Dynamics and Self-Organization

Ralph H. Abraham

ABSTRACT
Modern views of qualitative dynamics seem to promise simple geometric models of complex behavior
and a mathematical rationale for constraint of evolutionary processes to particular paths. Dynamical
bifurcation theory should not be confused with elementary catastrophe theory or with classical bifur-
cation theory. A short history of dynamics is given. A new category of dynamical models for complex
systems is proposed, based on networks of serially coupled dynamical systems. These models may
potentially be extended to account for irreversibility, fluctuation, coherence, symmetry-breaking, com-
plementarity, and other phenomena of self-organization. Finally, ten outstanding problems for
dynamics that are central to the development of self-organization theory are described. —THE
EpiTOR :

There are various, distinct mathematical viewpoints applicable to the description
of self-organizing systems. Here my concern will be the assessment of (and spec-
ulation on) just one of these: the viewpoint of dynamics. This subject lies between
mathematics and the sciences, and has been central to increasing hopes for a rig-
orous mathematical theory of morphogenesis. Optimism was generated by the
visionaries—Turing and Thom—and justified by successful and spectacular
applications to physics, especially to hydrodynamics. Extrapolating from these
applications, dynamics seems to promise:

e Simple geometric models for complex and chaotic behavior

e A complete taxonomy of dynamic states or their attractors, and of devel-
opmental events (bifurcations) for morphogenetic sequences

e A mathematical rationale for the constraint of complex self-organizing sys-
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600 IX. Topological Representation of Self-Organization

tems to a simple “homeorhesis” (in Waddington’s terminology), or evo-
lutionary process

The overpowering allure of dynamics for self-organization theory is the
promise of a mechanical explanation for morphogenesis, a kind of rebirth of
Greek rationalism, or scientific materialism. In fact, simultaneous with the emer-
gence of dynamics as a field, dynamicism is emerging as a prospective scientific
cosmology, a philosophical new wave.

We must be careful not to confuse dynamical bifurcation theory, which is the
basis of this essay, with the rather similar subjects of elementary catastrophe the-
ory (see, €.g., Zeeman, 1976, or Poston and Stewart, 1978), or classical bifurcation
theory (surveyed in Marsden, 1978). The bifurcations of gradient dynamical sys-
tems, including elementary catastrophes, are less general than the dynamical
bifurcations of dynamical systems, and these are in turn less general than the clas-
sical bifurcations of nonlinear operators and partial differential equations. All
three fields use the same vocabulary in different ways—a circumstance that can
lead to confusion. Furthermore, all three viewpoints may be applied to the same
partial differential equations!

Dynamics has three aspects: mathematical; experimental; and applied. The
history of experimental dynamics divides naturally into the subcategories of

o Real machines (since Galileo, 1600)
e Analog machines (since Bush, 1931)
e Digital machines (since Lorenz, 1963)

These are described in Abraham and Marsden (1978) and shown in Table 1.
Before the widespread use of analog and digital computing machines in dynamics
(i.e., before 1960), it was difficult to distinguish between experimental and applied
dynamics, because real machines usually are not sufficiently tractable to permit
serious exploration of their detailed dynamics. In fact, the capability of a machine
to admit preparation in an arbitrary initial state effectively defines it as an analog
computer. The evolution of this capability for nonlinear electrical oscillation ush-
ered in the purely experimental period (Hayashi, 1953, 1964).

By a real machine we mean any system of the phenomenal universe that
behaves sufficiently like a dynamical system, with states that may be related to
an idealized state space, evolution from an initial state along a trajectory to a final
motion, dynamics that can be changed by control “knobs,” and so on. The real
machines that have engaged dynamicists most seriously involve fluids, gases,
elastic solids, chemical reactions, neurons, and so on.

In this chapter, I discuss the potential of applied dynamics for modeling self- -
organizing systems. First, I propose some dynamical models that in the future
might be useful to describe self-organizing systems. Then I present some unsolved
problems of dynamical systems theory that are important for the program sug-
gested in the first part. [All of the concepts of dynamics essential for this discus-
sion are presented in an elementary, intuitive way in Chapter 29, and at greater
length in Abraham and Shaw (1983, 1984, 1985), in a similar style.]
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TABLE 1. The History of Dynamics
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Mathematical Experimental dynamics Applied
Date dynamics Digital Analog Real dynamics
1600 Galileo
Kepler
Newton
Leibnitz
1700
Lagrange Chladni
1800
. Faraday
Thompson
Lie Rayleigh
Poincaré
1900 Lyapunov Ehrenfest
Julia Duffing
Van der Pol
Birkhoff Bush
Hopf Philbrick
Peixoto Hayashi Turing
Smale Lorenz Thom
Rossler Gollub/Swinney  Ruelle
2000

Models for Self-Organization Suggested by Dynamics

I propose here a concordance between the concepts of dynamics and those
of self-organization. I do not expect this to be a convincing case, because the
worked examples necessary for proof would require an effort such as the 5 years
Zeeman (1977) devoted to documentation of the Thom (1972) case for Elemen-
tary Catastrophe Theory models for morphogenesis.

Experimental Dynamics: A Canonical Example

Although hydrodynamics is a classical subject, its firm connection to dynam-
ics began only recently, with Arnol’d (1966). Ruelle has traced the roots of the
idea back to Ehrenfest’s thesis, a century ago.
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Three hydrodynamical machines have been very important in experimental
dynamics: the Couette-Taylor stirring machine; the Rayleigh~Bénard simmering
machine; and the Chladni-Faraday vibrating machine. Detailed descriptions and
bibliographies may be found in the books cited in the References and in Abraham
(1976b) and in Fenstermacher et al. (1979). The behavior of all three machines
show great similarities, so here I shall consider explicitly only the Couette device,
in which two concentric cylinders are mounted on a common vertical axis.
Through the transparent outer cylinder, we observe a fluid contained between the
two cylinders. The inner cylinder may be rotated by a motor, with the speed
parameter controlled by the experimentalist. If we naively assume that there is
an abstract dynamical system with a finite-dimensional state space that we can
visualize as a plane, then exploration of the machine and direct observation of its
attractors yields a partial map of the bifurcation diagram.

Initially the system has an equilibrium (a point attractor) corresponding to
the rotation of concentric cylindrical lamellae that show a one-dimensional sym-
metry group of vertical translations, and another of cylindrical symmetry.

As the speed parameter is increased (visualized as moving to the right), the
equilibrium ends, and the state leaps “catastrophically” to a new point attractor,
corresponding to spiraling motion of discrete annular rings of fluid, the “Taylor
cells.” Taylor cells have a zero-dimensional, or discrete, symmetry group of ver-
tical translations. This catastrophe is a prototypical symmetry-breaking bifurca-
tion. Further extension of the control parameter (speed of rotation of the inner
boundary cylinder) produces a new excitation in a sequence leading to turbulence.

Several specific sequences leading to turbulence have been suggested, and
there are several proposals for a deterministic scheme for describing turbulence,
based on finite-dimensional, dynamical bifurcation theory. This development,
originating with Lorenz (1963) and Ruelle and Takens (1971), is of great interest
to physics. The link between bifurcation diagrams and the classical partial differ-
ential equations of hydrodynamics (the Navier-Stokes equations) has been elab-
orated in considerable detail, especially in Marsden and McCracken (1976),
Marsden (1977), Ratiu (1977), Smale (1977), Bowen (1977), Abraham and Mars-
den (1978), Ruelle (1980), Pugh and Shub (1980), and Rand (1980).

I shall describe briefly three problems of this treatment of the Couette
machine, not only because of its role as an important example of morphogenesis
itself, but because similar treatment of more general partial differential equations
may be expected in the near future, especially equations of the “reaction-diffu-
sion” type.

The first problem is technically very severe: many kinds of partial differential
equations on a finite-dimensional domain may be viewed easily as dynamical
systems on an infinite-dimensional space. But they turn out to be rough dynam-
ical systems (described later) instead of the smooth sort to which dynamical bifur-
cation theory easily applies. Specialists have taken two approaches to this obsta-
cle: the easy way around consists of reducing the domain to finite dimensions by
some special tricks (thereby losing credibility); the hard way consists of re-proving
the necessary results of dynamical bifurcation theory in the rough context (losing
readability). Both approaches have been pursued successfully (Bernard and Ratiu,
1977).
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The second problem is equally severe: because the experimental equipment
(e.g., a Couette-Taylor machine) is a real machine, it cannot be prepared in an
arbitrary initial state (i.e., arbitrary instantaneous fluid motion). In fact, the fluid
is always at rest between the cylinders (the zero point of the infinite-dimensional
state space) when the experiment begins. Therefore, only a small section of the
global bifurcation diagram may be discovered by experimental exploration. But
the model, the global bifurcation diagram of the Navier-Stokes equations of fluid
dynamics, could be mapped completely by digital simulation, if a large-enough
computer were built. The techniques for this project comprise an entire field of
numerical analysis.

The third problem seems potentially more tractable, although not yet solved.
This is the problem of observation. Indeed, we may distinguish two problems of
observation: ignorance and error. By “ignorance” I mean that we look at an infi-
nite-dimensional state, but can record only a small number of parameters. Even
if we measure without error, the data describe only a point in a finite-dimensional
space. Thus, the observation procedure, at best, defines a projection map from
the infinite-dimensional state space, S, to a record space, R, of finite dimension.
I shall refer to this as the output projection map.

For example, in the recent work with the Couette machine described by Fen-
stermacher et al. (1979), observation is restricted to a single direction of fluid
velocity at a single point in the fluid region, measured by laser-Doppler veloci-
metry. In other words, the dimension of R is one, an example of extreme igno-
rance. This difficulty is inescapable in any application of dynamical bifurcation
theory to partial differential equations. Therefore, I have coined the word macron
for the image of an attractor in S, projected into R (Abraham, 1976a). The ques-
tion arises: can we recognize the attractor, having observed only its projected
macron? We have not learned to recognize attractors yet, so this question is open.

By the problem of error I mean the problem of determining a point exactly,
in a finite dimensional space. Errors arise either in the measurement of the coor-
dinates, or in the storage of the data. This problem usually is handled by tech-
niques of statistical physics or by information theory; Shaw (1981) presents a par-
ticularly interesting discussion of it.

In the future we hope for mathematical classifications of attractors and
macrons that are: 1) experimentally identifiable, in spite of ignorance and error;
2) well-founded in the rough context of partial differential equations of evolution,
viewed as dynamical systems on infinite-dimensional spaces; and 3) tractable in
digital simulation. Substantial progress is being made, and I am assuming a sat-
isfactory resolution of the above three problems in making the following predic-
tion: dynamical bifurcation theory will be useful for self-organization theory.

Complex Dynamical Systems and Self-Organization

The Couette machine discussed above provides a canonical example of the
role of dynamical bifurcation theory in modeling a simple self-organizing system.
But to move to a more complicated example, such as slime mold aggregation
(Chapter 10), would reveal quickly the inadequacy of our models based on a sin-
gle dynamical system with controls. Rather, a continuum of dynamical systems
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with controls might be required, coupled together in a space-dependent way, with
the continuum of controls manipulated by another such system! Therefore, I have
proposed a richer class of models, called complex dynamical systems (Chapter
29). These new models combine dynamical systems that have controls into net-
works, by means of serial and parallel coupling. The full elaboration of the generic
behavior and bifurcations of these complex systems—through theory and exper-
iment—is still ahead. Yet I conjecture that their behavior will provide adequate
metaphors and useful models for the homeorhesis of some self-organizing sys-
tems found in nature. For the present, I shall have to be satisfied with brief indi-
cations for the possible unification into this framework of some of the concepts
described in the literature of self-organization theory.
The main ideas underlying this accommodation are that:

e Mathematical models for morphogenesis involve partial differential equa-
tions of the “reaction—diffusion” type (see the original pioneering papers
of Rashevsky, 1940a,b,c, and Turing, 1952)

e The model equations may be viewed as “rough” dynamical systems on an
infinite-dimensional state space (see Guckenheimer, 1980)

e These dynamical systems have controls, and may be combined into com-
plex systems to model a given self-organizing system

For specific examples, see the articles by Carpenter (1976), Conley and Smoller
(1976), Guckenheimer (1976), and Rinzel (1976); also Part III of Gurel and
Rossler (1979); the master equation (Gardiner ez al., 1979) and the Fokker-Planck
equation (Haken, 1977). The equations of elastodynamics have been treated in
this way by Marsden and Hughes (1978) and Holmes and Marsden (1979). Appli-
cations of Elementary Catastrophe Theory in this area by Thompson and Hunt
(1973), Zeeman (1976), and Poston and Stewart (1978) are relevant.

1 now complete my case for the complex dynamical system scheme, by relat-
ing it to specific models emerging in self-organization theory.

My scheme is an extension of Thom’s, and so his morphogenetic field is auto-
matically accommodated. The proposal of Turing (1952), the dissipative struc-
tures of Prigogine (1978), and the synergetics of Haken (1977) all are based upon
partial differential equations of the reaction-diffusion type; they all fit directly
into this scheme. I suspect that the homeokinetics of Iberall and Soodak (Chapter
27) and the models of Winfree (1980) also fit.

The ideas of irreversibility and fluctuation emphasized by Prigogine are
included in my scheme: irreversibility in the error problem (Shaw, 1981); and
fluctuation in the fluctuating braid bifurcation, either in serial or parallel coupling
(Chapter 29).

The ideas of coherence and order parameter emphasized by Haken (Chapter
21) are also natural in my complex scheme; coherence is an aspect of entrain-
ment, and a special case of order parameter is known in dynamics under the name
slow manifold of an attracting point. In fact, slow manifolds exist for a large class
of attractors—those satisfying Axiom A (see Smale, 1967, 1971, or Irwin, 1980),
and not just for rest points. Complementary fast foliations define a projection of
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the state space onto the slow manifold, so order parameters are included in this
scheme as an output projection map. An outstanding pedagogic example of the
slow manifold and fast foliation concepts is found in the heart and neuron model
of Zeeman (1977, p. 81).

The concept of symmetry-breaking bifurcation fits the complex dynamical
scheme well. The hypercycle idea of Eigen (Schuster and Sigmund, Chapter 5) has
a dynamic interpretation as a limit cycle, and this has been generalized by Zee-
man. But I would suggest a more extensive model for it, as a closed cycle of a
complex dynamical system (Chapter 29, Figure 84).

Microcosmic/macrocosmic complementarity (see Prigogine, 1980, 1981) fits
into my scheme as part of the problem of observation, as the output projection
map of a model translates the microcosmic dynamics into macrocosmic observ-
ables. But here I see the need for the further development of an extensive statistical
and information theory of dynamical systems, along with near-Hamiltonian
dynamics, to place thermodynamical laws on a firmer foundation (see Shaw, 1981;
Smale, 1980; Ruelle, 1980).

The symbol/material complementarity (Pattee, 1981; also Chapter 17) also
may be discussed in the context of complex dynamical systems. An attractor func-
tions as a symbol when it is viewed through an output projection map by a slow
observer. If the dynamic along the attractor is too fast to be recorded by the slow-
reading observer, he then may recognize the attractor only by its averaged attri-
butes, fractal dimension, power spectrum, and so on, but fail to recognize the
trajectory along the attractor as a deterministic system. See Chapter 29, Figure
69, for an example of such a material model for a cyclic symbol sequence with
random replacements in a self-regulating dynamical system.

Tomovic’s idea (Chapter 20) of nonparametric control is accommodated nat-
urally in my scheme. I rest my case here, for the present.

Critique of Dynamical Models

As explained above, dynamicism is encroaching on our scientific cosmology.
Let us suppose that the problems mentioned were solved, the properties of com-
plex dynamical systems worked out, and specific models for self-organizing sys-
tems at hand, satisfactory from the point of view of explanation and prediction.
Even then we would know precious little about the mechanisms of self-organi-
zation, without a parallel development of the qualitative, geometric theory of par-
tial differential equations. But this effort has hardly begun, although classical
bifurcation theory is a beginning (see, e.g., Haken, 1977). I shall refer to this
emerging branch of mathematics as morphodynamics.

Compare my model for the Couette machine (which claims that patterns will
change only in certain ways) with the morphodynamic analysis of Haken (1977,
and Chapter 21) that actually discovers the patterns! We may regard dynamics
(i.e., dynamic bifurcation theory, together with all its extensions described above)
as an intermediary step. The development of this theory has its own importance
in mathematics. Numerous applications in the physical, biological, social, and
information sciences await its maturity. Yet for evolution, self-organization the-
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ory, morphogenesis, and related scientific subjects, it seems to me that dynamics
will play a preparatory role, paving the way for a fuller morphodynamics in the
future.

The benefits of using dynamical concepts at the present stage of development
of self-organization theory fall in two classes: permanent ones—the acquisition
of concepts to be embedded in morphodynamics, guiding its development; and
temporary ones—the practice of new patterns of thought. In the first category, I
would place the attractors, the stable bifurcations, and their global bifurcation
diagrams, as essential features of morphodynamics. These may be regarded as
guidelines, exclusion rules, and topological restrictions on the full complexity of
morphodynamic sequences. The temporary category would include the specific
models in which dynamics is applied to rough systems on infinite-dimensional
state spaces, in order to accommodate partial differential equations. This appli-
cation is valuable, because the basic concepts of our scientific cosmology—noise,
fluctuation, coherence, symmetry, explanation, mathematical models, determin-
ism, causality—are challenged by dynamical models and essentially altered.
Thus, the philosophical climate for the emergence of morphodynamics is created.

Elementary Catastrophe Theory has similarly provided some excellent exam-
ples of scientific explanation, permanent members in the applied mathematics
Hall of Fame. Yet its most important function in the history of mathematics may
turn out to be the practice it provides scientists in geometric and visual represen-
tation of dynamical concepts, paving the way for understanding of dynamics,
bifurcations, and the rest.

In summary, dynamicism is without doubt an important intellectual trend,
challenging the fundamental concepts of mathematics and the sciences. I see its
importance for self-organizing system theory as temporary and preparatory for a
more complete morphodynamics of the future. And yet dynamicism even now
promises a permanent legacy of restrictions, a taxonomy of legal, universal
restraints on morphogenetic processes—a Platonic idealism.

We must be careful not to cast aside dynamics, as Newton cast out wave
theory, for not explaining forms. Whitehead (1925) wrote at the end of Science
and The Modern World:

... a general danger [is} inherent in modern 'science. Its methodological procedure is
exclusive and intolerant, and rightly so. It fixes attention on a definite group of abstrac-
tions, neglects everything else, and elicits every scrap of information and theory which
is relevant to what it has retained. This method is triumphant, provided that the abstrac-
tions are judicious. But, however triumphant, the triumph is within limits. The neglect
of these limits leads to disastrous oversights . . . true rationalism must always transcend
itself by recurrence to the concrete in search of inspiration.

Problems for Dynamics Suggested by Self-Organization

I now shall describe ten open problems for mathematical dynamics that are
especially significant to the program proposed here for self-organization theory.
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1. Taxonomy of Attractors

The observed “states” for a dynamical system are its attractors (Chapter 29).
The need for a complete taxonomy of equivalence classes of generic chaotic
attractors is well appreciated, and several attacks on this problem are under way.
The meanings of “equivalent” and “generic” are still evolving. I think that a
scheme based on the geometric features of experimentally discovered attractors
will triumph eventually. These features include: the distribution of critical points
and other particulars of shape (especially “ears”); the gross reinsertion maps (as
described by Réssler, 1979); the fractal dimension; and the shuffling map of the
Cantor section. Analytic features, such as the power spectra, entropy, and Lya-
punov characteristic exponents determined by these attractors, may be important
(but probably insufficient) for a complete classification.

2. Separatrices and AB Portraits

A dynamical system determines a separatrix in its domain that separates the
domain into distinct open basins, each containing a unique attractor. The separ-
atrix may contain vague attractors (Chapter 29, Figure 20) in vague basins (not
open, yet of positive volume). These attractors and basins are of primary impor-
tance in applied dynamics. The decomposition of the domain, by the separatrix,
into basins, and the location and identity of an attractor in each, comprises the
AB portrait of the dynamical system. The yin-yang problem for AB portraits con-
sists of finding a set of dynamical systems, the good set, which is large (yin)
enough to be “generic” and small (vang) enough to be classifiable into “equiva-
lence” classes of AB portraits. :

As shown by the pioneering program of Smale (1967, 1970; see also Abraham
and Marsden, 1978), an enormous simplification of this problem may be expected
by taking into account topological restrictions on generic separatrices. Still, this
problem is so difficult that it has been solved only for orientable surfaces (Peixoto,
1962). Even on the Mébius band it is still an open problem.

3. Local Bifurcations

In DX(S), the set of all smooth dynamical systems on a given state space S,
the bad set B consists of the dynamical systems not structurally stable. The bad
set is very bad (Chapter 29, Figure 37), and the problem of local bifurcations con-
sists of discovering the full structure of B by the method of constructing local
cross sections, called “generic bifurcations” or “full unfoldings.” To Poincaré or
Hopf, before the discovery of chaotic attractors (and exceptional limit sets), this
problem looked mathematically tractable. Opinion changed after the discovery of
the braid bifurcation by Sotomayor (1974). Now our hopes are based on experi-
mental exploration. We can expect the discovery of most important bifurcations
of equilibria and limit cycles, elucidation of new universal bifurcation sequences,
and a growing insight into the pathways for the onset of chaos (Chapter 29).
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4. Global Bifurcations

Dynamical bifurcation theory, up to the present, has been concerned mainly
with the study of local bifurcations. When the control parameters are extended
over large ranges of values, as they must be in most applications, we get global
bifurcation diagrams (Chapter 29, Figure 56). The outstanding problem here is to
find generic properties and topological restrictions for these diagrams. A historic
first step was taken by Mallet-Paret and Yorke (1982). The invariants they dis-
covered for “snakes” of limit cycles may be extended to families of tori and cha-
otic attractors. Even a partial resolution of this problem may have tremendous
implications for future applications, such as sociodynamics and brain theory.

5. Symmetry-Breaking Bifurcations

The discovery of generic properties of dynamical systems with symmetry,
and the classification of the symmetry-breaking bifurcations, has begun only
recently. For the early results, see Schechter (1976), Golubitsky and Schaeffer
(1978, 1979a,b,c, 1980), Buzano et al. (1982), and Fields (1980).

6. Near-Conservative Systems

We identify a conservative subset C(S) in D(S), the set of all smooth dynam-
ical systems in state space S. This consists of the canonical Hamiltonian equa-
tions of classical mechanics, each determined by an energy function. Many
famous equations of physics can be described as Hamiltonian systems on an infi-
nite-dimensional state space (Abraham and Marsden, 1978): for example, the
Schrodinger equation; Korteweg-de Vries equation; Euler equations of a perfect
fluid; Lagrangian field theory; and Einstein equations of general relativity. (Pre-
cise details are given in texts on mechanics, e.g., Abraham and Marsden, 1978.)
However, many important applications of dynamics address dynamical systems
that are not in the set C(S) of conservative Hamiltonian systems, but only near
it. We call these the near-Hamiltonian systems. For a simple example, see Holmes
(1980). The applications under consideration here, in fact, will involve near-
Hamiltonian systems on an infinite-dimensional state space, S.

Dissipations (that appear at any small perturbation of the dynamic away
from the energy-conserving form) validate the ergodic hypothesis. This postulate
seems to be correct for near-Hamiltonian systems, but wrong for Hamiltonian
systems, as explained by Smale (1980). Peixoto (1962) first publicized the prob-
lems of near-Hamiltonian systems. How can it be that near-Hamiltonian systems
appear (approximately) to conserve energy? In other words, can the ergodic
hypothesis and the law of conservation of energy both be derived from dynamics,
or not? I am not going to hazard a prediction for the resolution of this problem,
but I can imagine that it may be related to another hard one, called geometric
quantization.
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7. Infinite-Dimensional State Spaces

This problem consists of the extension of the preceding ideas to the context
of partial differential equations of evolution, viewed as “rough” dynamical sys-
tems on infinite-dimensional state spaces. Two techniques have been described
above: reduction to finite dimensions (to recover the topological exclusion prin-
ciples of “snakes™); and direct mathematical assault on the properties of the rough
system. It is at this point that we could imagine a renaissance of the art of applied
mathematics.

8. Macroscopic Observation

The identification of a chaotic attractor in a real machine, in a simulation
device, or anywhere else in the phenomenal universe—in the sense of matching
an observation of “noise” to the taxonomy of attractors—is very restricted by the
limitations of observation: ignorance (i.e., projection down to a few dimensions);
and error, as described above. Thus, even if we someday recognize that an extra-
terrestrial radio source has generated a signal and not noise, will we be able to
decode it as a sequence of symbols, i.c., as a. bifurcation sequence of chaotic
attractors? It seems likely that the classification of macrons (lower-dimensional
projections of attractors) by dynamical topology will follow closely the classifi-
cation of the attractors themselves. Some progress has been made (Froehling et
al., 1981; Frederickson et al., 1983; Russell et al., 1980; Takens, 1980).

The problem of errors seems unsolvable, limited as we are by the uncertainty
principle. Thus, the theory behind the preceding problems needs to be recast in a
decidable scheme, as described in Abraham (1979). An important step in this
direction is found in Shaw (1981). What is needed here is a precise theory of obser-
vation: the relationship between the ideal mathematical model—the reversible,
microscopic, dynamical system with its numerous dimensions and its allowable
states, attractors—and the low-dimensional, irreversible, macroscopic world,
with its observed macrons, finite-state memory media, and so on.

9. Parallel Coupling

The coupling of two dynamical systems is a perturbation of the Cartesian
product of the two systems. Elsewhere (Abraham, 1976b) I have introduced a
version of this, called flexible coupling, in which the perturbation depends upon
control parameters. This version is obviously appropriate for many applications,
and also for Thom’s “big picture” concept of unfolding an unstable system into
a stable family. We call the full unfolding of a coupled system by flexible coupling
a parallel coupling, in a generalization of the entrainment of coupled oscillators
(Chapter 29). To understand fully the possible results of such a coupling process,
it seems sufficient to couple the attractors of one to the attractors of the other, in
pairs. The bifurcation portraits obtained by coupling any two attractors may be
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viewed as a sort of multiplication table for attractors. The full determination of
this table is the parallel coupling problem. For example, a point “times” a point
is a point (no bifurcations); a point times a cycle is a cycle; but a cycle times a
cycle is a braid bifurcation, as the unfolding of the coupled oscillators is compli-
cated by entrainment (Chapter 29). This result is the first nontrivial example of
the parallel coupling problem. Circle “times” chaos and chaos “times” chaos are
open problems, perhaps important in forced oscillations, in the behavior of Lan-
gevin’s equation (Haken, 1977), and in future applications in which noise
becomes recognizable as signal. These instances may provide an understanding
of the massive coupling and entrainment (coherence) phenomena of biological
and social interaction.

10. Serial Coupling

Charting the behavior of complex dynamical systems is the newest problem
of this list. Probably the first step will be experimental work, primarily to discover
the basic properties of serially coupled hierarchical systems. The simplest case,
two dynamical systems with controls, with a linkage map from the output pro-
Jection of one to the controls of the other (Chapter 29, Figure 68), involves a
“generic coupling” hypothesis for the linkage map, problems of observation on
both levels, and new questions of entrainment between levels.

There are miles to go before we sleep. . . .
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