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l. Introduction. This is a progress report on an experimental

program, begun a year ago, in the exploration of resonant furcations
(= catastrophes) by analog simulation and direct observation - the
macroscope program. It was inspired by the ideas of THOM om
psycholinguistics, ZEEMAN on Duffing's equation and the brain, and
KENNEDY on EEG artifacts. At this meeting I learned of the prior
work of FARADAY and BROOKE BENJAMIN from Lew HOWARD, and of the
recent results on attractor furcations from Sheldon NEWHOUSE and
Floris TAKENS. I sm happy to scknowledge these influences. But I
must especlally express my gratitude to Hans JENNY, the great
ploneer of experimental work in this areas, who so generously shared
his ideas snd results with me in 1972 shortly before his death, and

whose work I have continued in this program.

2, The coupling question. A central theme in wvarious applications

of catastrophe theory (for example: communication, perception,



memory recall) is the coupling questiomn: 1if xi is a vectorfield
on & manifold M, , 1= 1,2 , x1 X X, 1is the product vectorfield
on My x My , and Ay X Ay 1is the product of attractors Ay of X
what attractors can arise from the coupling of Xy and X, {that is,
the perturbation of Xy x xz} = in other words, what sre the generic
furcations of Ay % Ay 7 We may translate this question into the
context of catastrophe theory by introducing a simplifying idea:

a flexible coupling is a generic, finite dimensional, perturbation
of X; x Xy = that is, a stable map BK'* b 4 (Hl X My) through

Xy x X; . In aspplications, this occurs as a coupling deviee with

controls.

For example, consider two oscillators with attractors A = Ay

- sl » coupled by a mechanical commection with stiffness c € R .
In the product system, the attractor, Ay x Ay = T2 , may pass
through the vascillating furcations of Sotomayor as ¢ is changed.
If you suppose that X, and Xﬂ model distinct organisms, that

X, pert%gvea the state (occupied attractor) of the coupled system
or at least its projection into his own state space M, , and that
X, can wilfully manipulate the control c, then X, can send X,
messages conslsting of words of an infinite alphabet. In another
case, the product attractor may pass through the bifurcation found
by Zeemsn in the Duffing equation, in which case ¥, may send X

2
binary messages, like Morse code,

3. The case of forced oscillations. At this point I may make &n

aside for dynamical systems specialists: some geometric quantita-
tive aspects of the phase portrait are importent in applications.

What are the proper definitions of the strenmgth, amplitude,

frequency, and speed of an attractor in a Riemsnnian manifold?
Now consider agsin the coupling question. The simplest case is

A; =4, =point. This includes the gradient case, and punctual



furcations of resonant theory, such as the Hopf furcation and the
blue sky catastrophe. Next comsider 4, = point, and A, arbitrary.
Then the problem amounts to the usual furcation theory for &g for
small perturbations, that is, before A, furcastes. The case

Ay = Ay = Sl has been described abowve. Taking up the case Az-sl
with A arbitrary, we simplify the possibilities by supposing

that A, 1is dominant, or very strong with respect to A, , or in
other words, only perturbations so small that A, does not furcate
will be allowed. As }[2 is assumed to oscillate - that is, remain
in attractor A, = st although the frequency sand amplitude of this
oscillation may change - we may consider the product system in

H1 % Hz restricted to Hl x Az . Therefore this case is equivalent

to the classical model for forced oscillations: a periodic vector-

field@ : 51 + X {Hl), of period, 7, equal to the period of A, in

HE .

4. Reduction to a cascade by stroboscopy. Having placed the

problem of forced oscillations in a catastrophe scheme for coupled
systems, and thereby causing a whole lot of probably unnecessary
confusion, I will now connect it to something quite standard to
clear the air. BRecalling the procedure for transforming a time-
dependent vectorfield inte an sutonomous system, we suspend the

periodic vectorfield

@: st oz 00X,

to obtain a ring wvectorfield, Y € X Gﬂl b 51) defined by
1
Y (m, 8) = {XE(EJ,?}

where Tt is the period of (). But this ring vectorfield clearly
has a global section and Poincaré map, ¥ , a diffeomorphism of M, .



Thus Y 1is the suspension of # , and the periodic vectorfield, ®,
is qualitatively equivalent to the cascade generated by the Poincaréd
diffeomorphism, & . Experimentslly, & is revealed by stroboscopy:
the ring system, Y , is observed only at times t =n7t, ne Z,
when the orbitting point passes through the section. Obviously,
some interesting quantitative information is lost in this reduction.
For example - a fixed point, m , of % corresponds to a closed orbit,
[vt = {mt »t£)}, of Y. Projecting this closed orbit into the secton
({phase space, M;) we have acycle,[mtl s the diameter of which
(assuming a metric) is the amplitude of the periodic motion of this
peint, M. Experimentally, this may be cbserved by changing the
phase of the stroboscope, to observe successively all of the sections
of thering M, x ',

So far, we have described the genersl question of coupling in
catastrophe theory, singled out the special case of forced oscilla-
tions - coupling of an arbitrary dynamical system to a dominant
closed orbit - and reduced this to a qualitatively equivalent
cascede. The coupling is flexible, so the cascade depends on a
parameter. The result of coupling is described by the furcations
of the attractors of the section diffeomorphism. When the parameter
is one or two dimensional, the furcatioms are partially kmown,
through the results of HOPF, BRUNOVSKY, SOTOMAYER, NEWHOUSE-PALIS,
RUELLE-TAKENS, TAKENS, and ZEEMAN. In my own view of applied
mathematics, this question is of the greatest importance. Its
exploration by simulation is the motivation for the macroscope

project.

5. Simulation with Faraday's beer waves. The history of physics is

punctuated with observations of fluids - especially powders - on
vibrating plates and membranes. If the plate vibration is wealk,

standing waves are observed - these are the crispstions observed by



FARADAY in beer. When the vibration is stronger, toral eddies are
produced - the simmering observed by JENNY in lycopodium powder,
and by VON BEKESY in the cochlea. Taking into account the model of
" RUELLE-TAKENS for hydrodynamical turbulence, we regard this system
of forced oscillation as an analog computer simulating the Navier-
Stokes equation with a periodic forcing term added. Ignoring the
fact that the phase space is infinite dimensional, we expect
attractors of finite dimensional vectorfields as observed states of
the vibrating fluid, and to see their furcations as the frequency
and amplitude (flexible coupling) of the dominant driving attractor
are changed. The transition from crispating to simmering is an
example, and furcations of HOPF-TAKENS (wobble) amd DUFFING-ZEEMAN

(jump) types are to be expected.

6. Observation by macroscopy. The macroscope consists of (1) an

electronic function generator, producing a powerful sine wave (the
dominant attractor, 0 - 50 kiloHertz by O - 250 Watts) and a
synchronous trigger pulse (of adjustable phase) for the strobe
>light, (2) a control plane monitor, showing the frequency and
amplitude of the driving signal as an illuminated point on a video
tube, as well as digital meters, (3) an electromechanical transducer
(loudspeaker, courtesy of Acoustic Research) coupled acoustically

to (4) a transparent dish with a flexible bottom, containing a

thin layer of glycerol thinned with water, and (5) a color
schlieren optical system of SETTLES type, illuminated by a pulsed
point source (100 Watt xenon arc lamp, courtesy of Chadwick-Helmuth).
The arrangement, indicated in the Figure in linear equivalent; is
folded with plane mirrors to fit in the laboratory, and the princi-
pal optical elements are a matched pair of £/10 telescope mirrors
(courtesy of Lick Observatory). The macroscope design was inspired

by the prototypes built by JENNY and VON BEKESY.
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The preliminary observations with this instrument verify the
expectations - the effects photographed by JENNY can be replicated,
as well as those reported previously by FARADAY, BAYLEIGH, VON
BEKESY, BROOK BENJAMIN, end BAUER. Furthermore, the innovations of
color schlieren optics and strobe phase control allow new and subtle
furcations to be observed, and recorded in wax pencil on the face of
the video screen modelling the control plane. A distinet fold,
producing prolonged hysteresis, is observed on the furcation line
between the elastic (erispation) and fluid (simmering) regions. A
fine network of jump furcations, reminiscent of the TAYLOR-COUETTE
situation, fills both regions. At large amplitudes, complicated
wobble furcations asbound. All of these are shown in the wvideotape,

Introduction to the Macroscope.
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