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Dynamics
A Visual Introduction
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ABSTRACT
A dynamical system 15 one whose state may be represented as a point in & space, where each point is
assigned a vector specifying the evolution. The basic ideas of the mathematical theory of dynamical
systems are presented here visually, with a minimum of discussion, using examples in low dimen-
sions. The “AB portrait™ is introduced as a record of attractors and basins, The basic dynamical bifur-
cations also are given, including examples of bifurcations with two controls, Extensions of dynamical
concepls are proposed in order to allow modeling of hierarchical and complex systems. These exten-
sions include serial and parallel coupling of dynamical systems in networks.
The references for the ideas in this chapter can be found in Chapter 30. —THE EmToR

While working together on the illustrations for a book, we discovered that we
could explain mathematical ideas visually, within an easy and pleasant working
partnership. Our efforts to illustrate “dynamics and self-organization™ expanded
inevitably into the work presented here. We use an animation technigue familiar
from Scientific American to develop the main ideas of dynamical systems theory,
while relying as little as possible upon verbal descriptions. This style of presen-
tation is at least ten times more costly than the usual verbal one. But then, a
picture is worth a thousand words.

The ideas included are a mixture of ones familiar from the recent literature
of dynamics and new ones based upon personal reflection. The reader should
keep in mind that this is a personal view, and that the field of dynamics now is
undergoing rapid evolution.

RALPH H. ABRAHAM e Division of Matural Sciences, University of California, Santa Cruz, Cal-
ifornia 95064. CHRISTOFPHER D. SHAW & Department of Mathematics, University of Califor-
nia, Santa Cruz, California 95064,
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544 IX. Topological Representation of Self-Organization

Whitehead’s (1925) Science and the Modern World describes the early his-
tory of dynamics in two periods—Galileo to Newton and Newton to Einstein—
of the origins of modern science. Two further periods extend into the 20th cen-
tury—Poincaré to Thom and Thom to the present. The ideas of Poincaré, origi-
nator of geometric dynamics, depart radically from the earlier concepts of Galileo
and MNewton. It is ironic that he is not mentioned by Whitehead, because Poin-
caré’s great follower, George D. Birkhoff, was Whitehead's colleague at Harvard
and was carrying on the new approach at the very moment Whitehead was writ-
ing his history. After Birkhoff, dynamics was dormant in the West, while the fol-
lowers of Lyapunov, a Russian contemporary of Poincaré, continued the devel-
opment of geometric techniques and concepts. This line of study was revived in
the United States by the topologist Solomon Lefshetz (1950). Since then the field
of dynamics has experienced tremendous expansion.

We present the basic concepts of dynamics in four historical groups: Gali-
lean, Newtonian, Poincaréan, and Thomian. From antiquity to Galileo, general
physical concepts of kinematics were developed, especially space, time, curve of
motion in space, instantaneous velocity at a point on the curve, and final motion
or asymptotic destination of the curve—probably thought to be a limit point.
From Newton to Poincaré, the mathematical expression of “local” concepts flow-
ered: Fuclidean space-time domain, integral curve, vectorfield, and attractor
(taken to be a limit point, or a limit cycle).

From Poincaré to Thom, the global geometric perspective emerged; the state
space (or mathematical domain) of the dynamical system expanded from an open
region in a flat Euclidean space to a manifold, or smooth space of arbitrary geo-
metric and topological type. The dynamical system came to be viewed globally
also: analytically, as a “flow” (or group of motions of the space of states upon
itself); and geometrically, through its phase portrait. More complicated limit sets,
such as the ergodic two-dimensional forus of irrational rotation, became known
and the revolutionary concepts of structural stability, generic property, and bifur-
cation emerged. These concepts will be described in more detail below.

Thom developed the idea of stable bifurcation, as well as an even more global
“big picture” of infinite dimension in which the stable bifurcations became geo-
metric objects, amenable to classification. In the same period a new class of
attractors, the chaotic attractors, was discovered experimentally, and a veritable
industry of applications began. A parallel development, based on the analysis of
invariant measures, has taken place in Russia. (The ideas of the Russian school
are not included in this survey, although they are guite important.)

Dynamics

Mathematical dynamical systems (hercafter simply “dynamical systems™)
consist of deterministic equations, including ordinary differential equations, par-
tial differential equations of the evolution type, or finite difference equations. The
equations may occur singly or in sets.

Since Poincaré, dynamical systems have been studied using topological and
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geometric methods, and dynamical systems theory has diverged from the classical
analysis of differential equations and operators. A main goal of the geometric, or
“qualitative,” theory has been to understand the “final motions,” or asymptotic
limit sets, of a dynamical system. Here we present the most important ideas of
dynamics through examples in low dimensions. The main idea is the “AB por-
trait” of a dynamical system, which records those aspects of the dynamics that
are most evident in the qualitative point of view, the attractors and basins.

We proceed by presenting and describing 84 figures. In Chapter 30 the con-
cepts will be applied to the problem of describing self-organizing behaviors.

Basic Concepls

FIGURE 1. STATE SPACE. Many different spaces may be considered to be the domain of a dynam-
ical system. Examples include: an open region in the plane (a); the upper hemisphere (b): the entire
two-sphere (c); a closed surface with two holes (d); an open region of three-dimensional space (e); or
a higher-dimensional surface. Each point of the state space corresponds to a “virtual state™ of a system
being modeled.
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FIGURE 2 A DYNAMICAL
SYSTEM on a state space consists
of a vector assigned to each point.
Each point in the state space is
interpreted as a virtual state of the
system modeled, as described
above. Each of these based vec-
tors is interpreted as a dynamical
rule: the state must evolve with
the speed and direction of the vec-
tor based there.

FIGURE 3. Starting at any point {a) in the state space, there is a uniquely determined curve (b} fol-
lowing the dynamical rules at each point it passes. The starting point is called the initial state (a); the
curve (b) is its trafectory, and the asymptotic limit set of the curve (c) is the [imit set. In these illus-
trations the curved arrows represent the flow of the dynamic, 1.¢., the simultaneous movement of all
initial states along their trajectories.
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FIGURE 4. LIMIT POINTS IN TWO DIMENSIONS. The simplest limit set is a fimil point, In two
dimensions there are only three types of generic limit point: the point attractor (a); the point repellor
(b}, and the saddle point (c). In this context, the inset of a limit point refers 1o the set of all initial
states which asymptotically approach the point in the future, The outser of the limit point comprises
all initial states approaching the limit point as time (the parameter along the trajectory) goes backward.
The saddle (c) has both inset and outset of one dimension. The attractive point (a) has a two-dimen-
sional inset, called its basin. The repellor (b) has a two-dimensional outset,

2 T N

FIGURE 5. LIMIT POINTS IN THREE DIMENSIONS. Here attractors have three-dimensional
insets, or basins, while repellors have three-dimensional outsets. There are two types of generic saddle:
one has a two-dimensional inset (a); the other (b) has a one-dimensional inset.
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FIGURE 6. LIMIT CYCLES IN TWO DIMENSIONS. A circular limit set is called a periodic limit
set, or a limit cycle. In two dimensions there are only two generic types, attracting (the periodic attrac-
tor) and repelling (the periodic repelfor).

FIGURE 7. LIMIT CYCLES IN
THREE DIMENSIONS. Here we
have again the periodic attractor
(three-dimensional inset) and the
periodic  repellor  (three-dimen-
sional outset), as well as a new type,
the limit cycle of saddle type. Its
inset is a two-dimensional cylinder,
as is its outsel. The two cylinders
intersect in a circle, which is the
limit cycle itself.
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Chaotic Attractors
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FIGURE 14. THE ROSSLER. Beyond the point attractor (dimension zero) and the periodic attractor
(dimension one) lives a little-known world of more complicated generic attractors. Most of these have
been discovered by experimentalists; the one shown here was found by Réssler (an experimental dyna-
micist) with an analog computer. Like all of the attractors of dimensions greater than one, it is chaotic
in the sense of power spectrum analysis; it emits broadband noise (Réssler, 1979), It is a thick artrac-
for; although it looks two-dimensional, microscopic analysis reveals a fracral thickness. This attractor
has “fractal dimension™ 2+, i.¢., a fraction more than two! The next six illustrations describe this
“microscopic analysis.”



FIGURE 15. THE POINCARE SECTION. We cut through the atiractor, in order to study its cross
section, called the Poincaré section.

FIGURE 16. THE LORENZ SECTION, Enlarging the Poincaré section, we see that it consists of
many curves compressed together. We cut through these curves with another cross section, as in Lor-
enz (1963).
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FIGURE 17. THE LAYER SET. The second cut results in a line of dots, one for each curve of the
Poincaré section, or, equivalently, one for each sheet of the Rassler attractor (Rossler, 1979). This
result is a Canlor sef.
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FIGURE 18. CANTOR'S MIDDLE
—_— ———————————— THIRDS CONSTRUCTION. The original
— — — — Cantor set was constructed by removing the
open middle third of a closed interval, fiol-
lowed by removal of the middle third of
each of the two remaining intervals, ef cer-
i ol R, == == era, ad infinitum. The limit set contains no
intervals. This Cantor set has fractal dimen-
sion 0.63 and linear measure zero.

— — —_— — — — — — —
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FIGURE 19. THE MIDDLE FIFTHS CONSTRUCTION. Another Cantor set can be constructed by
removing two fifths at each stage. This construction produces a Cantor set of fractal dimension 0.68
and zero linear measure. By removing smaller sectors at each stage, however, a limit set can by con-
structed which has positive linear measure, yet which contains no intervals, These are thick sefs,
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FIGURE 21. OTHER CHAOTIC ATTRACTORS. In addition to the Rossler attractor, many other
attractors have been found by experiment. On the left is shown the fiennel, also discovered by Risssler.
Other attractors found by Rossler look amazingly like the seashells called tops, turbans, and sundials.
On the right is the Lorenz ariractor, the first to be found. This attractor was discovered in a digital
simulation during Lorenz's study of atmospheric turbulence in 1961. These all seem to be ergodic,
i.e., the averaging procedures of statistical physics apply to them.

FIGURE 20. THICKNESS OF THE ATTRACTOR. A Cantor set of two-dimensional sheets is a Can-
tor 2-manifold and has fractal dimension 2 + T, where T is the fractal dimension of the Cantor set,
measured across the layers. In this illustration we see why the Rissler attractor is a Cantor manifold.
To the original Poincaré section across the Rossler attractor, we apply the Poincaré section map. Each
point is carried once around the attractor, following the unique trajectory of the dynamical system,
until it crosses through the Poincaré section again, Three iterations of this map are shown here, With
each iteration, the section of the Rissler attractor is pulled out double-width, folded over, flattened,
and reinserted into the section. The limit of this process is a Cantor manifold, and it covers the entire
Poincaré section, We say the attractor is fractal if the fractal dimension is not an integer, and thick if
the measure is nonzero (implying the same, integer dimension as the state space).

Separatrices also can have a Cantor structure; these are called fracral or thick separatrices by the
same criteria of dimension and measure. In a thick separatrix, the probability of an arbitrary initial
point belonging to the separatrix will be nonzero, but, one hopes, small. The limit sets of such initial
points, which are nol attractors, yet which have insets of positive volume, may be called vague atfrac-
tors, In fact, some authors (e.g., Pugh and Shob, 1980) call even these “attractors.”
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FIGURE 22. A LIST OF ATTRACTORS. Dynamicists would like to classify all generic attractors in
some taxonomic scheme. While the end is not in sight, we have the beginning of a list. Here the list
starts on the left, extending to the right beyond the five steps shown. Beneath each attractor portrait
is its corresponding fime serfes (or time record of a single coordinate of a trajectory along the attrac-
tor). Its corresponding power specirum is shown beneath the time series. (The power spectrum is a
plot of power versus frequency in the harmonic analysis of the time series.) Beneath the spectrum we

could imagine a list of further attributes of the attractors across the top, adeguate to distinguish them
from one another.

Structural Stability

2R

FIGURE 23. UNSTABLE ATTRACTORS. The system on the spheroid, at left, has a point attractor
and a point repellor. It is structurally stable, in that any dynamical system obtained from it by a small
perturbation will have essentially the same AB portrait, On the other hand, the system on the toroid,
shown on the right, has no attractor other than the entire toroid. Its trajectories wind forever around
it, like a solenoid. It is struciurally unstable, because a small perturbation can change the AB portrait
into a finite number of basins, each containing a closed orbit which winds several times around it
(details are shown later),
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Coupled Oscillators
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FIGURE 27. THE STATE SPACE FOR TWO OSCILLATORS. The state space for a single oscillator
may be assumed to be a circle, C, of unit circumference. The dynamical system can be described as a
constant velocity in the direction of the arrow, so that one full eycle has a period of ¥ seconds and a
frequency of F = 1/¥ cycles per second. Now consider two such oscillators with state spaces denoted
by €' and C* and frequencies F' and 2, The state space for the combined system of the two oscillators
is the torus, ' % C°,

J

FIGURE 28. THE FLAT TORUS. For easier visualization we cut the torus along two circles, corre-
sponding to the C' and C* “axes,” and flatten it. To wrap it up again, identify (paste together) the two
vertical edges, then the two horizontal circles, Thus, the two points labeled “a” represent the same
point on the torus, as do the two points “b." Other than the boundary points, every point of the flat
torus specifies a unique instantaneous state for each of the oscillators.

Single trajectory Single trajectory Owerall dynamic

FIGURE 29. THE DYNAMIC FOR TWO OSCILLATORS. Suppose, for example, that the second
oscillator is jammed or stuck (F? = 0). A trajectory on the real torus is then a horizontal circle, cor-
responding to a horizontal line on the flat torus, proceeding to the right with speed ' = 1/F',
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Single trajectory Single trajectory Owverall dynamic
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FIGURE 30. ANOTHER EXAMPLE. If the first oscillator is stuck, the dynamic is vertical, as shown
here,

FIGURE 31. THE GENERAL UNCOUPLED CASE. When both oscillators are running, F' and F?
= (); the trajectoriés on the flat torus are still straight lines, with slope ¥%/¥' = F'/F% For example,
suppose this ratio of frequencies is —3/2. Thus, the first oscillator completes two cycles clockwise,
while the second completes three cycles counterclockwise, The trajectories on the real torus are all
closed cycles, or periodic trajectories, which wrap three times around the small waist (corresponding
to C%) and twice around the large waist. A full cycle of this compound oscillation is visualized best
upon six or more copies of the flat torus, as shown here. This picture is modified easily to display the
dynamic for coupled oscillators having any rational ratio of frequencies, or rofation number. The case
of an irrational rotation number requires drawing a line of irational slope across a doubly infinite
array of flat tori, because the trajectories on the real torus never close.
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Hysteresis

IX. Topological Representation of Self-Organization

FIGURE 45 CATASTROPHIC
BIFURCATION involves the
sudden creation of a new basin
and attractor, as in the three
examples of the preceding
section,

FIGURE 46. HYSTERESIS
occurs in a bifurcation diagram
containing at least two cata-
strophic  bifurcations, back to
back. In this example a static cre-
ation is followed by a static anni-
hilation, as in the fold carasirophe
of Elementary Catastrophe the-
ory. We shall refer to this config-
uration as a hysterical kink.
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FIGURE 47. A HYSTERESIS LOOP is shown here, in a mechanical representalion, realizing the pre-
ceding bifurcation diagram. Beginning with the control full lefi, the knob is moved to the right. The
sequence of observations in the top row results. Initially the system is caught in the upper attractor.
After the knob passes the first bifurcation point in the control interval, a second attractor exists. The
machine, however, does not reveal it; there is no change of behavior. After the knob passes the second
bifurcation point, the upper attractor vanishes (afler colliding with its separatrix, which slides along
the dotted track), and the machine finds itself in the far reaches of the basin of the lower attractor.
The dynamic asserts itself, the current state rushes toward its new attractor far below, the transient
dies away, and the machine settles down to its new equilibrium. The knob is full right.

Mext the knob is pushed slowly back to the left. After a similar sequence, the screen shows that
the machine again has settled down in the original attractor, near the top. The transition upward
occurs near the left bifurcation point, however, after passing the control point of the downward tran-
sition. This is the classical hysteresis loop behavior. In the context of Dynamical Bifurcation theory
it has many more complicated forms.
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Subtle Bifurcations

IX. Topological Representation of Self-Organization

T _
E T nEoa

N

FIGURE 48. SUBTLE BIFUR-
CATIONS differ from cata-
strophic ones in that nothing new
appears suddenly out of the blue,
Instead, an existing atiractor
changes gently into another type
of attractor. In the bifurcation
diagram shown here {and dis-
cussed below) a point attractor
changes into a periodic attractor,
The change is noticed only afier
the amplitude of the oscillation
has grown large enough to be
observed.

&

FIGURE 49. MACHINE REPRESENTATION of a subtle bifurcation shows that the attractor under
observation, a point altractor, changes into an oscillation as the control is moved to the right. The
amplitude increases as the control is moved more 1o the right. As the control is returned to the left,
the same sequence is observed in reverse. The amplitude of the oscillation decreases, and the circle
shrinks to a point. The death of the oscillator occurs at the same bifurcation point at which it first
appeared, There is no hysteresis with subtle bifurcations.
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FIGURE 55. TYPICAL BIFURCATION SEQUENCES. In many experimental situations described
by dynamical models with one control, moving the control in one direction results in a sequence of
the bifurcations described singly in the preceding illustrations. Moving the control back again to the
original value results in a similar, but different sequence. Here we illustrate some commonly observed
sequences. Above, presented as the control moves to the right, a point attractor becomes periodic by
excitation, then braided and chaotic—this is the Rualle-Takens sequence (Ruelle and Takens, 1971).
The chaotic attractor then disappears (by collision with its separatrix—a bifurcation anticipated by
theory but not yet studied, or illustrated here). Below, a similar sequence is seen as the control is
returned to the left, but different attractors are involved. Hysteresis may be observed. The dynamical
maodel behind this phenomenon is shown in Figure 56.

FIGURE 56. CHAOTIC HYSTERESIS. The bifurcation diagrams shown above are all atomic events.
In real systems, compound models are encountered in which several of the atomic events are con-
nected in a single bifurcation diagram. In these maps it is easy to understand hysteresis—the sure sign
of catastrophic (as opposed to subtle) bifurcations. Here we show a fictitious bifurcation diagram in
which two attractors undergo bifurcation separately, each in its own basin (except at the ends, where
one or the other basin has disappeared). The observed behavior of the system is described in the
preceding figure.
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An Exemplary Application: Fluid Dynamics

FIGURE 57, A STIRRING MACHINE. One way (not necessarily the best) to stir a cup of fluid is w0
rotate a swizzle stick in it. Great progress has been made in the study of turbulent fluid dynamics
using this image. Since its earliest description a cenlury ago, this experiment of Mallock and Couette
has been repeated over and over, with ever-improved rods and cups. The onset of wrbulence is care-
fully reproduced and observed with this apparatus. As the speed of stirring is increased beyond a
critical (bifurcation) value, the expected flow of the fluid {in concentric, cylindrical lamellag) is
replaced by annular vortices, patterns discovered by Taylor in 1923, Additional increase in the rate of
stirring produces more bifurcations and, finally, turbulence.
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Fluid motion State space (5) D (S)

FIGURE 58. THE DYNAMICAL MODEL FOR TURBULENCE. To model this experimental situ-
ation with a dynamical system, the first step is the definition of the state space. One way to do this
{due 1o Lagrange) is to record the fluid velocity vector at each point within the cup. This velocity
vectorfield is considered 10 be the (instantaneous) state of the fluid motion and corresponds to a single
point in the state space, 5. This space, unfortunately, is infinite-dimensional. The change in the state
of fluid motion as time passes is modeled by the partial-differential equations of Mavier-Stokes, These
may be considered (roughly) as a dynamical system on the state space, 5. Thus, the Navier-Stokes
equations are considered to be a system of ordinary differential equations on an infinite-dimensional
state space and, therefore, a single point in the big picture, IN5), instead of a system of partial differ-
ential equations on a three-dimensional fluid domain.

The behaviors of the fluid which are actually observed—Taylor vortices, for example—are attrac-
tors of this dynamical system on §. Furthermore, the rotation of the stirring rod is part of the Navier-
Stokes system (the “boundary conditions™); thus, changes in the speed of rotation, ¢, move the
dynamic flc) around in the big picture, IN5). There are many technical problems involved in this
model, which is still an active research area. Nevertheless, this model, studied by Ehrenfest and exten-
sively used by Ruelle, makes the results of Dynamical Bifurcation theory applicable to the Couette-
Taylor experiments and to fluid dynamics in general. The chaotic attractor in this dynamical model
{from Ruelle and Takens, 1971) corresponds to turbulence in the fuid.

FIGURE 59. LAMELLAR FLOW in concentric cylinders occurs at slow stirming rates. Here we begin
a sequence illustrating the successive events observed as the speed of stirring is gradually increased
from zero. Initially the fluid is still. This condition is illustrated by the column on the left. The photo
at top left shows the cylinder of fluid at rest, seen from the front. The drawing at lefi center shows the
state as a velocity vectorfield; all velocity vectors are zero. The drawing at lower left shows the dynam-
ical model: a point attractor at the origin (all velocity vectors zero) of the state space, S.

Mext, in the column on the right, the stirring rate has increased slightly, and the flow is slow and
lamellar. The photo of the fluid (top right) seen from the front is unchanged. But the velocity vector-
field (right center) is a pattern of horizontal, concentric circles, slowly rotating clockwise (as seen from
above). The dynamical model (lower right) is again a point attractor in the infinite-dimensional state
space, 5, but it is no longer at the origin. The attractive point has drifted from the origin to a nearby
point, corresponding to the lamellar flow, as the control (stirring speed) has been changed. This drift
is indicated by the curve between the two lower drawings. There has been no bifurcation yet. (We are
grateful 1o Rob Shaw for providing these photos of his work with Russ Donnelly's Couette machine
at the University of Oregon.)
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FIGURE 60. TAYLOR CELLS appear after additional increase in the rate of stirring. The column on
the left illustrates the state of the fluid after the appearance of the annular vortices: photo of the fluid
from the front; velocity vectorfield; and dynamical model (from top to bottom.) Even now the siate
of the fluid is still a rest point, because the velocity vectorfield is constant with respect to time,
although it varies from point to point. It is possible that there has been no bifurcation yet in the
dynamical model, because the attractor is still a point. Experimentalists, however, report that hyster-
esis is observed in the formation of the cells; the critical value of the speed of stirring for formation
of the Taylor cells is higher than the critical value for their disappearance. Because hysteresis is the
certain sign of catastrophic bifurcation, we suppose a kink (a static annihilation linked to a static
creation bifurcation) in the track of the point attractor, from the lower right drawing of the preceding
state (Figure 59) to the lower left here. Thus, we are creating a bifurcation portrait from the lower
drawings of each column,

The bifurcation indicated by the kink between the preceding figure and this one is an outstanding
example of the emergence of form through the breaking of symmetry. The lamellar flow has the sym-
metry of the vertical axis of the stirring rod, a one-dimensional symmetry, The stack of Taylor vortices
has the symmetry of a discrete set of points within that axis, a zero-dimensional symmetry, One
dimension of symmetry is lost when the attractor leaps from the lower branch of the kink to the upper
branch.

The column on the right shows a new phenomenon, wavy vortices. Following increase in the
stirring rate, the Taylor cells show waves which seem to rotate within the fluid (in the photo at top
right). The velocity vectorfield (right center) now shows a periodic variation at each point within the
fluid, The dynamical model (lower right) is, therefore, a periodic attractor. Between the two columns
a Hopf bifurcation (Figure 50) has subtly taken place.



FIGURE &1. THE ONSET OF CHAOS follows additional increase of the speed of rotation of the
central cvlinder. After the Hopf hifurcation to wavy vortices, another bifurcation (observed by R.
Shaw) produces pairs of dislocations of the annular cells. On the lefi this effect is shown as a braid
bifurcation, which is pure speculation on our part, although experiments indicate the exeitation of a
new oscillatory mode. On the night, weakly turbulent fluid motion is shown where short bits of dis-
located celis move chaotically about.
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Self-Regulation and Guidance Systems

FIGURE 66. SELF-REGULA-
TION OF ONE CONTROL.
Given that we have a dynamical
system depending on a control
parameter, who turns the control
knob? If it tumms itself, through
action of a dynamical subsystem
on the control space itself, the
model is called a self-regulating
system. Here a typical dynamical
system with one control, produc-
ing a Hopf bifurcation, is shown
with a generic self-regulation vec-
torfield on the one-dimensional
control space. Because this AB
portrait on the line has only two L/

point attractors, their basins sep- \

H

arated by a point repellor, the
control knob will seek one of
these two attractive settings. &
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FIGURE 67. A MACHINE REPRESENTATION of the self-regulation system described above is this
“glectric stopwatch.”

M
&]

r——







L
I Time

FIGURE 69. SELF-REGULATION WITH PERIODIC BEHAVIOR. The preceding example had a
periodic attractor for its controls, but only a peoint attractor for its state dynamic. We show here a
richer example, with the same control space and self-regulation dynamic, but with a state space of two
dimensions. The bifurcation diagram is that of Andronov and Takens, shown in tableau form in Fig-
ures 64 and 65. Here we show the actual bifurcation diagram, obtained when the controls are restricted
to the values along the periodic attractor on the control space. The time series corresponding to one
of the two state variables also is shown. It resembles that of a stringed instrument rhythmically
plucked. The direction in which it is plucked varies from cycle to cycle.
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FIGURE 70. GUIDANCE SYSTEMS FOR ONE CONTROL, The self-regulation system is too lim-
ited for many applications, as this example shows. In this figure a dynamical system with one knob is
controlled by a regulating vectorfield on an auxiliary space of two dimensions. A smoothly periodic
variation of the control knob therefore is possible. In this example the controlled dynamic is again a
Hopf bifurcation diagram, and the output time series of one of the two state variables is an intermit-
tent oscillation, A similar system, described by Cruichfield, emits intermittent noise.
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FIGURE 71. GUIDANCE SYSTEMS FOR MORE CONTROLS. By guidance system we mean a reg-
ulation vectorfield on an auxiliary space, B, and a linkage map from B to C, the control space of a
dynamical system with controls, on a state space, 5. Here is an example in which B, C, and 5 all have
dimension two. The regulatien dynamic on B has a periodic attractor, but the projection of this cycle
from B into C by the linkage map is a loop that crosses itsclf. We shall call the projection of an
attractor, in general, a macron. The controlled dynamic illustrated here is again the Andronov-Takens
system of Figures 64, 65, and 69; the output is the time series shown. This is a periodic sequence of
square waves and intermittent oscillation. Many other possibilities can be constructed with a guidance
system as simple as this one.
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Serial Coupling and Hierarchies

=~

T
€— Y —E—

..'l"..l.
1
Yz
C,
y

FIGURE 72. GUIDANCE WITH CONTROLS. In our sequence of portraits of gradually increasing
complexity, we now consider two dynamical systems with controls, For example, let one be a subtle
Hopf bifurcation (Figures 48-50) and the other a catastrophic kink exhibiting hysteresis (Figure 46,
47).
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FIGURE 73. SERIAL COUPLING of these two systems means that a linking map is given from the
state space of one, 5, to the control space of the other, 2, Thus, for a fixed value of the first control
knob, the fixed dynamic on §' is a guidance system for the second system. But moving the first control
knob changes the guidance dynamic. In the example illustrated here, moving the lower control knob
full right, then full left, produces the time series shown for the guided system above. The lower control
turns the oscillation abruptly on and off, with hysteresis.
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FIGURE 74. ANOTHER EXAMPLE is obtained by interchanging the roles of the two systems pre-
viously illustrated. Here the Hopf bifurcation controls the hysterical kink system. The lower control
turns the square wave oscillator abruptly on and off, without hysteresis. (This type of system could be
used, for example, to model the cAMP pulse relay activity of cellular slime mold—see Chapter 10.)

FIGURE 75. SYMBOLS for controlled dynamical systems may be made schematically by represent-
ing the control space as a horizontal line segment and the state space as a vertical line segment, regard-
less of the actual dimensions of these spaces. A single dynamical system with controls then is repre-
sented by a box with a line beneath it
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FIGURE 76. SERIAL COUPLING DIA-
GRAMS now may be constructed from
T these box symbols by connecting two of

them by a directed line, representing a link-
ing map from 5" to C°, as shown on the lefi.
Alternatively, the simpler symbol on the
right could be used.

FIGURE 77. HIERARCHICAL SYSTEMS may be modeled by a sequence of serially coupled dynam-
ical systems with controls, as shown here in two equivalent symbols,
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FIGURE 79. THE PARALLEL COUPLING OF DYNAMICAL SYSTEMS generalizes this dynami-
cal multiplication to any dynamical system. Let X" be a dynamical system on a state space 57, and let
X* be another dynamic, on another state space, 5. The product system, X' X X2, on the product space,
5' % 5% probably will be bad. An unfolding of this product dynamic is called a parallel (or flexible)
coupling of X' and X2,

el NN R

FIGURE 80. THE PARALLEL COUPLING OF CONTROLLED DYNAMICAL SYSTEMS adds a
new control, C°, for unfolding, to the controls C', and €%, of the two controlled systems. The addition
permiis complete unfolding of the product of the interactions, as shown here,
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FIGURE B81. THE PARALLEL COUPLING OF GUIDANCE SYSTEMS repeats the coupling
scheme for controlled systems, illustrated in the preceding figure, on both levels. To simplify the pic-
ture, we suppose that one new control, C%, simultaneously unfolds both the guidance and the guided
levels.

| T T |
FIGURE 82. THE PARALLEL COUPLING OF HIERARCHICAL SYSTEMS (of the same number
of levels) repeats the coupling scheme for guidance systems, illustrated in the preceding figure, on all
levels of the hierarchy. (See Figure 75 for an explanation of the box symbol.) Again, one new set of

controls, C° is assumed to control the flexible couplings on each level simultaneously and to unfold
all of the couplings completely.
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FIGURE 83, A COMPLEX SYSTEM may be made up of a set of
hierarchical systems of the same length by assuming a parallel cous
pling between each pair of hicrarchical systems in the set. The
unfolding controls again are lumped into a single new control
space, (. These controls are assumed 1o unfold all the parallel
couplings at once.

BS;

FIGURE 84. NETWORKS of complex systems are formed by directing the outputs of some to the
controls of others. Here are two symbolic representations of a (simple) dynamical network. Chapter
30 relates the images and ideas of this chapter to the problem of self-organization,
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