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HISTORICAL INTRODUCTION

In 1966, my manuscript [10] was nearing completion. Its Conclusion [1], inspired by
Duhem [14] and Velikovsky [22], was an essay on the stability of the solar system.!
During the writing, a package arrived from Rene Thom. It was the first few chapters
of his own manuseript.® Subtitled "An Outline of a General Theory of Models," it
diverted me to this subject, and my Conclusion expanded accordingly. Despite these
ambitious early efforts, little has passed to clarify the strategies of dynamical model-
ing, save the appearance of an Increasing number of examples of the art.? In this paper,
we will try again to move towards a general theory of dynamieal models.

Since Newton created dynamical models, there have been two catastrophes in the
basic paradigm. From Newton to Poincaré, a simple strategy guided all modeling. This
strategy, which we shall call the classical quantitative scheme, evolved to suit the
needs of the physical sciences. This classical scheme, clearly defined by Dubem [14],
has been the subject of most of the literature on models in the philosophy of science.d
It iz described in detail in Section B1.

The crisis of celestial mechanics at the end of the last century (see [10] for the
whole story) prompted Poincard to create a new paradigm, which we shall call the
modern qualitative scheme, in 1882. This was the subject of the Conelusion [1] and is
also described In Sec. A5 below.

The needs of theoretical blology led Thom to create a new paradigm, which we shall
call the dynamical bifurcation scheme, in 1966. His book [21], although now known pri-
marily as the source of Elementary Catastrophe Theory, contains the more general
General Catastrophe Theory (that is, the dynamical bifurcation scheme) and more gen-
eral schemes as well. He related these schemes to morphogenesis in the abstract. Al-
though there are exciting applications of the dynamical bifurcation scheme throughout
the sciences, convincing models for biological morphogenesis have not yet appeared.®
We review the dynamical bifurcation scheme in Section C3.

The complex bifurcation schemes introduced recently [8] are ramifications of
Thom's simple bifurcation echeme, designed particularly for physiological modeling.
Hopefully, they will be applicable to biological morphogenesis as well.

This paper is a tutorial on these schemes. Their applications in physiology will
be discussed in a later paper. In Part A, we explain exactly what is meant by a scheme.
In Parts B and C, we review the historical schemes. These are extended, in Part D, to
the complex schemes which have been developed for physiological modeling. Our pri-
mary goal is to make these schemes, or dynamical modeling strategies, sufficiently

1. This is not included in the second edition.

2. Now available in English [21].

3. The only mention of these events in the literature of the philosophy of sclence which
we have come acrosa is in Garfinkel ([16], p. 31).

4. Bee Hesse [18] and Garfinkel ([16], p. 170) for example.

5. For a summary, see Rosen [19].
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clear that the reader may follow them in making new models. Secondarily, we hope to
advance toward a general theory of models. Eventually, this would provide a synthesis

of general systems theory, control theory, homeokinetics, dissipative structures, indus-
trial and urban dynamics, and related concepts.

4. DYNAMICAL MODELS, SCHEMES, AND TYPES
Al. What Is a Model 7

The sparse literature of the theory of models is troubled by this question. We wish to
dispose of it at the outset by means of a naive map of the noosphere introduced earlier
in this series [7].

What iz the difference between a train and a model train? Between a solar system
and an orrery? Between a Toyota and a toy auto ? Besides having differing mechanisms,
the two elements in any of these pairs of analogues differ in their degree of susceptibility
to our influence. If we somehow made a mathematical mode! of the entire phenomenal
universe, in which a particular phenomenon was represented by a point, we might imag-
ine a real-valued function defined upon it, which is proportional to this suseceptibility.
This function would have a higher value at "model train' than at "train." We will call
this a reality function. The level sets (contours) of this function would consist of equi-
susceptible phenomena. We will call them levels of reality.

And we further may imagine our model to include the noosphere, or noumenal uni-
verse, with its own reality function. We imagine this as one model, and one reality
funetion, with all noumena higher than any phenomena, and a gap in between. Thus,
there is room in this vision for "train," "model train," and "mathematical model of a
train," in an asconding sequence.

To simplify discussion, we may further imagine that the levels of reality have been
diseretized into a finite set. At the lowest level are the most intractable phenomena,
such as "cosmos" or "solar system." These we call hardware. Up a level we find
"orrery," "physics lab," "stirred chemical reacter,” "meristem culture dish," and so
on. These we call labware. All of these lower levels comprise phenomena. So a bit
higher, we find software, or programs for labware (whether real, analog, or digital).
Higher vet, there are "Schwartzschild universe," "Lorenz attractor," and other mathe-
matical objects, or etherware. And at the top level, we may find "armchair experi-
ment, " "cognitive model," "scientific theory," and other flights of pure fantasy and
science fiction, or knoware. See Figure 1. As we have noumena and phenomena in
one bag here, we call the things in the bag objects, as in "mathematical objects" or
"objects of thought." We are not trying to outrage Kant, but simply to create a practical
framework for the working dynamicist.

Now should we observe objects on two different levels which are analogous, accord-
ing to some pattern matching process among the cognitive skills of our collective nous,
we say the higher one is 2 model of the lower one, the domain. This may occur by
design or by chance. Accidents might occur because of some higher design, or concord-
ance, as described earlier in the series [T]. In any case, we shall use the word concord
for this perceived quality of analogy instead of analogy, metaphor, model, isomorph,
ete. By modeling we shall mean the assumption of concord, especially between a well-
known object and a poorly understood one, for the sake of study. In particular, dynam-
ical modeling will denote the architecture of a mathematical model concordant with
given dynamical phenomena.

The concord of two objects, as far as science knows at present, is observable
solely through the medium of the human brain. The function of modeling (as defined
gbove) is a cognitive one. It may be that we must be able to ebserve a concordance
across several levels of reality in order to understand our surroundings in the phenom-
al universe. This is the essence of theory. In any case, science is the pursuit of con-
cordance across several levels, and mathematical modeling is part of this essence.
Our goal here is to provide explicit schemes, or strategies, for dynamical modeling.




Categories of Dynamical Models 3

NOUMENA
Knoware, K theory -——-\‘
type
Netherware, N - teheme -
math model
Soltware, 5 — simulation
program :

oo =

= {

Labware, L %

s \@
PHENOMENA

Fig. 1

So far, we have tried to give our naive answer to the guestion: what is a model ? It
is hard to be more precise without resorting to the concept of a scheme. We will outline
it in the next Section.

AZ. What Is a Scheme ?

To Duhem,® a physical theory consisted of an experimental domain, D, together with a
mathematical model, M, connected by a conventional interpretation, A. This connection
is to be regarded as a contract, agreement, or accord, between discussers.” This
accord identifies terms of D (especially observable physical parameters like voltage)
with functions or variables of M. This picture of a theory is symbelized in Fig. 2.

In this context, Duhem identified two useful properties of a theory: adequacy, and
stability. Adequaey refers to the quality of concordance between the predictions of M
and the observations of D, as identified by A. Stability means the Insensitivity of the
predictions to changes in the model. In 1966, we tried to make precise these ideas of
Duhem, and particularly these two useful properties, in a mathematical context appro-
priate to the physical sciences.® In this formalization, a problem develops.

First of all, as we have already described at length what we mean by a model, we
ghall use the word scheme for a mathematical object intended for modeling an unspeci-
fied phenomenon, or a whole family of virtual phenomena, of which an actual phenome-
non may correspond to a single member. Schemes will oceur in different types, which

6. This idea must go back centuries, but we find a particularly clear discussion in
Duhem [14]. As far as we know, this is the first use of a scheme in this context.
This is summarized in the Conclusion [1] in mathematical terms, with explicit ex-
amples from celestial mechanics.

7. It is tempting to describe this in the language of categories and functors. In this
aceount, we will be satisfied with a naive description.

8. Seo the Conclusion [1] for precise statements, and the illustrative models for the
golar system.
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we will not try to enumerate at present.? For example, Duhem's picture of a scientific
theory, shown in Fig. 2(a), is a scheme of the singleton (8) type. It consists of two
objects (a noumenon medeling a phenomenon) and a conventional interpretation.

But stability is not a property of a model, but of 2 scheme. It has nothing to do
with the experimental domain. Further, it is not a property of an isolated scheme of
singleton type, but only of & scheme belonging to a family of schemes. We wish to
regard such a family as another type of scheme. We propose to call such a family a
scheme of the family-of-singleton (F/S) type. "

Thus, Duhem's idea of a scientific theory belongs in the context of a particular
scheme-type, which we shall now describe in more detail.

In a scheme of the family-of-singleton (F/S8) type, there must be (among other
things) two topological spaces. One of these, J, is a geometric model of the observed
states of the experimental domain or device, . The other, P, corresponds to the predie-
tions of the models. For each point j of J there is a model M{j), and a prediction of
M{§), which is a point p{j) of P. Thus the predictions of the family of models {M(j}}
comprise a function p: § — P. A model M{j) of this family is stable in the sense of
Duhem if p is continuous at . This scheme is shown in Fig. 2. Note that the accord, A,
is represented here in two parts: input,!' In(A), and output or cbaervation, Out{A). The
adeguacy in the sense of Duhem of 2 model in this scheme becomes a mathematical
question. For the observations and the predictions belong to the same topological
space. 12

This scheme-type of Duhem is sufficient for celestial mechanies, Thom's theory of
abstract morphogenesis, and many important applications. But it is too limited for

9. The types we know so0 far may all be described as categories.

10. Readers familiar with eategory theory will recognize here a functor: any type may
be extended into a larger type, through the functor family-of, which is a universal
construction.

11. This corresponds to the preparation procedure of Thom ([21], p. 15).

12. The two funetions p and Oute De=In end up in the space P (D denotes the experimental
process). Thus adequacy is defined by a neighborhood of the diagonal (uniformity), in
the product space P x P.
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others (especially self-organization'®). Hence we proposed the complex scheme-types
[8], which are developed further in Section D of this paper.

A3. The Essentials of a Dynamical Scheme

A dynamical model is a very special type of mathematical object. It may be in concord
with dynamical phenomena in a physical, biological, or social realm. For the sake of
definiteness, we will consider the target (domain) of the model to be phenomena on the
labware level of reality. Thus, we will speak of the lab system, or the experimental
domain, and use metaphors such as initial preparation, control parameters, observa-
tion of the deviee, etc. This should not be construed as the entlre context of this theory,
however, 5o when we say device, we may mean equally the social system, biclogical
organism, or whatever is the target of the moedeling, even if it belongs to the lowest
{least susceptible) of the hardware levels of reality.

The device and its mathematical model are to be discussed in the context of a given
theng:: vocabulary, cognitive strategy, rules of inference, and so on. This idea of a
theory is more general than Duhem's, and is conventional nowadays. What Duhem called
a scientific theory may be closer to what we call here a scheme.

Among all schemes, there is a class of particular recipes which are most suitable
for modeling dynamical phenomena on the lab level (or any other more-or-less suscep-
tible level) or reality, which we call dynamical schemes. These might occur in any
scheme-type. We now enumerate the essential ingredients of a dynamical scheme.

In a dynamical scheme, we must always have four geometric models: I, J, O, P,
for the virtual states of the lab system or device. These will usually be topological
gspaces or differentiable manifolds of finite or infinite dimension. Beyond these, there
must be four functions: p, g, r, s, relating the models in the commutative diagram
shown in Fig. 3, in the box labeled "noumena." Finally, there must be the device, D,
or lab system, shown in the box labeled "phenomens' in Fig. 3, and two interfaces:
InfA), Out(A), across the noumenal/phenomenal gap.

There may be other ingredients, as we shall see in the examples in Part B. In this
section, we discuss these easentials, one at a time.

13. For a thorough discussion of the problems, see [9].
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The space J is a geometric model for the virtual states of the system, in mathemat-
ical idealization. This means, primarily, as a continuum. In practice, the idealized
states are subdivided in classes, such as S, phase space, a manifold of internal parame-
ters (which evelve during a process according to the dynamies of the scheme), and C,
contrel space, a space of control parameters which stay constant during the processes of
the device. In this case, the topological space J is the Cartesian product of the differen-
tiable manifold 5 and the topological space C.

The space P is a geometric model for the predictions of the scheme, and the function
p from J to P is the prediction algorithm. In a dynamical scheme, this algorithm will
typically involve the integration of a vectorfield.

These complete the essentials on the etherware level. We will see subsequently that
the components of a scheme on this level comprise a subscheme called the N-scheme.

In 1966, this satisfied us as a precise description of the family of models. But in
the meanwhile, the vagueness of the conventional interpretation has emerged as a prac-
tical problem in the workshops of applied dynamics. So we now add to this picture a
paralle]l scheme on the software level, called the S-gcheme.

Thus we have the space I of practical inputs to the deviee. This may be, for example,
a finite set. The function d from J to I is the discretization algorithm, a decision proce-
dure for sorting idealized, continuous, virtual states into bins. These bins, the elaments
of the space [, correspond more directly to actual states of the device, which can be
prepared by the experimentalist as initial states for the dynamical process of the device.

The function i is the (partial) inverse of d. It is an Injection algorithm, placing the
bin labels within the cellular structure of J determined by d. While the elements of I are
still noumenal (that {s, belonging to mathematical reality, or to the world of thought)
they are closer to the reality of the lab system than are the points of J.

Likewlse we have the space O of practical outputa from the device, defined with due
respect to the limitations of the cbeervational system. The function r is the reduction
algorithm relating idealized predictions and virtual observations.

The function q from I to O is simply the compoaite of {, p, and r. It is the numerical
version of the prediction function. The function n from I to O is an (optional) numerical
procedure, emulating the mathematical model, and executable by a machine (or a room
full of people). In any case, q and n should be very similar.

Weo note here that the parallel subschemes (N and §) comprise a simple hierarchical
gcheme, and further levels could be added when necessary. For example, Thom's idea
of a reduction from a metabolic medel to a static one ([21], p. 52) could be expressed in
this way.

The function 8 from I to O is not defined intrinsically to the mathematical scheme,
but simply represents on the software level the result of three other processes: In(A), D,
and Out{A). The first of these, In{A), is the actual input to the device of the initial state
spocified by a point of I. This process, which carries information across the gap, must
be accomplished (barring psychic phenomena) by a person. Thus we shall call it a per-
sonal process. The second, D, Is the dynamieal process of the device (organism, ete.),
in lab reality. The third, Out{A), is the transit across the gap of the actual output of the
process D, observed and interpreted as a point of O, by another person of the experi-
mental team. The two personal processes, In(A) and Out(A), comprise the conventional
interpretation in this scheme. The composition of the three processes defines the math-
ematical function s, which we call the experimental system, or sometimes, the experi-
mental team. Its precise specification requires the accord of the experimentalists, and
their perfect performance according to the agreement. Thus, it may be a little optimis-
tic to describe the experimental system as a mathematical function. So while we infor-
mally think of these as mathematical functions, we show them on Fig. 4 as half-arrows,
to distinguish them from functions.

Finally, we may remark the similarity of this picture, as shown in Fig. 3, with the
achemes of Duhem, as shown in Fig. 2.

We have emphasized the bilevel structure of the mathematical scheme, etherware
and software, out of a practical necessity: an object is not a model, without a functional
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prediction algorithm. At the present state of the art, this means the simulation of the
etherware on an analog, digital, or hybrid computing machine. ™ For if the mathematical
prediction, p, is not constructively defined, or effectively determinable, then the func-
tional prediction algorithm will be the numerical procedure, n, which emulates it. Thus,
the prediction algorithm on the software level, n, may involve a process in lab reality,
and two personal transits across the gap, like the experimental system, s. And there-
fore n, like 8, may be somewhat fuzzier than a mathematical function. So far, the
theory (ambient cognitive scheme on the knoware level) has not taken this too seriously,
although we have made some proposals along this line [12].

Ad. A Simple Statle Scheme

Besides dynamieal schemes, there are many other strategies for modeling phenom-
enal aystems. Thom [21] has described some very elaborate ones, called static models,
based on singularities of mappings. Here we describe the simplest of these, which will
be useful in constructing notworks.

Suppose several systems, having total state spaces,

Iy dg, -eey I
jolntly influence another system, through its control space, C. It may miraculously
happen that this control space is segmented as a Cartesian product,

C= CIXCEX"‘ K'Ck
with one factor space for each of the controlling systems. Then the joint influence may
be expressed by a set of functions,

f: 4, — €y, for Jg = Cgy -evy f3 ) = Cpp
These functions may be combined in a single function,
14. Az recently as 1945, this functional prediction was carried out "by hand" by the ex-

perimental team, running around on a giant piece of paper in their socks. Thus, although
personal processes were involved, no transits across the gap were necessary.
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But more generally, the inputs may be combined by a function
E: JyXJgx - xd — C

without any segmentation of C as a Cartesian product. This is what we call a static
scheme. The inputs are instantaneously translated into an output by a (nonlinear) fune-
tion of several variables. No dynamical evolution is required within the algorithm of
the scheme.

A static scheme may also depend on control parameters, which change the algorithm
of the scheme (that is, the function). This is simply a function of more variables,

Brd ¥ HIg®K —-C

This is a static scheme of family-of-zingleton type, which will find application in
Part D.

B. EXEMPLARY SCHEMES, SINGLETON TYPE
Bl. The Classical Quantitative Scheme

This is historically the first dynamical scheme, created by Newton for the apple. It
belongs to the singleton type. Its essential components are the following.

First, we have a manifold representing the virtual statea of the device, 5. The basic
datum of the acheme iz a smooth vectorfield, v, on 8. To simplify the description, we
will assume it is complete, so every integral curve may be prolonged indefinitely intothe
past and the future. ' Then J = § ¥ R, and the prediction space, P, is just 8. The predic-
tion map, p: 8 X R — 5, is defined by the motion of an initial state along the trajectory of
the vectorfield for the prescribed time.!® Thus, p(s,t) = ¢(t), where ¢ is the unique inte-
gral curve of v with ¢(0) = 5. This function is continuous everywhere.

Thizs completes the components on the etherware level, E. We may regard this as
a subscheme, the N-scheme, and record its data as the object (J, v, P, p: J— P).Y

The balance of the scheme, on the software level, 8, involves the integration of the
vectorfield by numerical methods, whether by power series or polygonal approximation,
by hand or by machine. Thus, as described at the end of SBection A3, I is a finite set,
corresponding to cells of a partition of J. The discretization map, d: J — I, assigns to
a virtual state the label of its cell. The injection map, i: I — J, is a right-inverse of d,
defined by the specification of a preferred point, or nucleus, in each cell. Likewise,
the space O is a finite set associated to a partition of P, and the reduction map,
ri P— 0, is a diseretization like d. As used in modern times, this classical scheme

15. Otherwise we would take J to be the domain of the complete solution of v ([11],
. G8).

16. iltemati!mly. we could take, for the prediction space, P, a function space of curves
in §, fibered over J by the map b: P — J which evaluates a curve at zero. Thus, the
fiber P(j) is a function space of curves beginning at j. If H is the open half-plane of
points {x,¥) such that x < y. then P is also fibered over H x J by the map a: P —

H % J which assigns to a curve the endpoints of its domain, and its beginning point.
We need not specify which funetion space, as we describe a scheme, not a model,
but there are standard choices. Finally, the prediction function, p: J — P is de-
fined by the maximal integral curves of the vectorfield v. This function will be con-
tinuous except at exceptional points.

17. These describe the chjects of a category, for which the morphisms may be pre-
seribed variously.
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will have the optional numerical algorithm, n: I — O, emulating the prediction function,
p: J — P, and approximating its parallel numerical version, g=repeit I — Q.

The data of the full scheme described here comprise the object (S, V, J=8x R,
P=8, pd=P, 1, did=1 it1—-J, 0, r: P— 0, n: I — 0). The first five compo-
nents comprise the E-gcheme. The components (I, O, n: I — 0) comprise the optional
S-scheme, a subscheme which could serve as a model without any E-scheme, as is
frequently done in the computer simulation field.

B2. The Modern Qualitative Scheme

This is the revolutionary paradigm introduced by Poincard in 1882. As in the singleton
elassical scheme, (J=8SxR, v, P=5, p: J — P}, the basic datum is a single vector-
field, v, on the virtual state space, 5. This is called the dynamic of the acheme. We
drop the time factor R in J, as the prediction will be not for a particular time in the
future, but forever. Thus, the predietion is not a point of 5, but a closed subset, the
omega-limit set.'® We Imagine the phase portrait of v, behind the scenes, as a guide
to the prediction algorithm. This contains an oriented, nonparameterized curve
connecting each point s of 5 to its omega-limit set, p(s). We choose for P an appropriate
space of subsets of 5. This completes the E-scheme, (J =8, v, P, p: 5 — P). Note
that p is constant on the Insets of the various limit sets of the dynamie, and discontinu-
ous between them. The extension of this subscheme to the S-level is routine and we
omit the description of the discretization processes. The numerical procedure, n, is
particularly problematic; see [12].

B3. The Attractor/Basin Scheme, Singleton Type

This is a slightly simplified variant of the Poincaré scheme of the preceding section,
intreduced recently to represent the minimum scheme in some sense [12]. Having fixed
the basic datum, v in V(5), let A be the union of the attractors (suitably defined by one
of the various definitions in vogue), B be the union of their basins, and X be the comple-
ment of B In 5. We call A the locus of attraction, and X the locus of separation of v.
The idea of this scheme is to ignore points in X, and then to proceed as in the preceding
scheme. Thus we let J =B, Pand p: J — P as before. Behind the acenes, we envision
the attractor/basin portrait of v, instead of the phase portrait. This is particularly
reasonable if X is rare, that is, of probability measure zero. For then, after discreti-
zation, S cannot be distinguished from B, as X is experimentally invisible.

C. EXEMPLARY SCHEMES, FAMILY-OF-SINGLETON TYPE
C1l. The Modern Quantitative Scheme

Here we have a simple example of the functor family-of. We begin with a classieal
singleton scheme as in Section Bl, W =8x R, v V(8), P=5, p: J — P}, and a new
topological space or manifold, C. This is to model the control (atatic) states of the tar-
get device or system. This is the classical system of first order differential equations,
with coefficients depending on parameters.

18. Actually, this is the coarse predietion. In many applications, one would want a fine
prediction. This would be the omega-limit set (coarse prediction) together with
some information about the dynamic on it. In the case of a limit point, there iz
none. For a limit cycle, one might want to predict some qualitative Information,
such as the period and amplitude. And for a chaotic limit set, one could ask for
topological invariants (equivalence class of the limit dynamic, entropy, fractal
dimension) and perhaps some qualitative information, such as the characteristic
exponents, amplitude, etc. But we will not formalize this variation here.

19. For example, the set of all subsets of 5, with the Hausdorff pseudometric topology

induced by a metric on &, see ([11], p. 515).
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Let V(S) denote the space of smooth vectorfields on 3. The basic datum, replacing
the vectorfield v of V(5) in the singleton scheme, is a function, F: C — V{(5). Like the
metabolic field of Thom ([21], pp. 40, 46, 52; [23], pp. 293, 616, 633), this asaigns a
dynamical system (vectorfield) on 8 to each point of C. We will prefer to call this the
dynamical field, or just the dynamic, of the acheme.

The prediction space is again S, and the prediction p(e,s,t) is the position at time t
along the trajectory of F(c) beginning at s. The complete E-scheme in this case is
(J=Cx3xR, Ft+C— V5, P=5, pt J— P). Thi= is completed to the full scheme
exactly as before, except that C must also be discretized. This is a scheme of family-
of-gingleton type because for each point ¢ of C, we have a singleton classical scheme,
(xR, v=Fc), P=85, pi Sx R — P). Each of these will be stable in the sense of
Duhem, as the function F {and thus also p) is continuous evarywhere.

C2. The Structural Stability Scheme

This ides, introduced by Andronov and co-workers in 1937, is a maximal family con-
struction. Let S be the dynamical state space, or phase space, and V(5) a space of
smooth vectorfields on S. Once again, the basie datum of the scheme is a chosen vector-
field, v, of V{S). But as one is never sure to choose the right one, we choose an open
neighborhood, U, of v in V(8). Further, it is traditional to regard the phase portrait as
the prediction, even though this is much richer in information than any experimental
process. Thus we take J = U, P the space of phase portraits, and p: U — P assigns to
pach vectorfield its phase portrait. But what is P exactly?

Although we think of the points of P as phase portraits (a system of oriented,
nonparameterized paths) in 5, it is easiest to define P as the underlying set of V(38),
with a new topology. This topology makes any two vectorfields close, which have close
phase portraits in the following sense: there is a homeomorphism of 8 carrying one to
the other, which is close to the identity (in an appropriate topology on the group of
homeomorphisms of 5). %

Thus the components of P are equivalence classes of phase portraits, and the inte-
rior of these components are the structurally stable vectorfields. The function p is con-
tinuous on these interiors. The scheme may be considered a reasonable one if p is con-
tinuous on J =T, so this space should be in the interior of one of the equivalence classes.
Such an E-scheme, (J, P, p: J — P), 18 a structural stability scheme. This is a scheme
of the family-of-singleton type, in that for each point of uof J = U, we have a singleton
qualitative scheme (as in Section B2), (Sx R, u, 5, p{u): X R - 8). And each of these
iz stable in the sense of Duhem, as p is continuous by construetion: J = U is contained in
one component of P. If J is not restricted to one interior, it isa bifurcation scheme, to
which we now turn.

C3. The Dynamical Bifurcation Scheme

This is essentially the scheme proposed by Thom in 1966, under the name metabolic
model ([21], pp. 40, 46). We prefer to call this a dynamical model . In any case, this
is in contrast to his static models, little used outside of catastrophe theory, but poten-
tially very useful in a more general setting.

In a dynamical bifurcation scheme, we have, as in the family-type quantitative
scheme (Section C1), two spaces of virtual state variables: the control space C of con-
trol (static) parameters, and the phase space S, a manifold of internal (dynamic) vari-
ables. The virtual state space, then, is J = C % 8, Originally, Thom chose the control
space, C, belonging to space-time ([21], pp. 15, 40). Later he generalized this to an
open set of Euclidean space ((21], p. 52). At some point, this was further generalized
to a finite-dimensional manifold. The first explicit description of this case we have

20. The uniform topology induced by a metric on 8 may be a good choice here. Thus for
a positive real, T, the homeomorphisms within uniformity r of the identity define an
r-disk in the phase portrait topology on V(3).
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found is Zeeman {[23], p. 289). And finally, infinite-dimensicnal manifolds have been
considered as virtual state spaces, for both static and dynamic states ([4], p. 142).

Mext, we have for basic datum, the dynamical fleld (metabolic field, in the language
of Thom), F: C — V(5), which replaces the inclusion U — V{(5) of the open set U, in the
preceding scheme. (Thus, the scheme of Andronov is a special case of the scheme of
Thom, if we allow infinite-dimensional spaces for C.)

Finally, for the prediction, we could take the phase-portrait as in the preceding
acheme (C2), or the omega-limit set, as in the singleton qualitative scheme (B2). The
later s more practical, if the scheme iz to be useful in the sense of Zeeman, that is,
constructively predictive ((23], p. 293). Thus, let P be the appropriate space of closed
subsets of 5, as before (BZ). The complete E-scheme is (J=Cx 8, F: C —= V{5, P,
pt C® 8 — P). This scheme iz of the family-of-singleton type, in that for each virtual
control setting, ¢ € C, we have a singleton qualitative scheme (S, F(c), P, p: 8 — P).
One of these will be stable in the sense of Duhem if ¢ is a regular point of the field:
F(c) is structurally stable. Otherwise, ¢ is a bifurcation point of F.

A useful conceptual model in this scheme is the geometric picture composed of all
the phase portraits (or simpler yet, the attractor-basin portraits) stacked side-by-gide
over a picture of C. This is ealled the bifurcation diagram. The literature of dynamics
(e.g., [11]) and catastrophe theory (e.g., [23]) abound in these diagrams, which con-
tain all the predictions of the bifurcation scheme.

C4. The Stable Family Scheme

Just aa the first family-type scheme was introduced to deal with the question of stability
of a singleton model, the first family-of-families scheme was introduced, by Sotomayor
[20], to deal with the question of stability of a family-type scheme, the dynamical bifur-
cation scheme.

Ignoring the technical details (which in any case are not yet firmly fixed) we have an
additional control space, B, a function space of dynamieal fields, M = M{C, V(5}), and
the basie datum is a map, G: B — M. Alternatively, this may be considered as a dynam-
ical field, F: B % C — V(S). Thus the scheme is the object (J=Bx Cx 5§, F:BxC —
Vis), P, pt BXCx 8 — P). This is exactly the same as a dynamical bifurcation scheme,
except for the interpretation: a derived family-of-singleton scheme, (C x 3, Gbj:c —
Vi(S), P, pt Cx 8 — P) is a stable family if G i{s continuous at b. The tricky part, the
definition of the topolegy of M in generalization of the phase-portrait topology of V(5)
described previously (Section C2), is omitted. The general idea {s due to Thom ([21],
pp. 44, 320), and the details to Sotomayor [20].

D. EXEMPLARY SCHEMES, COMPLEX TYPE
D1. The Serial Coupling Scheme

Suppose we have two lab devices, and a satisfactory model for each. Then we couple
them together in such a way that the first (master) is almost totally unaffected by the
work it is doing in changing the control (static) state variables of the second (slave, or
driven) device or system.® We call this a serial coupling. Now we want to construct a
model for the system composed of the coupled devices. We may simply model the com-
bined system, using a dynamical bifurcation scheme. But this ignores the important
information concerning the coupling. Thus, we want a scheme with more structure for
modeling the combined system, which allows the serial coupling to be modeled as well.
Such is a serial coupling scheme, the first example of the complex scheme-type. In

21. The outstanding example is the forced osecillator, discussed in the next section.
More extensive discussions may be found in the literature of nonlinear dynamics [13].



12 Abraham

this Section, we describe the serial coupling of two dynamiecal bifurcation schemes.
Figure 4 shows both schemes for the combined device: with and without explicit coupling.

Now let MD = [C % 8, F: C— V(S), P, pi C ¥ 8 — P| be the E-scheme of the master
device, and DD=[DXEXT, G:DXE = V(T), @, q: DX E x T — @] be the E-scheme
of the driven device.

Here we have deliberately expressed the control space of the driven system as a
Cartesian product of two spaces, D and E. This is to allow the enslavement of some
controls of the driven system by the master device (those of D) while others (those of E)
remain free. The coupling 15 now expressed by a function d: C X 8§ — D from the total,
virtual state space of the driving system to the slave variablez of the driven system. **
The effect of this coupling is to remove the control space, D, from the scheme. Thus
our serial coupling scheme is the object,

Cx8 F, P, pCx8~P) (DXExT, G, Q,  DXEXT = §);
@ CxS-D, i CXE—-V({ExT), r: (CxE) % (SxT)— R]
or equally,
[MD; DD; d: CxS—D, Hi C*E— V(S®T), r: (CXE) % (8xT)— H]

where Hic,e)(s.t) = (Flc){s): G{d{c, 5), €))(t), and r is the prediction algorithm of the
coupled scheme: for given values of the free controls (C x E) and preparable initial
states (S x T) it assigns the omega-limit set of the combined dynamic. Thus R is a
space of closed subsets of 8 x T. B

Eszentially, the serially coupled scheme is completely specified by the data [MD;
DD; RC], where RC denotes the rigid coupling, d, because H and r are derivable from
these.

On the other hand If the combined system is regarded as a simple device, the dynam-
jeal bifurcation scheme for it would be the object:

[CRExSXT, HiCXE—= V(EXT), @ i CXEXSxT—R|

We regard C % E as the control space in this case, and 8 ¥ T as the dynamical (phase)
space. Thus the prediction, r: CXE % 8x T — R, is the same as in the coupled scheme
above. Both are shown in Fig. 4.

This scheme forgets the full coupled structure of the eombined system. It is ob-
tained from the serial coupling scheme by a forgetful functor.®

So far, we have described the serial coupling scheme previously proposed for com-
plex systems [8]. Finally, we must add to this scheme a new complication: the coupling
funetion, d: C ® § — D, may be changed by a parameter in an additional control space,
B, belonging to the coupling itself. This is something like the static model of Thom
{[21], p. 40), and is analogous to flexible coupling in the context of the conventional
{parallel) eoupling of dynamical systems [5]. We will call this one an adjustable cou-
pling, as opposed to the rigid coupling of the preceding paragraph. Thus we replace the
rigid coupling function, RC = d: C x 5 — D, in the scheme above, by an adjustable cou-
pling funetion, d: Bx C % § — D. This produces the object:

[(CxS, F, P, p:Cx8~P); DXEXT, G, Q, : DXEXT-—Q);
B, i BxCxS—=D HiBXCxE—-V(SxT), n(BXCxE) x(8xT)— R|

or equally,
[MD;DD; B, d: BXCXS8 -~ DiHit BXCXE—- VISXT), t (BXCXE) % (§xT)—R]

22. We have adopted this terminology from Haken [17].

23. Warning: this is larger than P x Q.

24. See [15] for an introduction to local category theory, which is the background for
our treatment of schemes.
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where Hib,c,e)(s,t) = (Fic)(s); G(d(b,c,s), e){t)) and r((b,c,e}, (5,t)) is the omega-limit
get of (s,t) in the dynamical system H(b,c.e). As in the rigid case, these are derivable
from the essential data [MD; DD; AC), where AC=[B, di: BXxC x5 — D], the adjust-
able coupling.

Some symbols for these schemes are introduced in Figure 5 (see also [8]).

D2Z. The Canonical Example: Forced Oscillation

Here at last is an actual model. The lab devices are a robust oscillator (master device,
MD) and a weighted spring or pendulum with damping (driven device, DD}. These are
illustrated in the figure on p. 133 of [13]. Nonlinear dynamics toxts explain all one
would want to know about these devices, and the result of coupling them [13]. Our for-
mulation is a slight variation on the classical theme.

The model for the master device (MD) is:

control space: C = R, the real numbers, representing the angular velocity,

phase space: 8 = T!, a eirele, representing the phases of the oscillator,

dynamical fleld: F: C — V{C), where F(c) Iz the vectorfield (expressed as a first
order ordinary differential equation for the sake of familinrity)

The model for the damped osecillator (DD} we chooge the spring, for the sake of definite-
ness) is:

=C

control space: D = R, the real numbers, representing the acceleration of the sup-
port point of the spring,

phase space: T = R?, the Euclidean plane, representing the extension and veloeity
of the spring, (x.¥)

}l (b)

o -——8 ()

58 no -
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U
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dynamical field: G: D — V(T), where G(d} is the vectorfield (expressed as a system
of two first order, ordinary differential cquations, more or less as in the books
[13], p. 212)

x' =y
¥' = ~(1/m)f(x) + ky + d

where f i5 the restoring force function of the spring, k the coefficient of friction or
damping, and d the assumed uniform acceleration of the support point.

The adjustable coupling (AC) is given by:

control space: B = R, the real numbers, for amplitude,
coupling funetion: d: B x C % 8 — D, defined by

d(b,c,s8) = b sin (8)

which does not depend directly on ¢, the angular velocity of the oscillator. But integrat-
ing the oscillator equation at the (nitial condition, s = 0, we find 5 = et (phase = angular
velocity times time) so ¢ controls the frequency of the forcing term,

d(b,c,s8) = b sin (ct)

so the flexibly coupled device (CD)—found by replacing d in (DD) by the function (AC)—
is:

control space: B % C = R ¥ R, representing amplitude and angular velocity of the
driving oscillator (MD),

phase space: 8% T = T' x R?, for phase of the driver, extension of the spring, and
velocity of the weight,

dynamical field: H: B x C — V{8 ¥ T), expressed as a system of equations,

g' =g
x' =y
y' = =(I/m)f{x) + ky + b sin (s)

which are the standard equations of this classical model ([13], p. 213). Other examples
of serial coupling schemes, intermittency for example, have been proposed [8).

D3. Serial Network Schemes

It is now our goal to extend the considerations of the preceding section to complex sys-
tems. We might consider a fixed quiver (directed graph), with a dynamical bifurcation
scheme at each vertex and a serial coupling on each directed edge. When several edges
depart {spread) from one vertex, we have a plausible situation: the instantanecus state
of the master device is coupled simultancously to different driven systems, through
different serial couplings, rigid or adjustable. But when several directed edges arrive
{fan) to a single vertex, how can we represent the cooperation of several masters in
driving a single scheme ? We must have a multicoupling scheme to represent this coop-
eration. This s an example of a static scheme (see Sec. Ad).

For example, if two masters, MD1 = (C x5, F, P, pand MDZ2=(Dx T, G, Q, q),
ghare control of a single slave, DD = (E x U, H, R, r), we must have a serial multi-
o function, e: Cx8x Dx T — E, to represent the determination of the driven
control, e, by the instantaneous statea (c,s) of MD1 and (d, t) of MD2, through the func-
tion, e(c,s,d,t). Or in the case of an adjustable multicoupling, we must have a scheme,
AC=(B, e: BXxCx8xDxT-— E), where B is an additional control space for the
multicoupling.

Then for a fan of directed edges to arrive at a common vertex (dynamical bifurca-
tion seheme), they must converge first as inputs to a commeoen multicoupler, from which
a single output directs the target dynamical scheme. Thus, as a diagram of the network,
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we must consider an odd mathematical object: a directed graph with two kinds of ver-
tices—say green (for dynamical bifurcation schemes) and red (for static multicoupler
schemes).

This diagram will be easiest to understand if we associate all directed edges arriv-
ing at a vertex with that vertex. Although not essential, it simplifies our discussion.
Thus, edges arriving at a red vertex are red. This red fan represents a static multi-
eoupling scheme, as shown in Fig. 5(a). The red edges represent the arguments of the
multicoupling function, whether to be used as inputs from dynamical systems, or adjust-
able coupling controls. Similarly, edges arriving at a green vertex are green. A green
fan represents a dynamical bifurcation scheme, as shown in Fig. 5(b). The green edges
represent factors of the segmented control space (see Section A4). As segmentation of
a control space is a special structure adapted to a particular multicoupling situation,
it iz more desirable to represent all multicouplings by & serial multicoupling function
(red fan). Thus, we prefer to consider green fans having only one or two input segments.
One of these is for the controlling input, arriving from the output of & multicoupling
function (red vertex). The other (optional) represents free controls.

The fans are to be connected in a schematic diagram for a network. The rules are:

1. Red vertices may be joined only to the input ends of green edges.
2. CGreen vertices may be joined only to the input ends of red edges.

Some examples are shown in Fig. 5, both in pietographic and in schematic diagrams.
Let us choose g specific schematic diagram, such as the one shown in Fig. 5(e).

Corresponding to each such schematic, there is a category of complox schemes.
Each of these schemes is determined by essential data: a dynamical bifurcation scheme
for each dynamic vertex (green fan), and an adjustable static multicoupling scheme for
each static vertox (red fan). Thus, each schematic diagram determines a category of
schemes. And all these together comprise the complex type of schemes.

Surely this seems too arduous, yet we shall see In later papers that complex sys-
tems in nature, especially in ecology and physiology, present such schematic diagrams
in & very natural way.

D4. Serial Cycles and Parallel Coupling

While the coupling concept in the context of dynamical systems theory is classical, it is
commonly applied only to the parallel coupling of two systems. To further clarify the
serial coupling concept we have emphasized here and elsewhere [8, 9] we contrast the
two in this section.

Recall that for two vecterfields, F in V(M) and G in V(N), their direct product is a
vectorfield (F,G) in V(M x N}, defined by

(F,G)m,n) = (Fim), G(n))

Let P be any very small vectorfield on M % N. Then the sum (F,G) + P is a weak paral-
lel coupling of F and G. If further P depends on a parameter, P: C — V(M x N), the
dynamiecal field (F,G) + P: C — V(M x N) is a flexible coupling of F and G [5]. Typically,
C is a neighborhood of the origin in Euclidean space, and P{0) = 0. A strong parallel
ecoupling refers to an arbitrary (possibly enormous) perturbation of the direct product,
(F,G). In other words, this could mean any vectorfield in V(M x N).

Now let us express both of these coupling concopts in the specific case of the forced
oscillation model of Sec. D2. In the notation of first order systems of ordinary differ-
ential equations, we have:

The uncoupled system:
a'=w
b )

~(1/m)f{x) + ky + d

:'I"
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With serial coupling, d{a,b) = b sin (a):

a =w
x' =y
y' = ~(1/m}f(x) + ky + b sin {a}

With parallel coupling, P = (p,q,1):
a' = w+ pla,b,x,y)
x' =y +gla,b,x,¥
= —(1/m)f(x) + ky + d + r{a,b,x,¥)

S0 we see that adjustable serlal coupling is a special case of flexible parallel coupling.
But serial coupling provides a natural way to specify the very restricted class of per-
turbations which occur in the serial coupling situation so prevalent in the phenomenal

universe, while weak parallel coupling provides a patural way to model the nonspecific

perturbations of unknown coupling mechanisms.
We may end here with a serial coupling situation which comes closer to parallel

eoupling in its specific form. Consider a typical network of serially coupled schemes.
Very frequently, this will contain a serial eyecle. That is, the schematic diagram con-
tains a directed subgraph which is a closed cycle, as shown in Fig. 6(a). These occur
naturally, for example, in the ring of cells used by Rashevsky and Turing in modeling
biological morphogenesis ([13], p. 108). The serial eycle implies a very intimate cou-
pling. The shortest case is a serial coupling from the output of a dynamical bifurcation
acheme to its own control input, as shown In Fig. 6(b). Expressed in equations, this is:
MD = DD: x' = Fle,x)

AC: ¢ = ¢fx)

E b -

/.F"‘--.

$> ooty

gt
I

Fig. &



Categories of Dynamical Models 17

Bicoupled system:
x' = Fle(x), x) = fix)

The effect of the short feedback iz to eliminate the control parameters.

Now suppose we consider the next shortest case, as shown in Fig. 6(c). In a simple
version, d does not specifically depend on ¢ nor vice versa, and both are rigid. Ex-
pressed in equations, this means:

Dl: x' = Fie,x)

D2: y' = G(d,y)
C1: d = dix)
C2: ¢ = afy)

Bicoupled system:
x' = Flely), x) = f(x,y)
y' = Gld(x), ¥} = glx,y)

This is essentially a very strong parallel coupling, and the controls have been elimi-

nated. In conclusion, serial coupling is a very useful coneept, which may replace paral-
lel coupling in many applications, giving additional structure and better modeling.

Previously, we have described a kind of multiplication table of attractors, based
upon flexible parallel coupling ([5), Sec. 2; [8], Fig. O1; [9], Sec. 12). In the context
of serial coupling networks, there is an analogue, the composition of bifurcations. For
example, if twe dynamical bifurcation schemes are serially coupled, and each exhibits
a single canonical bifurcation, what are the posaible bifurcation diagrams of the coupled
system? As we have suggested earlier, this may be found to depend on generic proper-
ties of the adjustable coupling function, which maps the total atate space of the master
scheme (containing the locus of attraction) onto the control space of the driven scheme
(containing the bifurcation set). The desired generic property is the transversal inter-
section of the locus of attraction of the master with the bifurcation set of the slave [9],
See. 13). Here is a rich source of problems for dynamicists, fundamental for under-
standing the behavior of complex systems.
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