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HiISTORICAL BACKGROUND

The crucial early experiments regarding bifurcation theory and applications as
the experimental branch of differentiable dynamics may be described in three over-
lapping periods. The period of direct observation may be' much older than we think,
but let us say it begins with the musician, Chladni, contemporary of Beethoven,
who observed bifurcations of thin plate vibrations. Much can still be learned from
his work, painstakingly reproduced by Waller.! Analogous phenomena discovered
in fluids by Faraday are still actively studied.>* These experiments, so valuable
because the medium is real, suffer from inflexibility—especially in choosing initial
conditions. :

The next wave of bifurcation experiments, which 1 shall call the analog period,
begins with the triode oscillator. The pioneering works of van der Pol, with im-
provements by Hayashi, produced a flexible analog computer, and institutional-
ized the subharmonic bifurcations. These devices offer exceptional speed of con-
vergence, but even with the recent development of modular electronics, only a
limited class of dynamical systems are tractable.

The development of the early computing machines ushered in the digital
period. Well-known numerical methods were implemented from the start, and
graphical (CRT) output began to appear in the literature by 1962. The pioneer
papers of Lorenz,’ and Stein and Ulam,® are still studied. By 1967, the Associa-
tion for Computing Machinery recognized this new field with a symposium en-
titled “Interactive Systems for Experimental Applied Mathematics.”’ Special
systems for experimental math that have evolved since the Culler-Fried device of
1961 are fully described by Smith.® The current state of the art is now readily
available in the form of a very large general purpose computer with BASIC or
APL language and a color video graphics terminal. The currently available
terminals of this type are listed in TABLE 1.

An equivalent, less expensive system would replace the large computer with a
minicomputer, and a fast array processor. Such systems now exist at several
institutions.

These devices are extremely flexible, accommodating a very wide class of
dynamical systems, but suffer from the cost/resolution quandary: high resolution
implies either a vast machine (high capital costs) or long run times (high operating
costs.)

Our experiences over the past three years with forced oscillation machines in
all three categories (direct observation of fluids, analog systems, and digital com-
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puter graphics) has resulted in the design of a fast, economical, special purpose
digital computer graphic device, the dynasim device, which is described here.

CONVENTIONAL COMPUTER GRAPHIC TECHNIQUES

The dynasim device is designed around a new algorithm for dynamical sys-

. = tems, the push-pull algorithm, which is described in the next section. Here, for

background, we describe the techniques now in use with general purpose computer
graphic hardware to draw the phase portrait of a dynamical system.

To fix for once and for all the goal of these techniques in bifurcation research,

we now specify the context. Let C and P be manifolds; X(P), the space of smooth

TABLE 1
COLOR VIDEO GRAPHIC DISPLAY SYSTEMS

Max.
Manufacturer Model Resolution Depth
Aydin Controls 5212/5214A 240 x 256 12
Fort Washington, Pa. 512 x 640 12
DeAnza Systems 1EC 2212 256 x 256 12
Santa Clara, Cal.
Genisco Computers GCT 3000 256 x 256 16
Irvine, Cal. 512 x 512 16
1024 x 1024 16
Grinnell Systems GMR-26 256 x 256 32
Santa Clara, Cal. 512 x 512 8
Interpretation Systems VDI 256 x 256 32
Overland Park, Kansas 512 x 512 8
Lexidata 200-D 256 x 256 3
Burlington, Mass.
Ramtek 6000 256 x 512 3
Sunnyvale, Cal. 9000 256 x 256 24
512 x 512 6

vector fields on P; and p: C — X (P) a family of vector fields, with smooth
graph map

T,:C x P— TP:(c,p)— u(c)(p).

We want to know for each control value, ¢ € C, the complete phase portrait
of X, = u(c), a dynamical system (vector field) on the phase space, P. But machine
computation can never reveal the asymptotic motions (w-limit sets) of probability
zero (separatrices, basic sets of hyperbolic type) so we ask only for the attractors,
their basins, and (optionally) the phase foliation of each basin into isochrons
(stable manifolds) of points of the attractor. As the control parameter, ¢ € C,
can only be sampled at a finite set of points, our problem is just to draw the ABP
portrait (attractors, basins, and phase foliations) of a fixed vector field. To be



678 Annals New York Academy of Sciences

reasonable, let P C R" be an open box,
P = Il X s+ X 1,,, Ia = (aavba) C R,.

We now describe the conventional algorithm, using color video graphic output
from a general purpose computer, for the ABP portrait:

(1) Write a vector field, X, into the program.

(2) Define a finite set of initial points in P, such as a uniform grid, and a time
duration, 75 > 0.

(3) Draw the integral curve forward from each until ¢ = ¢, using the Runge-
Kutta or Adams-Moulton formula. ,

(4) Continue until ¢ = ki, if necessary, until all w-limit sets are identified in
white (PUSH).

(5) By manual (interactive) graphic input, define a new grid of initial points
near the attractors, variously colored.

(6) Integrate retrograde (—X) until¢ = kty (PULL).

(7) Observe the ABP portrait, with basins and isochrons (if any) in different
colors. .

(8) Repeat in a smaller domain if needed, for higher resolution.

Our experience with this algorithm, even for a single basin system such as the
van der Pol equation and with a very convenient interactive program (ORBIT,
written by R. Palais) indicates that most of a day is required for a single portrait.
A dedicated computer, and fast array processor, would reduce this interval to per-
haps an hour. Important discoveries revealed by such experiments are under-
standably rare. Subharmonic resonance, for example, might still be unobserved if
analog devices were not available. Note that if C C R? (say force and amplitude)
and P C R*(X, = forced Duffing or van der Pol equation) the flow

F:-Cx PxR—P

was a domain of five-dimensions, so with a resolution of w = 2% bits for real
numbers, w® = 2% calculations are necessary. To shorten the time requires paral-
lel processing (more calculations per unit time) or a faster processor (there is a
limit) and increased device cost, either way. Doubling the resolution increases the
cost by a factor of 2° = 32, or lengthens the time of computation by the same
factor. :

This cost/resolution or speed/resolution problem is the main obstacle to ef-
fective experimental work in bifurcations. Yet many conjectures of bifurcation
theory, and of differentiable dynamics, could be furthered by such experiments.
See, for example, the problem set of Palis and Pugh.’

THE PUSH-PULL ALGORITHM

This technique, inspired by our studies of the video feedback phenomenon,'? is
based on the induced action of a map upon subsets or functions.

Ife: P — Pand f/: P— R, let ¢"(f) = f-¢ denote the pull-back of f by ¢.
Then ¢": R” — R” is the induced action on real-valued functions on P, and like-



\ . Abraham: Dynasim 679
wise, ¢": 27 — 2F: 4+ ¢ '[4] pulls back subsets. Considering only functions
with discrete values, say z possible values, we have ¢": z¥ — z%, which pulls back
partitions of P into z disjoint subsets. If ¢: P— Pis bijective, then we also have a
push-forward action on functions, ¢« = (¢~')". For example, po: 27 —27: 4 —
¢[A]takes disjoint sets into disjoint sets.

If X € X (P)is a vector field on P, choose a common (for all initial points)
step-size, 4, for numerical integration, fix 1 = nh for some (large) integer n, and
compute the flow diffeomorphism ¢, 2~ (¢,)" by the chosen formula, say Runge-
Kutta. Rather than integrating separate initial points ad infinitum, our idea is to
calculate the graph of ¢, at a fixed grid (as fine as memory resources allow) and
store the graph as a look up table. Then this map, ¢ = ¢,, will be iterated (with
its approximate, calculated inverse, ¥ >~ ¢_,) as a cascade, without further nu-
merical integrations, to draw the phase portrait, coarsely, of X. Dispensing with
initial points, we choose a partition /' € z¥ of P into z disjoint sets. Typically,
z = 8or 16, in a practical trial. In fact, fis visualized (with a color video graphic
terminal) as a colored map (partition) of P. Now push forward with ¢, look at
the image map ¢« f, and iterate. This is the push cascade. A few trials, with dif-
ferent partitions f, reveals the most probable attractors after n iterates, say. Then
a new partition g is chosen by inspection, covering each attractor with a different
color. Iteration of the pull cascade, Vg o cp*‘g, for n iterates (or more) colors
the basins in different colors. This is the partition desired, as the goal of the ABP
portrait. Finally, one attractor may be covered by small boxes of the various
colors, in a new partition A. Iteration of the pull-back cascade, W.h, reveals
(roughly) the phase foliation in the basin of the chosen attractor. This can be ac-
complished for all the basins, in a single step, yielding the ABP portrait.

Comparison of this algorithm with the conventional (orbit-by-orbit) technique
described above shows that they are identical, except for the order of steps, and the
more important distinction: repeated numerical integration (serial calculations) is
replaced by storage of the graph (serial access to mass memory).

THE DYNASIM DEVICE

The push-pull algorithm sacrifices resolution in favor of speed. Implementa-
tion of the algorithm in conventional general purpose computers requires an
enormous core, or cache memory, rarely available to mathematicians. Special
purpose, fast, random-access memory (RAM) is available as a peripheral device
for general purpose computers, but is very expensive at present. An ideal example
is the Array Processor (of Floating Point Processors, Inc., Portland, Oregon.)

The idea of the dynasim device is to read the graph of the transformation, ¢,
always in the same serial order. Thus, serial access memory (SAM) can be used
in place of RAM for the graph memory. Current SAM units (CCD) are much less
expensive than RAM, and this inequality is expected to increase in the coming
years. Even with the more expensive RAM storage, the dynasim device is sub-
stantially less expensive than general purpose hardware.

The dynasim device, illustrated in FIGURE 1, is a peripheral device for a gen-
eral purpose computer, to which it may be serially interfaced, and made of existing
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FIGURE 1. Schematic of the dynasim device, 128 x 128 pixels by eight colors.

hardware modules of computer graphics technology. It contains a number of
parallel planes of memory, each a bit matrix corresponding to the domain P. For
simplicity, let P be a two-dimensional unit square, discretized into a w x w array.
Then each memory plane in the dynasim device is a w x w array. Suppose w =
2*. Then the graph of ¢ is stored in 2x planes. If ¢(i,j) = (',j"), i,j,i',j' =
0,...,2* — 1, then x planes store the i’ in binary, and the remaining x planes
storej’ in binary. An additional three planes store the partition (color) f(i,)) if
z = 23. Finally, three more planes record the push-forward, ¢. f, as it is com-
puted, point-by-point. These last are read by a conventional color video graphic
imaging device, creating a visible copy of ¢« f. In fact, the entire device can be
built within a video graphic image device, if it has a large enough card cage to
contain the memory planes, 2x + 6 planes of 2* x 2” bits. Commercially avail-
able devices are listed in TABLE 1, and the memory size and costs of the dynasim
device, for various x values, are tabulated in TABLE 2.

To iterate ¢+, the f planes are erased, f and ¢«f memories swapped (elec-
tronically), and another routine video raster scan proceeds. Each video frame
(1/30th second) executes an iterate of the push (or pull) cascade.

In practice, the dynasim device would implement the push-pull algorithm
as follows: .

(1) The vector field is written into the numerical integration program in the
core of the computer (CPU).
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(2) The domain box is written in, and the dynasim resolution, w x w. The
program calculates the array of initial points (x;, . :

(3) The CPU program calculates eli.j) = (',j"yand ¢_,(i,j) = (i",j"), stores
these graphs in arrays in its mass storage, and copies the graph of ¢ = ¢, into the
dynasim device. o

(4) The operator indicates a partition fwith a data tablet, light pen, or cursor.
The CPU loads the partition into the dynasim device. At “PUSH”, the device
iterates the push cascade until “STOP.” Repeat with another trial partition if
necessary. ; ' '

(5) The operator describes a new partition g (or k) to the CPU with inter-
active graphics input device. =~ , ) -

(6) The CPU downloads g into the dynasim device, and the inverse map ¢_,.
At “PULL,” the device iterates the pull cascade until “STOP.” ‘

(7) Observe the AB (or ABP) portrait, with basins and isochrons (if any) in
different colors. ‘ - .

(8) Repeat in smaller domain if needed, for higher resolution.

As in the conventional algorithm described previously, the output portrait can
be stored. in CPU mass storage, local floppy disc, videotape with verbal an-
notations, or color photograph. The time required for a successful portrait of a
single vector field in two-dimensions can be estimated. Steps (3).and (6) require
transfer of a large array, of 2* x 2% x 2x bits. If the CPU /Dynasim interface
is serial, at 9600 BAUD, and x = 8, then about two minutes gire required for
downloading, in each step. The other steps take a few seconds, only. -

And not only is this many times faster than the conventional algorithm for a
single vector field, but if a bifurcation is being explored, the steps can be over-
layed. Thus, the CPU integrates X, while the X 1 flow is being downloaded, and
soon.

While speed_has been obtaincd at the cost of resolution, the accumulatio‘n‘ of
round off errors will not indicate false attractors, bu’t"bnl‘y miss some, and

TABLE 2

DyYNAasiM MEMORY REQUIREMENTS
EiGHT COLOR VERSION

2-Dimensional 3-Dimensional Memory Size .

Resolution Resolution ‘Per Planey(Cube) Total Memory Cost
{pixels) . (pixels) (kilobytes)* (RAM/RAM)t (RAM/SAM)}

128 x 128 25%x 25x 25 2 $ 2000 ¢ $ 1,020
180 x 180 - 32x 32x 32 4 T 4,200 0 - +2,100
256 x 256 40 x 40 x40 .- 8 8,800 Ce 4,320
360 x 360 50x .50 x 50 16 18,400 8,880
512 x 512 64 x 64 x 64 32 © 30,400 18,240
720 x 720 80 x 80 x 80 64 80,000 37,440

1024 x 1024 100 x 100 x 100 128 166,400 - 76,800 -

*Kilobyte = 213 = 8192 bits.
At $50/kilobyte.
tAt$15/kilobyte.
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misrepresent the shape of basins through the well studied phenomenon of aliasing.
We now turn to this problem, common to all simulation schemes.

DECIDABLE STABILITY

Suppose that a dynasim device is available—or a general purpose computer
fast enough to execute the push-pull algorithm—with an interactive color video
graphic terminal for graphic input and output. If a vector field is entered, an ABP
portrait is returned, showing calculated attractors, basins, and phase foliations.
No matter how brightly colored, the picture is but a pale ghost of the time phase
portrait. We have formula error and round-off error for the diffeomorphism ¢. As
the round-off error dominates in the context of the practical design characteris-
tics described above, we may forget formula error altogether. The round-off
error for ¢ is reducible by zooming in: a small piece of the domain is restudied,
using all available memory. But this will still miss long thin basins of attraction.
We will expect in practice:

(1) The discrete ¢ is many-to-one, not onto.

(2) The ¢+ fpartition gets errors on the boundaries of the colored regions.
(3) Theimage (¢+"f) shrinks with increasing iteration. '

(4) The screen eventually goes black, except for twinkling attractors.

As not all the qualitative features of a dynamical system are decidable (by
machine) we seek now decidable versions of stability and bifurcation.

Firstly, we take account of the fact that only relatively probable attractors
are machine discoverable.

Let M be a manifold; X € X (M), a vector field on M with complete flow;
and {4;]i € I}, the set of all topological attractors of X. Let B; denote the maxi-
mal basin of 4;, B = \U{B;|i € I}, and S = M \ B, the separatrix of X.

Now suppose M has a uniform topology, let S* be the e neighborhood of § for
€>0,and B* = M\ S*. Then Bf = B; (" B‘is the e-reduced basin of A;.

Given two vector fields, X,Y € X (M), and ¢ > 0, we say X and- Y are
e-basin equivalent if X | By* and Y | By' are topologically equivalent.

Now this looks more machine approachable, as the fine structure at the
separatrix (homoclinic cycles, etc.) has been pruned away. Further, many small
basins of attraction (infinitely many, no doubt) have been thrown out with the -
neighborhood of the separatrices. Yet many small basins remain (perhaps too
small to be machine discoverable) that are nowhere near the separatrix. So now,
we will throw these out as well. ,

Let M now have a probability measure u, and for simplicity suppose that u
and the uniformity of M are both derived from a common metric (distance) func-
tion. Without assuming compactness, we may suppose that the volume of an e-
disk, u[N.(m)] for any m € M, is bounded below, by ke, where k > 0 is a
constant, andd = dim(M).

Now suppose, for the sake of discussion, that all basins are measurable. The
probability of attractor 4; is then p; = u(B), and p/ = u(B) is substantially
smaller, perhaps even zero. Our discrete algorithm can discover an attractor
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only if its e-reduced basin is sufficiently large. Thus, let
I'={i € 1lpf > ke¥}

and D¢ C B be the union of the discoverable basins,
D' = U {Bli€E I

At last, we say X, Y € X (M) are e-decidably equivalent if X | Dy* and Y| Dy*
are topologically equivalent.

Likewise, X © X (M) is e-decidably-stable if every Y sufficiently close to
X is e-decidably-equivalent, and a family of vector fields X, € X(m) | p €
R} has an e-decidable bifurcation if not all its members are e-decidably-equiva-
lent. s

Here, ¢ is not to be chosen arbitrarily small, but is a fixed fraction of the width
of the domain, a characteristic of the simulation machine at hand.

CONCLUSION

We have described here a decidable version of the stability and bifurcation
concepts of differentiable dynamics, an algorithm for exploring the decidable
bifurcations in low dimensions using interactive computer graphics, and an in-
expensive special purpose computer for implementation of the algorithm. The
design characteristics of this system may now be correlated as follows: The cost
of the device, C, is proportional to w?, where w” is the number of bits in the
width of the domain, and d is the dimension. If ¢ = 1/w, attractors of reduced
probability ¢ can be resolved. Thus, the resolution is inversely proportional to
the cost. The smaller ¢, the more basins discovered, and the more bifurcations
observed, especially, in the neighborhood of the separatrix (where the principal
action is.)

We propose that dynasim devices are useful not only in bifurcations research,
to develop theory, but also in applications, as fast, graphic presentation of the
most probable equilibrium states is one of the goals of the qualitative theory.
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