting the medium with aluminum powder. Also, rapid
Bénard cells (boiling) cause concentric rings in the A-image, and discs in
the m-image.

The image, with the control parameters left fixed, is usually mov-
ing. In fact, it is full of fast action (e.g., like boiling) and also presents a
slow progression through different forms.? The slow motion repeats
itself periodically. This is a toroidal attractor. Counting the dimensions
of the torus strains the human space-time pattern recognition facility,
and justifies the warning of Anthony (1969) that macroscopy causes
brain damage. But when the driving signal is very small, the image may
be still. This does not mean that the macron is a point attractor {stable
equilibrium), because the illumination is stroboscopic, and stops all
periodic motion at the driving frequency. At this point, the phase be-
tween the driving signal and the arc lamp must be adjusted through a
full eycle to determine whether the macron is a point or circle attrae-
tor.

Macroscopy is impossible to describe verbally or photographically.
Color cinematography and videotape cassette are the appropriate media
for registration of experimental data in this field, and in experimental
morphodynamics in general. Moreover, by using your imagination free-
ly, you may think of countless experiments to do with a macroscope,
the results to be stored in color videotape cassettes. Also, many differ-
ent macroscopic devices are feasible, including one under development
at present, in which video equipment itself is used as an analogue device
to generate macrons and catastrophes,

2. APPLICATIONS TO MORPHOGENESIS

A long series of applications of catastrophe theory to morphogenesis al-
ready exists, thanks to the inspired works of Thom (1973) and Zeeman
(1971; see also Isnard and Zeeman, 1975). The majority of these appli-
cations belongs to static theory and shows that the geometry of point
macrons alone is adequate to model a fantastic variety of morphological
phenomena in the real world. Therefore, in this section, I shall give a
selection of sample applications which are essentially nonstatic, or vibra-
tory, in nature. These are from the traditional four levels of the phenom-
enal universe.

The cover of this volume shows the nucleation of a new macron, photo-
graphed by the author with the macroscope of the University of California, Santa
Cruz.
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6. APPLICATIONS TO MORPHOGENESIS 145
Cosmology.

There is not much to say on this level beyond the basic observation of
Jenny (1967; 1972): sand patterns on vibrating plates are analogous to
galactic patterns of stellar material. If this analogy is pursued further,
there arises a classical conundrum: What cosmic driving force corre-
sponds to the plate, and how is it coupled to the galactic dust? This is
the basic problem of the priority of the word in the philosophy of the
Cabala, or the tapas of the Riguveda, which I have transliterated as Cos-
mic Will in the preface. In any case, it is beyond mathematics, I think.

Geology.

Here I can cite a few sample applications from each of the three basic
planetary spheres. Regarding the morphogenesis of the geosphere, a
basic morphogenetic situation is presented by the condensing sequence
of gaseous, liquid, and solid phases, which could be studied in the mac-
roscope. 1 suppose the conservation of the vorticity inherited from the
initial motion of the cosmic material determines a certain macron in the
sphere of mixed phases, combining elastic lenticulation of the crust—
determining the location of continents, floating mountain ranges, ocean
basins, and perhaps a network of global rifts along the nodal surfaces—
with Bénard cells of convection in the hotter liquid core. These cells
may be the driving force of continental drifts and earthquakes.

In the hydrosphere, I suspect that global ocean currents are toroids
of the Taylor cell type. Local temperature gradients must produce
Bénard cells, some of which may be very stable, Perthaps these are re-
sponsible for sculpturing the conical projections of the ocean floor. On
a smaller scale, Bénard cells are obviously responsible for the honey-
comb pattems on the bottom of icebergs observed by the Jacques
Cousteau group.

Macrons in the atmosphere are manifest in the wind patterns of the
weather map. Bénard cells cause honeycombs in sand dunes and sun
cups on glaciers. It is not unlikely that the prevailing westerly winds
contain Taylor cells girdling the equator. Hydrodynamical macrons
around spinning spheres probably deserve closer study. The macroscope
is an ideal tool for such practical investigations.

Biology and Neurophysiology.
Much has been written on biological morphogenesis (see Waddington,

1968-1972) and undoubtedly there is much more to come. The book of
d’Arcy Thompson (1945) has become a modern classic. Comparison of
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the nature drawings of Haeckel (1974), or of the photographs of
Strache, with the macrophotos of Jenny (1967; 1972) is very sugges-
tive. Turing’s (1952) revolutionary article on phylotaxis was perhaps
the starting point of modern mathematical morphogenesis. The mecha-
nisms of chemotaxis and ecotaxis are active areas of research. Macro-
dynamic explanations of nongenetic heredity, orgasm, telepathy, and
many other phenomena are easily proposed. I shall confine myself here
to two applications which are the subject of current empirical study:
the ear and the brain.

The process of audition is more or less understood, except for the
mechanical to neural transducer, the cochlea. This is a closed vessel of
fluid (perilymph) with a mechanical input piston on one end, and a
very complex pressure-sensitive organ stretched within the fluid and
comprising a flection sensor (organ of Corti) embedded in a jelly (endo-
lymph) bound by two membranes (Reissner and basilar). Obviously,
this is a natural macroscope. Realizing this, von Békésy (1960), the
great pioneer of perception research, made a trangparent model of the
cochlea and looked at the macron produced in the perilymph. He ob-
served an eddy current which, now bearing his name, has dominated
speculation on mechanisms of the cochlea ever since. Recently, Insel-
berg (Inselberg et al., 1975) has suggested that the eddy of von Békésy
is artifactual. On the basis of our macroscope results, it would seem
that the elastic macron—which was invisible to von Békésy—is more
likely than the simmering macron he saw to be the mechanism of hear-
ing. This question is the subject of current research.

We shall now consider the brain from the macron point of view. As
a physical object, it is apparently a bioplasmic spacework with hierar-
chical structure. Its very physical structure suggests an elastic macron
with clearly defined nodal surfaces. Its various segments support com-
pound physical (elastic), chemical, and electrical macrons—which are
coupled through the dendritic surface. So far, there has been no discus-
sion of a functional role for the elastic vibrations of the brain body. But
from the macrodynamic point of view, the elastic behavior is coupled
to the electrochemical state through known plasma mechanisms, and
probably also through liquid crystal (flexoelectric) mechanisms as well,
so0 the possibility of a functional role cannot be ignored. In any case,
what can be said at this stage is just a conjecture: a thought is a macron
of the brain bioplasma. This suggests a physical mechanism for a holis-
tic approach to brain function, and is certainly at odds with the connec-
tionist theory of the neural network. This conjecture leads easily to
more precise conjectures for specific brain functions. For example, the
transfer from short-term to long-term memory might be explained as
foilows: A short-term memory is a brain-body macron, metabolized (or
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driven) by the neural network. This macron maintains a spatial pattern
of various biochemical and ionic particles, as in the Howard-Kopell
phenomenon. As this pattern is maintained through repeated neural
activation of the macron (thought), some molecules within this pattern
become attached to membranes and thus immobilized. This physical
realization of the engram (macron) pattern is the long-term memory.
Recall is effected by a macron resonance phenomenon; and so forth.

The juxtaposition of these two examples of macrodynamic pro-
cesses, hearing and thinking, suggests that the whole information-
processing chain can be interpreted as a flow of macrons extending,
through coupling, across different media. This idea has been carried to
extremes by Thom (1973), in his psycholinguistic theory.

The morphodynamic conjecture for brain function is not about to
be established by any current research program. Yet there is some work
on electrical macrons in the dendritic surface—that is, spatial patterns
of EEG potentials. Various results (F. Abraham, 1973; Adey, 1974;
Brazier, 1969; Freeman, 1975) suggest that brain macrons have func-
tional roles. As a last laugh, we propose that the classical salty jelly
experiment of Kennedy (1961), supposedly ridiculous, has serious im-
plications.

Noology.

Probably the macrodynamic brain theory has eliminated all but the
most credulous readers. If there are any survivors, we may as well dis-
pose of them now by discussing the macrodynamics of consciousness.
Actually, this is not impossible, as there exists a (quantum) mechanical
theory of consciousness, thanks to Walker (1970), which admits of a
macrodynamic formulation. However, let us ignore the question of
mechanism. Suppose a human being can be identified with a conscious
unit, a particle in the noosphere. Suppose, furthermore, that these mac-
rodynamic units are coupled by communication, a macron resonance
phenomenon, as described in the brain speculation. Then, the noos-
phere may be described as a complex system of macrons. Actually, this
idea can be formalized mathematically, so that an archetype in the col-
lective unconscious becomes a stable elastic vibratory state of the
noosphere (the Big Salty Jelly in the Sky). This provides macrodynamic
mechanisms for astrology, telepathy, clairvoyance, synchronicity, and
so forth, as I have proposed in *‘Psychotronic Vibrations” (R. Abraham,
1973). The existence of a new force, the psychotronic field, is a sepa-
rate question.
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3. CONCLUSION

In this introduction to macrodynamics and its applications, there is
admittedly an inordinate amount of speculation. I regret this sincerely,
but as many have discovered, speculation is much faster than experi-
mental work. I must therefore single out especially the hardware pro-
jects, described in the section on techniques of macroscopy, as terra
firma in this ocean of dreams. And I confess that my goal in these hard-
ware projects, in addition to my own curiosity, is a political one: to
stimulate a wave-conscious, morphological orientation in scientific
research.

REFERENCES

Abraham, F. (1973). “Spectrum and Discriminant Analyses Reveal Remote rather
than Local Sources for Hypothalamic EEG: Could Waves Affect Unit Activi-
ty?,” Brain Research, 49, 349-366.

Abraham, R. (1972). “Introduction to Morphology,” Publ. du Dept. de Mathé-
matique, 9, 38-174. Lyon: Université de Lyon.

Abraham, R, (1973). “*Psychotronic Vibrations,” Proc. First Intern. Congr. Psycho-
tronics, Prague.

Adey, W. (1974). “The Influence of Impressed Electrical Fields at EEG Frequencies
on Brain and Behavior,” preprint, Math. Inst.,

Anthony, P. (1969). Macroscope. New York: Avon.

Békésy, G. von (1960). Experiments in Hearing. New York: McGraw-Hill.

Brazier, M., and Walter, D. (eds.). (1969). Advances in EEG Analysis. New York:
American Elsevier.

F&m, W. (1975). Mass Action in the ,l'f‘unmu-s System. New York: Academic

Haeckel, E. (1974). Art Forms in Nature. New York: Doyer.

Hirsch, M., and Smale, 5. (1974). Differential Equations, Dynum:ml Systems, and
Linear A{gaebm. New York: Academic Press.

Howard, L., and Kopell, N. (1976). “Pattern Formation in the Beloruwv Reaction,”
Proc. AMS-SIAM Symp.

Inselberg, A., Chadwick, R., and Johnson, K. (1975). “Mathematical Model of the
Cochlea.” SIAM J. Appl. Math.

Isnard, C, A., and Zeeman, E. C. (1975). “Some Models from Catastrophe Theory
in the Social Sciences,” in The Use of Models in the Social Sciences (Lyndhurst
Collins, ed.). Boulder, Colorado: Westview Press.

Jenny, H. (1967). Kymatik, Bd. 1. Basel: Basileus.

ISEM 0201034 38-7/0-201-034 395 pbik,



ISBM 020 ] 5343870201034 39-5pbk.

6. REFERENCES 149

Jenny, H. (1972). Kymatik, Bd. 2. Basel: Basileus.

Kennedy, J. (1961). A Possible Artifact in the EEG,"” Psychol. Rev., 66, 347-353.
See also Oswald (1961).

Marsden, J., and McCracken, M. (1976). The Hopf Bifurcation and its Applications.
New York and Berlin: Springer.

Oswald, L. (1961). “On the Origin of the a Rhythm,” Psychol Rev., 68, 360-362,

Ruelle, D., and Takens, F. (1971). “On the Nature of Turbulence,” Communs.
Math. Phys., 20, 177-192; 23, 343-344.

Settles, G. (1971). “The Amateur Scientist,” Scientific Amer., May 1971. See also
Stong (1974).

Stong, C. (1974). “The Amateur Scientist,” Scientific Amer., Aug. 1974,

Thom, R. (1973). Stabilité Structurelle et Morphogenése (3d printing, with correc-
tions). Reading, Mass.: Benjamin Advanced Book Program. See also Structural
Stability and Morphogenesis (D. H. Fowler, transl.; rev. and updated by the
author). (1975). Reading, Mass.: Benjamin Advanced Book Program.

Thompson, I Arcy, W. (1945). On Growth and Form, 2 vols. Oxford: Cambridge
Univ. Press. Second ed., 1963; abridged ed., 1961.

Turing, A. (1952). * A Chemical Basis for Biological Morphogenesis,” Phil. Trans.
Roy. Soc. (London), Ser. B., 237, 37.

Waddington, C. H. (ed.). (1968-1972). Towards a Theoretical Biology, 4 vols, Edin-
burgh: Edinburgh Univ. Press; Chicago: Aldine (Vols. 1, 2); New York: Halsted
Press (Vol. 3).

Walker, E. H. (1970). “The Nature of Consciousness,” Math. Biosci., 7, 131-178.

Zeeman, C. (1971). “The Geometry of Catastrophe,” Times Lit. Suppl. (London),
1556, issue of 10 Dec. 1971.



	ms#15-01
	ms#15-02
	ms#15-03
	ms#15-04
	ms#15-05
	ms#15-06
	ms#15-07
	ms#15-08
	ms#15-09
	ms#15-10
	ms#15-11
	ms#15-12
	ms#15-13
	ms#15-14
	ms#15-15
	ms#15-16

