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7. The Function of
Mathematics in the Evolution
of the Noosphere

Abstract

A model for the noosphere is proposed, in the spirit of
geometry and dynamics, in which sociodynamics and information
flow cause bifurcations, while mathematics is responsible for
synthesis. The concordance of the ncosphere is embedded in
the model, all illustrated by recent events in mathematical
physics. Some speculations on the future, including the im-
pact of computers, are presented.

Bifurcation and Synthesis

The world of ideas -- evanescent bubble of knowledge,
inflated by millenia of human thought, attached to our
fragile culture, maintained on paper and in coenscicusness by
words and drawings -- is too vast to grok. Our languages
scarcely have words for it. So let us call it the noosphere,
and distinguish it from the world of ideas of Plato -- if
there may be such a universal store of form, beyond the
emergence of knowledge into the consciousness of our planet-
ary society. The noosphere evolves and bifurcates into inde-
pendent domains, as reguired by the limited capacity of
individual humans for the storage and manipulation of infor-
mation. (A version of the recent history of the noosphere of
our own culture is shown in Figs. 1 and 2.) The very dynamics
of this process of growth and bifurcation itself evolves, as
the culture develops information and communication technology
such as printing, photography, electronics -- which extends
the capacity of the individual servants of the noosphere.
Thus it may occur, in the history of knowledge, that indepen-
dent domains recombine and synthesis cccurs.

We may think of bifurcation and synthesis as opposed
forces in the evolution of the noosphere, as the masculine
and feminine principles of evolutionary dynamics. And our
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Figure 1. Bifurcation sequence of the noosphere: Philosophy

in the 17th, 1Bth and 19th centuries. The bifurcations shown
are "socio-informatic,” that is to say, they indicate a
separation of the scholarly community inte subgroups which

intercommunicate poorly (or, a reunion of such), as indicated
in the text.
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Figure 2. Bifurcation seguence of the noosphere: Philosophy
in the 20th century. Fine structure is shown here in the
mathematical zone only.
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time is one of the domination of the noosphere by the mas-
culine force, in this sense, But the computer revolution
currently in progress may extend the information capacity of
the servants of knowledge, if they succeed in adapting the
emerging technology to this purpose, and thus enhance
enormously the forces of synthesis. It may be that the
future history of the noosphere in fact demands synthesis
soon, to avoid dispersion of knowledge into superstition, or
the knowledge death of the Egyptian, Chinese, Arabic, and
Mayan cultures described by White (1979).

On the other hand, it may be that the rigidity of
society will resist the emergence of the feminine principle
{synthesis) or that counter-evolutionary forces will monop-
olize the new technology, and our cultural noosphere is
doomed to follow these examples. My own experience as an
extreme specialist in the world of ideas, attempting synthe-
ses on a minute scale, has been discouraging. One feels
praessures of all sorts, pushing backwards towards the
security of specialization, conventional work, easy apprecia-
tion. It is thus with the greatest trepidation that I now
put forward these trial ideas on evolution, the role of
mathematics, the potential of information machines, and the
future of our noosphera.

Geometric Models of the Hoosphere

We may visualize the world of ideas divided convention-
ally into subjects, as in a library or university catalogue.
Alternatively, we may view the noosphere sociometrically: A
"subject" or domain is defined by a group of scholars, and
we distinguish subjects as disjoint areas when the scholarly
groups defining them intercommunicate poorly. Taking this
latter point of view, a portion of the noosphere correspond-
ing to "philosophy" is shown schematically in Fig. 1. As
time progresses through the peried 1600 - 1900 (roughly),
the subject bifurcates successively inte disjoint areas in
the sociometric sense. The corresponding schematic diagram
for the past century, Fig. 2, reveals numerous syntheses as
well as bifurcations. These ccour when two specialized
groups get interested in each other, learn to intercommuni-
cate, and combine as an informatic organism.

These schematic diagrams are not yet geometric models.
We must imagine a representation of the noosphere with more
dimensions, within which each "subject" is a surface (of two
or more dimensions), and among which the "bifurcations" are
such as those of catastrophe theory, or some other classifi-
cation even more general., For example, the earliest bifur-
cation of Fig. 1 is represented in Fig. 3 as a cusp catas-
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Figure 3. Representation of a bifurcation as a cusp catas-
trophe.

Figure 4. Morphogenesis of data, shown as concordant bifur-
cations on parallel sheets of the sociodynamic substrate.
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trophe -- see Thom (1972), Zeeman (1977) or Poston and
Stewart (1978) for the concepts of catastrophe theory. With
the whole history of philosophic scholarship represented in
such a pictorial scheme, we would have a geometric model of
the noosphere.

We proceed now, without an actual gecmetric medel, but
as if we had one. Then a =mall piece of the model, a typical
piece, would consist simply of a finite stack of surfaces of
various dimensions. Such a "neighborhood" of our fictitious
geometric model of the noosphere is shown in Fig. 4. Here,
parallel small pieces of three "subjects" are depicted as
surfaces of dimension two. A local chart of coordinates --
abstraction, morpholeogy, time -- is shown. We imagine that,
if our geometric model were fully described ( as it is not),
then these local coordinates would likewise be exactly de-
fined (they are not.) But these vague coordinates are intro-
duced in Fig. 4 just to give intuitive sense to this neigh-
borhood in the world of ideas.

These surfaces represent the evolution in time of a
subject defined by intercommunicating groups of scholars.
This is the substrate of the information (data, texts) of
their scholarly discourse, not the actual content of it. So
we further imagine -- defined upon these "surfaces" or sub-
strate -- some geometric objects which model (no matter how
crudely) the informational content of the subject (field,
area of knowledge.) And these geometric data structures also
evolve in time, so that differentiation and morphogenesis
pccur on each surface. This morphogenesis of data, on the
sociometric substrate of the model of the noosphere, is
shown in Fig. 4.

Such a composite picture -- bifurcation sequence, geo-
metric representation, and data structures including morpho-
genesis -- is what we mean by a geometric model of the noo-
sphere.

Concordance

We suppose now that a geometric model is at hand, that
it has been determined from the historical record -- the
libraries of our culture -- according to a constructive algo-
rithm and that the geometric dimensions are at least intui-
tively meaningful te future historians. If this seems far-
fetched, remember that this is done daily by applied mathe-
maticians, at least for very small neighborhoods. For ex-
amples, see Poston and Renfrew (1979), or Thompson (1979).
What is proposed here is no more than a certain enlargement
of scale. Let M denote the substrate of this model -- the
geometric surfaces without the data.
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For the sake of further discussion, we now make a res-
trictive geometric assumption about this model: the layered
structure shown within a small neighborhood in Fig. 4 exists
throughout the model. To be more precise, we assume there is
a certain "master substrate", or space, S, and a map from
the substrate of the model, M, into S x R (here, R denotes
the real numbers)

mT M-+ S xR

The master substrate, S, is an extension of the coordinate
called "morphology" in Fig. 4, and the real line, R, repre-
sents historical "time". We further suppose that the layers
of M are each divided into a finite number of pieces by
reasonable boundaries, and that, restricted to any of these
pieces P, the map m: P <+ S x R is regular (that is, approxi-
mately a linear projection locally) onto an open subset of

S X R. Themap m: M +> S x R, together with such an assump-
tion of piecewise reqularity, is a concordance of the model.

The idea behind our assumption of a concordance is this:
We want to relate different descriptions of the phenomenal
universe, perceived by the different disciplines, as if
these were an objective reality beneath phenomena. Thus, the
mathematical, physical, chemical, and biological descriptions
of an "event", are imagined to correspond. The concordance
of the model, m, represents this correspondence. Thus two
different points of the model -- m; and m, inM -- which have
the same labels assigned by m:

n(ml) = n(mz) = m(s,t)

are supposed to locate data structures describing the same
event. We may suppose, in addition, that the data structures
of the model are such as allow comparison at different
points. Thus we could say: the data at m., are similar to
those at m_, or they are not. How this comparison may be
accomplished is very difficult to describe in general. But
we have excellent examples in the history of mathematical
physics, which we will soon describe.

Mathematics and the Natural
Sciences: An Exemplary Bifurcation

Our proposal for a geometric model of the noosphere is
not solely a cognitive device. We have in mind a causative
dynamics -- a sort of force field on the sociometric space ==~
to account for the bifurcation and synthesis of "subjects"
in the course of time. As viewed here, this is a psycho-
social process, due to the migration of interest of scholars,
and their capability to communicate with each other. The
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coupling of intrinsic properties of subject areas with
psychological and social factors are involved in the migra-
tion, and thus in the dynamics. We now consider, from this
point of wiew, the bifurcation of natural phileosophy into
mathematics and the sciences.

We must characterize the differences between mathe-
matics and physics, from the scholar's point of view. Former-
ly, one used to say that mathematics is more abstract -- a
formal (axiomatic) system, its truth absoclute and decidable--
while physics is based on phenomenal reality -- a convention-
al system, its truth relative and empirical. Lately, the
emphasis on the empirical process in mathematics, by Lakatos
IIE?EL inclines some to identify mathematics with physics.
This is a sort of materialism, like the identification of
mind and body. But from the psychological point of view, the
feeling of truth of a mathematical theorem is based on faith
in its proofs -- its conformity to the formal (legical)
system at the foundation of mathematics -- which increases
with time, as trusted workers check the logical proofs re-
peatedly, and testify to their completeness and accuracy.
This is well described in Manin (1979).

In contrast, the feeling of truth in a physical theory
depends upon faith in its tests -- its conformity to the
phenomenal universe -- which increases with time, as trusted
workers check the empirical tests repeatedly, obtaining con-
sistent results. In spite of the similarity in these faith
mechanisms, there is a difference of polarity. Mathematicians
lock upward, and physicists downward, for the impression of
truth. Thus alsc individuals attracted to natural philosophy
will be pelarized towards mathematics or the sciences,
according to their tendency to believe in inner (upward,
logical, mental, perscnal) or outer (downward, empiriecal,
physical, social) reality. This dynamics polarized the natur-
al philesophers into two parties, Inwards and Outwards. Yet
this polarized group of scholars is to be considered a single
"subject” in our model for the noosphere, as long as the two
kinds each are in mastery of the entire subject. When this
ceased to be the case, in the history of our own culture, is
difficult to pinpoint in time. In Fig. 1, we have set it
rather arbitrarily around 1800. In any case, the post-bi-
furcation subjects are identified with two groups of scholars
(mathematicians and scientists) which intercommunicate
poorly, and suffer mutual suspicion, jealousy, and competi-
tion.

These two subjects eventually provide an excellent ex-
ample of the sociodynamics of synthesis as well. In Fig. 2,
a synthesis between global analysis and theoretical physics
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is indicated arocund 1980, that is to say, at the present
time. We have seen a decade or two of struggle by individuals
within these groups to learn the language of the other group,
for pursuit of their own goals. The progress of global analy-
sis, within its own domain, produced simplification to such
an extent that its language became learnable by thecretical
physicists. Meanwhile, successive generations of theoretical
physicists learned bits of global analysis, and rewrote their
subject in this language, making it accessible to the mathe-
maticians. As these physicists seek a theory of a mathe-
matical type, the psychological conditions for synthesis are
favorable, and so it progresses at present.

Geometry and Physics:
An Outstanding Concordance

Mow, that the basic concepts of our essay -- sociometric
domain, bifurcation, and synthesis in the universe of ideas—
have been illustrated with mathematics and the natural
sciences, we return to the supplementary notion of concor-
dance.

If two subject areas are actually a single organism in
our sense -- as, for example, mathematics and natural
science (that is, natural philosophy) before the 19th cen-
tury (see Fig. 1) -- one would not be surprised by a corres-
pondence in their morpholegy. In fact, an inconsistency in
the data structures of twe parties (such as the Inwards and
the Outwards) would undoubtedly produce a bifurcation.
However, after a bifurcation, the concordance of two dis-
joint subjects is a cause of awe, wonder, and the suspicion
of miracles, divine works, and Platonic ideas.

Two outstanding examples from the literature of our
century are provided by Einstein and Wigner. A century or
so after the separation of mathematics and physics (accord-
ing to the wery rough scheme of Fig. 1), the success of
general relativity theory as a geometric model for the sclar
system prompted Einstein (1921) to address the Prussian
Academy of Science thus:

At this point, an enigma presents itself, which in all
ages has agitated inquiring minds. How can it be that
mathematics, being after all a product of human thought
which is independent of experience, is so admirably
appropriate to the objects of reality? Is human reason
then, without experience, merely by taking thought,
.able to fathom the properties of real things?

And more recently, inspired by the success of group
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representation theory in modelling elementary particle physics,
Wigner (1959) wrote:

Mathematical concepts turn up in entirely unexpected
connections. They often permit an unexpectedly close
and accurate description of the phenomena in these econ-
nections ... It is difficult to avoid the impression
that a miracle confronts us here,..

These two examples of the successful application of
mathematics to physics are outstanding for the independence
of the mathematical discoveries (tensor geometry, classifi-
cation of representations of Lie groups) from the physical
data (motion of Mercury, hadron multiplets) and for the
precision of the concordance. But we should note that applied
mathematics -- the art of exploring concordance -- had many
other success stories in its history, and the high technol-
ogy of our culture is based upon them. The concordance of
geometry and physics continues to grow, for example, with the
Ruelle-Takens (1971) model for turbulence,

Dynamics and the Sciences:
Concordance on a Larger Scale

As a branch of mathematics, dynamics was born with
Newton, launched into prominence a century ago by Poincaré,
and became an autonomous subject, in our sense, within the
past decade or two -- as shown in Fig. 2. The basic concepts
of dynamics -- attractors (simple and chaotic), basins,
separatrixes, rchustness, and bifurcation -- are described,
in historical perspective, in Chapter 8 of Abraham and
Marsden (1978). An unusual feature of this area is the role
played by computing machines, which emerged (along with in-
formation science) as a distinct subject in the same period
of time (again, see Fig. 2) (Stein and Ulam, 1964).

This concomitance has polarized the dynamics community,
which (unlike other branches of mathematics) has an essential
experimental subgroup. Eventually, dynamics may bifurcate
into theoretical and experimental camps. For example, one
of the central ideas of dynamics is that of a chaotic at-
tractor. This was discovered by experimentalists, but came
to the specific notice of the theoreticians only a few years
later. In fact, it received explicit attention neither in
the influential survey of Smale (1967) nor in the futuristic
book of Thom (1972). At present, the polarization of dynamics
is not yet a bifurcation, as the two groups intercommunicate
well. The information load may soon overwhelm the communica-
tion channel, or the storage capacity of individual dynami-
cists, and create a separation.
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We may divide theoretical dynamics into three branches,
considering the already extensive and rapidly growing ap-
plication literature. These are:

® Dynamical systems (DS) theory, dealing with the
classification of attractors, the characterization
of robustness, and generic dynamical properties, as
described in Smale (1967) or Abraham and Marsden
(1978) .

® Elementary catastrophe (EC) theory, the classifica-
tion of general bifurcation of static attractors --
see Zeeman (1977) or Poston and Stewart (1978).

® Dynamic bifurcation (DB) theory, the classification
of generic bifurcation attractors, ocutlined in Thom
(1972).

These three theories may have the most impressive and
extensive concordances in the history of applied mathematics.
The lists of "admirably appropriate" applications and "un-
expectedly close and accurate descriptions" is extended
daily in the rapidly growing literature. By now there are
exceptional concordances of:

# DS Theory with electronics, game theory, meteorology;

# EC Theory with scciology, naval architecture,
mechanical engineering, linguistics, optics; and

® DB Theory with hydrodynamics and elastodynamics;

to list just a few. The pioneering text of Thom (1972) sug-
gests very novel correspondence of the metaphors of DB
Theory with numercus fields. And in fact, we have hinted
here at a DBE-theoretic model of the noosphere, in which DB
theory would model itself, amid all the rest of our evolving
knowledge, social structure, and psychohistory.

A Platonic Confession

We acknowledge the incredibility of so vast a concor-
dance in the world of ideas. Some of the early publications
of EC applications have been criticized as "wild claims”,
most notably in the epistomological megalith of Fussbudget
and Znarler (1979). We admit a bias in favor of concordance,
and morecver toward a Platonic idea reality -- an additional
sheet in Fig. 4, high above phileosophy, hidden from con-
sciousness by clouds, yet pinned through to the fabric of
the ncosphere by an extensive concordance, as a pattern for
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life. Yet we come out of this closet -- like Plato, Einstein,
Gidel and all other revealed believers before us -- in full

confidence that extreme specialists and conservative inform-
alists in great numbers will confirm the concordance of math-

ematics and all the sciences beyond question.

This Platenic faith obviates logical difficulties as
well., It assumes that the exploration of mathematical reality
and the discovery of its secrets by our society are a
matter of revelation or creative intuition, as described by
Hadamard (1964). The extent of this discovery process, being
limited by the structural evolution of the inguiring minds
of our times, yields a poor sketch of the terrain, expressed
as a formal (logical) system. But the full flavor of Flatonic
reality is harmonious and consistent beyond the capability
of our formal languages.

Thus, the Inward faith is essentially unassailable. Yet
our view of the reole of mathematics, in the evolution of our
noosphere, inspired by Whitehead (1929), is independent of
this bias. The Cutward view -- that concordance grows from
roots in phenomenal (ordinary) reality beneath the lowest
sheets of the noosphere (as represented in our geometric
model, for example, below Fig. 4) and that mathematics
results from the abstraction process, applied to human
perception of the real world, and carried to extremes --
equally admits the growth of a culturally determined, con-
cordant noosphere. In fact, Inward and COutward scholars
work side by side, harmoniously, unconscious of their faiths.
Tirelessly serving the shared principle of concordance,
they jointly erase conflicting data. Seo it is no wonder
that our cultural noosphere is concordant.

When, however, in the future an Alexandrian library
might be unearthed by archeologists, or a Mayan Codex over-
looked by Bishop daLanda, or if a UFD was to land at a ter-
minal of the galactic library in the sky, might we not be
amazed by an Outwardly inexplicable, cross-cultural concor-
dance? We might look first for the mathematical leaf of
the alternative noosphere, seeking a correspondence with
our owWi.

The Evolutionary Roles of
Mathematics and Informatics

What is this special role of mathematics in the evelu-
tion of cultural noospheres? Mathematics is abstract enough
to be central to an extensive concordance and yet precise
enough for these to be meaningful, even amazing. Its own
morphogenesis, -- whether Inward or Outward directed, or a
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random process -- leads the corresponding morphogenesis in
scientific domains. In this way, Ricci calculus preceded
Einstein relativity, Cartan classification preceded Gell-
Mann guarks, and Lorenz attractor preceded Ruelle-Takens
turbulence. But beyond this temporal leadership, .in which
metaphors emerge into the evelving consciousness of our cul-
ture on an abstract level and are mirrored on the more con-
crete planes a few years later, mathematics serves the fem-
inine principle, synthesis, in a functional way.

As described above, specialization and bifurcation in
the world represent an informational defect in the socioc-
dynamics of the scholarly community. The limits of individual
information handling capacity mandate the separation of a
scholarly group intoc special subgroups. The subgroups drift
apart, from the communication point of view, as the local
language of a subgroup expands to fill its vocabulary capa-
eity, thus pushing the vocabulary of the complementary sub-
group out of local memory.

Mathematics, as a higher-order language which grows
vertically, provides ever more compactification and efficien-
cy in the technical languages it serves. Thus the "chaotic
attractor" of mathematics may replace "turbulent, broad
gpectrum, stochastic, apericdic, ergedie, noisy" and a host
of other concordant concepts of the sciences. The compacti-
fication reduces memory requirements, permitting groups to
learn some different words of each other's vocabularies.

And the commonality of the mathematical metaphors allows a
limited intercourse in a universal language, among all
groups knowing some mathematics. Thus, mathematics decreases
the informatic distances between scholarly groups at the
same time that their intrinsic efforts tend only to increase
them.

In fairness, we must admit that the growing role of
computing machines, and the associated scholarly domain of
information science, share exactly the same evolutionary
roles in the future growth of our noosphere. First of all,
mathematics itself relies increasingly on machines for
proofs, management of literature, and experiments with
algebraic, geometric, and dynamical systems. Further, the
use of machines by the various disjoint scholarly groups
increases their information capacity, and thus their power
to intercommunicate. Similarly, the use of machines for
communication networks will increase the information cap-
acity of channels interconnecting these groups. And finally,
and most importantly, the new concepts of information
science, like those of mathematics, are highly compactive
and efficient as linguistic elements for scientific use. In
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fact, we have used some in describing the role of mathematics
above.

In both cases, mathematics as well as informatics, we
have described qualitative utilitarian roles in addition to
the obvious quantitative one: computation. So let us note
here that computation has played a primary role in the
growth of the natural sciences in the past and will remain
important in the future, but the qualitative function of
conceptual morphogenesis has in both cases, surpassed
computation in its evolutionary importance. Thus we have
emphasized here qualitative (especially geometric) mathe-
matics, informatics, and machines.

The Future

We have looked at the noosphere from the coarse point
of view of sociodynamics, and seen its morphogenesis -- in-
cluding the special role of mathematics and informatics, in
promoting syntheses, to balance the inevitable tendency
toward fragmentation -- in the visual metaphors of dynamics
and catastrophe theory. To this picture, a mathematical for-
mulation of "concordance" has been adjoined and we have pro-
posed that a vast concordance of unprecedented scale is
presently emerging in our noosphere. This is an occasion of
tremendous excitement in the scholarly community. Projecting
into the future (if indeed the planetary political reality
admits one) we see thus a catastrophic struggle between the
masculine principle (fragmentation) and the feminine (syn-
thesis). In our view, the future evolution of our noosphere
will be possible only with a balance of these forces. At
present, scientific patriarchy (specialization) dominates,
and synthesis is oppressed. Thus, to nourish our future,
extra fuel should be provided mathematics, informatics, the
access of mathematicians to computing machines, the appli-
cations of mathematics to all fields, the intercommunication
devices such as computer networks and interdisciplinary
conferences, and the entry of feminists into the scholarly
community. Yet the social climate for this nourishment of
synthesis in the noosphere appears cool. The feminine
principle in the scholarly world is starving. Perhaps the
mathematical-informatical community should take more res-
ponsibility in the field of public education and aggressively
seek support.

Our idea in this essay on sagacity theory, or psycho-
history, is to begin the development of a model for the
noosphere, aided by mathematics, with which in the future
we may pick up the reins of evolution and choose our own
future historv
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