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Abstract

This is a joint project begun in 1983 and first reported in (Abraham, 1989). We
were inspired by Arthur Winfree and have in mind a number of applications to medical
physiology and mathematical biology. The main theme is the role of the geometry of
periodic attractors – the shape of an attractive limit cycle and its isochrons – in deter-
mining the phase synchrony of coupled oscillators. We present a profusely illustrated
review of the geometric theory of the synchronization of periodic attractors, such as
biological oscillators, by periodic forcing.
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INTRODUCTION

Some years ago we worked together on the microstructure of forced oscillators, while study-
ing various biorhythms of mammalian physiology. While the global analysis behind our
ideas was eventually published, the basic intuitions of our theory have been buried in our
files until now. In this minimally technical tutorial, we present the essential geometry of
synchronization and phase regulation of coupled oscillators.

We begin with a detailed description of the general setup in four sections. Our setting
is the global analysis of differential manifolds. A basic reference is FM2.

1 Riemannian metrics (with differential geometry)

Recall from linear algebra, given a real vector space, E, an inner product on E is a 2-form,
g, which is symmetric and positive definite. That is, given two vectors in E, e1 and e2, then
g(e1, e2) is a bilinear real-valued function (thus linear in each argument) that is symmetric,
that is, g(e1, e2) = g(e2, e1), and positive definite, that is, g(e1, e1) >= 0 and is 0 only for
e1 = 0. The norm, or length, of ∥e∥, is the square root of g(e, e).

Given a differentiable manifold, M , the metric and norm are structures that may be
defined on the tangent bundle, TM → M . That is, for each point p ∈ M a metric g(p) is
defined on the tangent space TpM , which depends smoothly on p. This is a tensorfield of
covariant order 2. [FM2, sec. 1.7] From the metric g(p), a norm may be defined as above.

The pair (M, g) is a Riemannian manifold by definition. In this article, the metric is
used only to define the norm.

Example

In case M is Cartesian space RN , the usual Euclidean scalar product provides a convenient
Riemannian structure. This simple case is adequate for most of this article.

1.1 The norm

Returning to our basic context, a smooth vectorfield V on a smooth manifold M of dimen-
sion N , we now add a Riemannian metric, g. We obtain a norm from the metric by the
formula,

∥e∥ =
√
g(e, e) (1)

1.2 The length of a curve

We may now consider the length of a C1 curve p(t) in M , from time t0 to time t1, to be
the integral,
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Figure 1: Arc length and velocity vs time showing the motion along Γ.

∫ t1

t0

∥p′(t)∥dt (2)

where p′(t) is the tangent vector of p at t.
Choosing a point p0 on the closed orbit Γ of V as a fiducial point, and assuming the

time variable such that tp0 = 0, we may now define a new parameter, arc-length, by:

s(t) =

∫ t

0
∥p′(t)∥dt (3)

We define the length of Γ by S = s(T ), where T is the prime period of Γ. Plotting s(t) vs
t, we may view the motion along Γ, where velocity, v(t) is the slope of the graph, as shown
in Figure 1. This will be the context for our analysis of perturbations of V .
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Figure 2: Normal coordinates for Γ, s(t) vs t. The horizontal axis is time relative to t0,
and the complementary N − 1 dimensions, shown as a plane, indicates the isochron, I0, at
time t0.

We may use time and position in the isochron as a coordinate system for a neighborhood
of Γ, as shown Figure 2.

2 The basic setup (with differential topology)

Let M be a differentiable manifold of dimension N >= 2 and differentiability class C∞.
We will work with vectorfields of class C1, belonging to V, the Banach space of all C1

vectorfields on M , with the C1 sup-norm topology. [MTA; p. 48] Henceforward smooth
shall mean class C1.
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2.1 The periodic attractor

It is fine to think of M as a Euclidean space, or a hypersurface in a Euclidean space. Each
vectorfield is a crosssection of the tangent bundle, TM → M . And two vectorfields are
close together in the C1 norm topology if their values and derivatives are close at every
point of M .

Now we consider a vectorfield V on M with a periodic attractor, Γ, of prime period T .
Choose a base point, p0, on Γ. Then we may parameterize the points, p in Γ, by either the
time t that flows p0 to p, or the phase, ϕ = (2π/T )t radians.

2.2 The isochrons

Let {F (t)}, with time t in R, be the flow of V , a curve of diffeomorphisms. Then F (T ),
with T the prime period of Γ, is a diffeomorphism mapping p0 to itself, and the derivative
TF of F (T ) at p0 is a linear isomorphism of the N -dimensional tangent space Tp0M to M
at the point p0. The vector V (p0) is tangent to Γ, and is mapped to itself by TF (T ). So
it is an eigenvector of TF (T ) at p0 with eigenvalue 1. The remaining N − 1 eigenvalues of
TF at p0, the characteristic multipliers of Γ, have an N − 1 dimensional eigenspace, Tp0I0,
which is a linear compliment to the tangent space to Γ at p0. It is tangent to the isochron
of Γ, I0 = Ip0 , an N − 1 dimensional submanifold of M . The chief feature of I0 is that it
comprises all points that have asymptotic phase zero.

Finally, for any other point pt of Γ, the isochron It is the image of I0 under the diffeo-
morphism F (t). The union of all isochrons of Γ, together with time t or phase ϕ, comprises
a coordinate system for a neighborhood of Γ, called normal coordinates. [HPS]

By the way, the C1 hypothesis and associated sup-norm is needed here, to guarantee
that the characteristic multipliers of Γ (all within the unit circle in the plane of complex
numbers, as Γ is an attractor) as well as Γ itself, vary continuously with perturbations of
V .

3 Perturbations

In applications we frequently encounter a situation in which a dynamical system, a vec-
torfield V on manifold M , is perturbed, or weakly forced, by another vectorfield A, which
may depend on a control parameter.

Thus, the perturbed vectorfield is,

V̂ (c) = V +A(c) (4)

where c is a point in another manifold C, the control manifold, and A is a smooth mapping
of C into V, the Banach space of C1 vectorfields on M .
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3.1 The periodic case

In a common case, C is a circle. In other words, {A(t)|t ∈ [0, T2]} defines a periodic cycle
in V, the Banach space of C1 vectorfields on M . By small, we mean that this cycle is
within an ϵ disk centered on V , for some small ϵ, defined by the C1 norm.

Thus, A(t) is a periodic time-dependent vectorfield with prime period T2. We might
manage an arbitrary relationship of the two periods, that of A and that of Γ. But at this
point, we will assume T2 ≈ T . Then a very small adjustment of the vectorfields V and
A will make the two periods are identical, according to Peixoto’s theorem. [DYN; ch. 12]
Here, for simplicity, we will consider this case only.

3.2 The perturbation tangent to Γ

Now, for each t, we may extract from the perturbing vectorfield, A(t), its component
tangent to the periodic attractor, Γ, using the complementary eigenspace TptIt tangent to
the isochron It, along Γ. Thus, at the point pt on γ,

A(t) = A1(t) +A2(t) (5)

where A1(t) is tangent to Γ, and the complement A2(t) belongs to the isochron tangent
space, TptIt. Similarly, we may decompose the original vectorfield,

V (t) = V1(t) + V2(t) (6)

The decompositions may be extended to a neighborhood U of Γ using normal coor-
dinates. In the following we shall assume this extension for A(t) and V (t). As A1(t) is
parallel to V1(t), so there is a unique scalar a(t) such that,

A1(t) = a(t) ∗ V1(t) (7)

This scalar function a : U → R is the sole component of A needed for our analysis. The
intuitive understanding of this function is shown in Figure 3.

In the positive segment, the perturbed velocity vector V (t) + a(t) ∗ V (t) is faster than
V (t), so phase change is positive and in the negative domain, it is slower. Therefore, the
downward crossing is an attractor of phase change and the upward crossing, a repellor. We
call such a downward crossing a favorite phase.

4 The phase change

Given a small perturbation A to to V , which may depend on a parameter such as time, the
periodic attractor Γ of V , with prime period T and arc-length S, is perturbed to a nearby
periodic attractor Γ̂, with nearby prime period T̂ and arc-length Ŝ. We now investigate
the phase relationship in the case of a syncronous periodic perturbation.
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Figure 3: In this case, the function a(t) is positive in the early part of the cycle, then crosses
downward through the horizontal axis and stays negative until crossing again upwards.

4.1 The phase shift due to perturbation

The change in period, ∆T = T̂ − T , determines a change in phase relative to Γ, ∆φ =
2π ∗∆T/T , the phase shift due to perturbation.

Choose a point p1 on Γ, the periodic attractor of the vectorfield V . Let the time t1,
corresponding to the phase φ1, be the time relative to the phase 0 at the fiduciary point,
p0 on Γ. After the small increment of time, ∆t, the action of the flow of V moves p1 to the
point p2 on Γ at time t2 = t1 +∆t, corresponding to phase φ2 = φ1 +∆φ.

Now consider the action of the perturbed vectorfield V̂ on its periodic attractor Γ̂ during
∆t. Start again with the point p1, which is near, but perhaps not on, Γ̂. The trajectory of
V̂ will move p1 closer to Γ̂, arriving at a point p̂2 at time t2.

Assuming the scalar a(t) is positive during ∆t, the point p̂2 will be on the isochron It3
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Figure 4: The trajectories and important points, in the normal coordinates of Figure 2,
with the isochron dimensions indicated by a line, zooming in on a small interval of time.

of V for some t3 > t2 as shown in Figure 4. The corresponding phase is φ3 = φ2 + δφ,
and δφ is the incremental phase shift caused by the perturbation A. Our task now is the
determination of δφ in terms of V and A. This configuration is shown in Figure 4.

Consider a small interval of time, ∆t, and assume the perturbation A is constant in
this interval. We seek an expression for the change in phase caused by A in this interval
in terms of V and A. Our analysis follows from Figures 4 and 5.

The action of V in interval ∆t moves the point p1 to p2 along Γ, as shown in Figure 4.
This belongs to the isochron at time t2 or equivalently φ2.

Meanwhile, the perturbed action of V +A moves p1 to p̂2 along the perturbed trajectory
shown dashed in Figure 4. The position of this point is shown forward of p2, which would
be the case if a were mostly positive during the interval ∆t.

This determines a time t3 and equivalent phase φ3 such that p̂2 lies on the isochron It3 ,
and thus a small interval of phase, δφ (note lower case δ), such that φ3 = φ2 + δφ, and
similarly, t3 = t2 + δt.

The motion of p2 under V along Γ from φ1 to φ2 determines an arc-length, ∆S, and
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Figure 5: Enlargement of Figure 1, zooming in on a small interval of time, ∆t.

from phase φ2 to phase φ3 determines an arc-length δS.
Now we normalize the vectorfield V1. Let v = ∥V1∥, and W = V1/v, the unit vectorfield

along Γ. Then we have V1 = vW and A1 = aV1 = avU .
Then we have av = δS/∆t, or

δS = av∆t (8)

Similarly, v = δS/δt, or

δS = vδt (9)

Eliminating δS between these two equations, we have, δt = a∆t, so,

δφ = a(2π/T )∆t (10)

This is the expression we need going forward.
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4.2 The phase shift integral formula

Let us assume the t0 = 0. Let Z(t) be the accumulated phase shift due to the perturbation
A, from time 0 to t, so Z(T ) is the phase shift due to one turn around Γ, starting from p0.
The phase shift of V +A at time t is thus φ(t) + Z(t). where φ(t) = (t/T ) ∗ 2π.

Note the perturbation A(t) can be arbitrary. For the analysis in an interval ∆t, we ap-
proximate the time-dependent perturbing vectorfield, A(t), by its average over the interval,
or its value at the beginning of the interval.

Evidently, Z(t) is the integral of δφ, which is given in equation 10. So we have:

Theorem

∫ t

0
δφ =

∫ t

0
a(t) ∗ (2π/T )dt (11)

5 A simple example in the plane

Let V be a vectorfield on the Euclidean plane, R2 with the standard Euclidean metric and
norm. Suppose V has the unit circle as a periodic attractor, Γ, and that at every point p of
Γ, the value of V is a unit vector directed clockwise, as shown in Figure 6. The arc-length
of Γ is 2π, and the period is also 2π.

Let the perturbation, A, be the vectorfield with constant components (0, 0.25). That
is, vertical, directed upward, and one quarter of a unit vector in norm. The perturbation
is constant, yet its component a(t) tangent to Γ varies, as shown in Figure 7.
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Figure 6: The state space of the example.

..........

12



Figure 7: The tangential perturbation. The solid dot indicates the attractor, while the
hollow dot shows the repellor.

..........
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