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Dynamic models for thought

Ralph H. Abraham
Division of Natural Sciences, University of Calfornia, Santa Cruz, CA 95064, USA

This paper is the twelfth of a series, On Morphodynamics. Here, we introduce a
complex dynamical model for the brain, and present some trial mechanisms for the
abstraction and application of ideas. These, based on the concept of the holonomy
of a bifurcation diagram, are intended just to indicate the range of possibilities, not
as definitive models.

Dedicated to: Aharon Katzir-Katchlasky (1914-1972)

Levels of abstraction
In *The function of mathematics in the evolution of the noosphere’ { Abraham, 1981 —DMT?],
we proposed a model for a noosphere, an aggregation of conscious organisms. Here we
will retreat one step, and consider a single mind. But as this organism is viewed as an
aggregation of organs, the model described here is very similar to those proposed
previously.

In ow geometric model it is convenient to discretize one preferred dimension—
abstraction. This strategy, explicit in classical Sanskrit (Upanishad) philosophy, replaces a
model of dimension n by a finite stack of parallel models, say k planes of dimension
(n — 1). If n = 3, this is like a deck of cards. A more extreme version of this strategy—
division of the geometrical model into a finite set of cells—reduces in one step from
dimension n to dimension zero. The cellular structure of biological organisms is an
important example of the extreme strategy. We will return to this example later. Now,
we consider a stack of k parallel planes of dimension (n — 1) as a model for a single
conscious mind. Although the dimension must be large for a reasonable model, we will
set # = 3 here for the sake of visualization. Likewise, the number of planes, to approxi-
mate a continuous scale of abstraction, should be large. The Sanskrit philosophers
frequently take & = 7. Following Plato, we will take k = 4. According to Shear (1977),
this structure of consciousness coincides with the development stages of Piaget for the
growth of consciousness in children. The four levels of Plato’s hierarchy are:

G. The Good—universal archetypes:
M. Mathematics—abstract mental images of archetypes;

TOMT refers to the seventh article in the series On Morphodynamics. Other articles in the series
will be referred to in the same manner.
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S. Science/theories/models—mental representation of sensory experiences;
P. Phenomena—data of sensory experience of the phenomenal universe.

We would like to imbed this hierarchical structure in a dynamical model for the mind, so we
choose to use complex dynamical systems as the basic unit in constructing the model [see
Abraham (1983b—OM10; or 1983c—0M11) for the definitions]. We have proposed a model
of this type for the mammalian brain, in ‘Vibrations, the realization of form’ {Abraham,
1976—-0M4). Eventually, our goal in this paper is to study the interaction between two
adjacent levels. The model for each level will be based upon a familiar mathematical object;
a simple dynamical scheme, or in other words, a dynamical system with controls {albeit,
with a very large number of dimensions). Our theory of interaction would equally well apply to
the serially coupled adjacent levels of any complex dynamical system. But for this exposition,
we use Mathematics and Science, levels M and S of Plato’s model of the mind.
In summary: We construct a partial model for mind with two levels of abstraction:

Level M: Mathematics.
Level S: Science.

In this model, we study interactions based on two-way communications between levels.

Interactions between levels
The movement of information between these two adjacent levels of the model are abstraction
and application. We consider these, one at a time:
Abstraction: information moves from level S to level M in the emergence of an abstract
mental image in M, based upon the association, or aggregation, of several special cases
existing in consciousness on level S.
Application: information moves from level M to level S, through diffusion of an abstract
image into a region of experiential (or experimental) data to which it can apply, or associare.
as shown in Fig. 1.

We may describe these two interactions, through metaphors, without an explicit scheme
for the representation of an idea in a neurophysiological model for the mammalian brain. In
this section, we describe them in mechanical and informatic metaphors. In a later section we
will interpret these metaphors in a specific neurophysiological model.
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Fig. 1. Informatic metaphor for application.
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First, we consider abstraction. In the informatic metaphor, each instance of a similar
theory or model in S may be considered as a file, or movable package of information, with a
name. Actually, the name is a poinfer, a program which finds the file. The aggregation of
these instances into a single concept, or file, on a higher level of abstration, only requires
moving the files into a eommon directory. The directory is just another file, which contains
the names of (instructions for finding) the instance files. The structure of this system is a
tree of information. The abstraction operation is the creation of a new directory of level M,
containing pointers to all the instance files on level S, which still live there. They have not
moved.

Although this metaphor for abstraction is reasonable for a hard-wired computing
machine, it is obviously inappropriate for a dynamical network like the mammalian brain. We
now transform it into a mechanical metaphor. We customarily use this metaphor even when
thinking about computer systems, because it seems more natural.

In the mechanical metaphor, we think of each instance (model on level 5) exhibiting a
given concept (model on level M) as a file folder lying on the desk, rather than as software,
attached to an immovable physical address. We associate the files into a directory by moving
them physically, into a stack. This stack is not the directory, for it still occupies level 5. But
as the instances are physically associated to a common address, the coordinates of the pile
of file folders, we may use this common address on level S as a name for the abstraction.
Thus, the directory is a filename (or pointer program) on level M, which points to a physical
address on level S, at which all the instances may be found. This is like the subject catalog in
. alibrary.

In the informatic metaphor, the process of forming an abstraction consists of making a
list on level M of instance addresses on level 5. In the mechanical metaphor, the process
consists of moving the instances around on level S, to a common location, and noting its
address on level M.

Next, we will describe the application process, in both metaphors. In the informatic
metaphor, we suppose we have an abstraction on hand, as a directory on level M, containing
the names of instances on level 5. These instances are files of information, and the names are
programs which find these files. The application process, for an old application, requires
just recognizing the name of the instance, and running the program to link the abstraction
to the instance file. But suppose we want to create a new application. We must recognize (or
guess) an existing abstraction which the instance exhibits, and then name the instance
within the abstraction directory. That is, we must create a program linking the abstraction to
the new instance. In the mechancial metaphor, we must recognize the abstraction (the
address on level M of a pile of file folders on level ), and then move the new instance onto
the pile.

The next few sections will elaborate the informatic metaphor for both processes into a
non-local neurophysiclogical model, and elaborate the mechanical model into a local
geometric model. The neurophysiological and the geometric models may be directly related,
without the metaphors described above, which are for explanatory purposes only.

The field scheme for organs

A precise model for a mammalian brain, in the context of complex dynamical systems
theory or any such discipline, is beyond us at present. What we do have now is an emerging
scheme. We have written of this previously (Abraham, 1973-0M3; 1976-OM4) as have
Komogorov et al (1937), Rashevsky (1940), Turing (1952) Rosen (1970), Arbib (1972),
Katchlasky and Neumann (1972), Hoffman (1977), Zeeman (1977: 293), Freeman (1981),
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and many others. In this section, we review and expand the field scheme described earlier
(Abraham, 1983c—0M11).

We think of a biological organ (for example, the hypothalamus) at once as a three-
dimensional continuum of biophysical matter, and as an aggregation of cells. We carry along
both of these images simultaneously, as in the wave/particle duality of physics. We suppose
that each cell is reasonably well modeled by a simple dynamical scheme (dynamical system
with controls). Admittedly, this is an extreme oversimplification. Beginning with an
excifation, control metabolites (hormones, neuro-transmitters, morphogens, etc.) diffuse and
react slowly in this continuum. On a shorter time scale, convection currents within the cells
average the momentary concentrations of these control metabolites. On yet a shorter time
scale, the cell dynamics move the physiological state of each cell through a brief transient,
to the attractor determined by the average control metabolite concentrations, the states of
neighboring cells, and its initial condition (previous attractor) at the time of excitation.
[see Abraham and Shaw (1982) for an introduction to these concepts of dynamical systems
theory, and ‘Dynamical models for physiology’ (Abraham, 1983c—OM11) for their
application in this context. ]

There may be different types of cells interspersed and matted in the aggregation. [see
Hoffman (1977) for an interesting classification of those in the visual cortex, based on Lie
algebra theory.] Even though this may be essential for our scheme, we will suppose now, to
simplify the discussion, that they are all of one sort. (This might be justifiable in the case of
slime mold, or the liver.) Later, in Section 10, we will relax this restriction. With this
simplifying assumption, we may visualize the instantaneous state of the organ in our scheme
as follows,

1. Choose a simple dynamical scheme modeling the standard cell of the organ, the
standard scheme.

2. Discretize the domain, choosing a point centrum in each cell.

3. Represent the continuous distribution of control metabolites throughout the organ by
a map from the physical domain into the control space of the standard scheme. This
continuous control field may be regarded as a vector in an infinite-dimensional state space of
the control system, in the language of complex dynamical systems.

4. Dually, represent the control metabolite levels at the centra by a map from the centra
(actually, a finite set of indices identifying them) into the control space of the standard
scheme. This discrete control field may be regarded as a finite-dimensional state of the
reduced control system.

At this point we visualize the organ, its cellular decomposition, and its centra, all imaged
in the control space of the standard scheme by these two maps. We proceed now by inter-
preting the dynamics of each cell in the standard scheme.

5. Choose an initial state for each cell, and visualize it in the standard scheme, hovering
over the image in the control space of the centrum of that cell, under the control field.
These choices, together, comprise the initial field of the organ, in this modeling scheme.

6. Start up the cellular dynamics, in a separate copy of the model for each cell, and
wait for dynamic equilibrium in each.

As the transients die away, one attractor is occupied over each centrum. We obtain an
image of the organ on the locus of attraction of the standard scheme, representing the
instantanecus state of rhe organ. The initial field has evolved to the final attractor field.
During this process, we have assumed that the control fields have not changed, or at least,
that they change very slowly with respect to the internal dynamics of the standard cell.

To visualize the instantaneous state of the organ, we use the trick of Zeeman, and observe
the control fields and attractor fields in the standard scheme for a single cell. If the control
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metabolite levels in the organ slowly change, the control and attractor fields move about in
the standard scheme. Thus, the attractor field will shlep along the locus of attraction.
Whenever the control field transits the bifurcation set in the control space of the standard
scheme, the attractor field will transit a bifurcation (subtle or catastrophic) of attractors, in
the locus of attraction.

In summary, under all these assumptions, the current state of the organ is represented by
the attractor field. This is a map from the cell centra to subsets (attractors) of the locus of
attraction. This map covers the discrete control field. That is, to each centrum is assigned an
attractor of the dynamical system determined by the control levels of that centrum.

In Fig. 2 one is drawn in three dimensions, assuming.

(a) the number of control metabolites is 2;

(b) the number of internal state variables of the standard cell is 1;

(c) the bifurcation diagram of the standard scheme is the cusp catastrophe, as used by
Zeeman for his heart model;

{d) the dimension of the physical substrate is 2;

(e) the number of cells is 3.

The complex dynamical scheme
At this point we may draw the connection between this field approach, and the specifics of
complex dynamical system theory.

The actual dynamical scheme for the finite set of cells is a Cartesian product of identical
copies of the standard scheme, on copy for each cell. The dynamical evolution, and the
single attractor representing the dynamical equilibrium of the combined system of all the
cells, belongs to this, which we will call the big scheme. The discrete control field determines
a single point in the control space of this combined system. The continuous control field is
an instantaneous state of another dynamical system, of infinite dimension, which models the
diffusion and reaction of control metabolites in the physical domain. This is the executive
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Fig. 2. Images of the organ in the dynamical scheme.
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Fig. 3. Schematic of the serially bicoupled nerwork.

scheme. The discrete control field represents the static scheme coupling the control metabolite
diffusion system to the big scheme for the cellular organ, which is the subject scheme. The
production of control metabolites by the cells represents a feedback from the subject
scheme to the executive. Thus, we have a serially bicoupled network scheme for the total
system, as shown, in Fig. 3.

The serial bicoupling between the executive scheme for the control metabolite system
and the big scheme for the cellular organ replaces the usual idea of a direct parallel coupling
between the cells. It can easily accommodate different types of coupling, such as: diffusion
through tissue, blood circulation, pipette systems such as the portal-hypophyseal ventals,
and synaptic junctions.

Our strategy in this paper is to fasten upon the attractor field, and forget about the actual
attractor in the big scheme. This is reasonable, if the cells are not dynamically coupled to
each other. This is not realistic (see Abraham, 1983¢, sections BS, C4) but it will allow us to
visualize the concepts under discussion, all of which apply equally to the more general
scheme. A more realistic model for the organ would allow spatially modulated coupling
between cells. Thus, the subject scheme would be a serially bicoupled network, as suggested
by Kolmogorov et al. (see Abraham, 1983¢). And now, as this model is too large to visualize,
we return to the field approach.

The field scheme for thoughts

We suppose now that we have at hand a field model for the mammalian brain. An instantaneous
state, a thought, is controlled by a control field, and is represented by an attractor field.
Unlike our simplistic three-dimensional example in the preceding section, this one may have
many control metabolite dimensions, and many internal state variables. Thus, the typical
attractor will not be static (a point) or even periodic ( a cycle) but most probably chaotic.
Mevertheless, as multiple surfaces terminated by catastrophic bifurcations abound in typical
bifurcation diagrams, hysteresis will be a principal feature of the standard scheme. Our
emphasis here is on the geometry of the locus of attraction, not on the qualitative features
of the individual attractors.

Thus, an attractor field is a thought. A thought covers a control field. Different thoughts
can cover the same control field. Changing the control field will change the thoughts in a
deterministic way. The (discrete) control field belongs to a finite-dimensional space, and its
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change should be thought of as a curve in that space. But in the spirit of control theory, we
will also think of such a curve of control fields, in discrete approximation, asa finite sequence
of points. And beginning from the same initial control field, different sequences of inter-
mediate control fields may end at the same final control field. And the same initial thought,
shlepped along the locus of attraction by these different sequences of intermediate control
fields, can end up as different thoughts, covering the same final control field. This is because
there is fiysteresis in the standard scheme. We think of the controlling sequence of control
metabolite maps as a program, which means something like this in information theory. And
we refer to this dependence of the change in the attractor field upon the program as holonomy,
which means something like this in differential geometry.

Absolute programs

Mote that the bifurcation set divides the control space (of virtual control metabolite
concentrations) into a number of disjoint regions, supposed finite. Over each region there is
a fixed set of attractors, also supposed finite. These are called competing attractors by Thom.
Here, generic means that there is no centrum in the bifurcation set. Thus, for a fixed generic
control field there is a finite number of attractor configurations possible, and in fact, a finite
number for any generic control field. We regard them here as the gamur of thoughts possible
over a generic control field. This is the basis for the following informatic metaphors.

An eddress is a generic control field. The dara at that address is an attractor field
(thought) covering it. A program, as defined above, is a sequence of addresses, regarded as
the discrete approximation to a curve in the control space. We will call this an absolute
program.

But to copy data to a final address, one must start with the right initial data at the initial
address, and run the right program from the initial address to the final one. Changing either
the initial data (thought, attractor field), or the program (sequence of addresses, control
fields) ends at different data, although at the same address.

Integrative programs

But now to complete the connection between the neurophysiological model and the
informatic metaphor, we must allow for the process of feedback from states (attractor fields)
to controls (control fields), for the cells may produce (or destroy ) control metabolites. Thus,
we will generalize the idea of a program as follows. We introduce now a new hypothesis: the
control space of the standard cell is a vector space. Thus control fields comprise a finite-
dimensional vector space, and we may add them. This hypothesis can be easily generalized,
by introducing a nonlinear map in place of addition, but this would only complicate the
discussion unnecessarily.

Further, we introduce a new structure, to represent feedback from the subject system to
the executive system. This is (in its simplest version) a function from the internal state space
to the control space of the standard cell. We assume that in a given instantaneous state of the
standard cell (represented by a point in the internal state space) control metabolites are
produced at a constant rate. The new function, the rate function, specifies this rate.

Further, we assume that each cell (represented by a given concentration of control
metabolites, and an attractor of the associated dynamical system) produces control meta-
bolites at a constant rate, averaged over the fast variation of internal parameters along the
attractor. Next, we suppose that sequential programs are run according to a strict clock.
Thus, in each unit interval of time, corresponding to one instruction of the program, a eell in
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a given attractor (data) over a given control metabolite level (address) will produce an
increment of control metabolite which is the integral of the averaged rate function over the
clock interval. Thus, given an instantaneous state of the entire organ, each cell produces
increments of control metabolite. The contribution of each cell results in an increment to
the control metabolite concentration for itself, and also its neighbors. So finally we must
have in the scheme a spatial rule to specify how an increment of control metabolite
concentration in the original organ will change the control field.

This should be expressed as a dynamical system on the finite-dimensional vector space of
control fields, such as reaction-diffusion equations. In this case, we have this situation: there
is a control field (original address) at an attractor of its own dynamic on the control space,
a fast perturbation arrives, the control-space dynamic relaxes the perturbed state to the
appropriate attractor (new address). If the perturbation does not push the instantaneous
control state into a new basin, it relaxes to the orginal attractor: no address increment. In
any case, we assume now such a rule: at each state of the organ, an increment to the control
field is determined. We call this the address increment of the given state of the entire organ.

A program now will consist of initial data at an initial address, and a sequence of relative
addresses. Each step of the program goes to a new address (control field on centra) deter-
mined by adding the current address, the address increment from the current state (assumed
to be a constant) and the relative address at the current step of the program, Now, the same
program, with different initial data, can end ar different addresses. We will call this new kind
of program an integrative program.

Holonomy programs
Finally, imagine a integrative program which begins and ends at the same end field. Its effect
upon all the attractor fields (thoughts) covering its end field is to map them among them-
selves, generally in a many-to-one manner. This map is analogous to the holonomy concept
of differential geometry. It is caused by the catastrophic bifurcations in the standard cell
model.

We shall have use for some of the language of holonomy, from differential geometry. The
invertible holonomy programs, at a given end field, comprise the holonomy monoid of that
address. And for a given file (data, attractor field) at that address (end field), the set of all
files obtainable from it by the operation of invertible holonomies upon it comprise the
holonomy orbit of the original file.

The holonomy of bifurcation diagrams could (and perhaps will) be studied in the
abstract. Meanwhile, it will be fundamental in our application of the field scheme for the
brain to cognitive processes, in the next section.

Abstraction and application

Now we are ready to apply our scheme to the abstraction and application processes
described in a preceding section, in the informatic metaphor. The main idea is that the
abstract concept on level M, in the hierarchical model of consciousness described previously,
is an initial data file (thought, initial attractor field) at a given address, as described in the
preceding section. This is a filename, or pointer program. That is, it is a dynamical state
generating an integrative program leading to a key state on level S. Its instances (thoughts, as
final attractor fields) on level S, are the files of the holonomy orbit of this key state. The
name of an instance on level 5 is the holonomy which creates it from the key state, which
represents the abstraction on level S.
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The old application process just requires running the appropriate holonomy program, its
name, starting from the correct initial address and data of the .abstraction. The mew
application process is a little more difficult. It requires the recognition of an existing
abstraction, of which the new file is an instance. That is, an initial file (key of the abstraction)
must be found, from among those already learned and ensconced on level M, and a
holonomy program from key to instance. Thus, recognition is carried out, in this scheme, by
running trial holonomies, hoping to strike the key of an existing abstract model of level M. If
found, the recognition problem is solved. (The difficulty in finding one is resolved in the
next section). The successful holonomy program must now be inverfed, to name the new
instance.
Two problems are encountered here:

1. How to determine, within the neurophysiclogical maodel, the close approach of two files.
That is, while moving a file by a holonomy program, when is it close to another file (for
example, an existing abstract model), and converging to it. We call this the convergence
problem.

2. Having found an interesting holonomy program, how can we find an inverse holonomy, if
there is one. We call this the inversion problem.

The abstraction process is even more difficult. From several instances on level §, one seeks
integrative programs with identical final addresses, uses these programs to copy all the
instances to this new address (this moves the file folders into a common pile), and operates
on these transposed instances with the holonomy monoid of the common address. If
possible, an abstraction (file on level M) will be found after enough trials, in the orbit of
which lie all of the several instances. This presents, again, the two problems of inversion and
cornvergence. In the next section, we describe a transformation from this scheme to another
(the local geometrical model) in which the convergence problem is solved.

The geometric model

What we wish to do now is to simplify programs as much as possible, by standardizing the
addresses. We observe that, although there is a continuum of addresses (vector space of
control fields), most of them are equivalent. That is, any address can be deformed into
another without essentially changing the data (attractor field) as long as no centrum crosses
a hypersurface of the bifurcation set, We chose, thus, a standard control point in each
component of the regular set (complement of the bifurcation set) in the control space. At
the end of each program, we deform the final address into a standard one, by standardizing
the control metabolite concentration at each centrum. Thus if a centrum has control
metabolite concentration in one of the components, we deform this concentration to the
standard one, within the same component, as shown in Fig. 4. For the moment, we regard
this as a mathematical transformation only. Later, we will propose a neurophysiological
mechanism for this, inspired by Hoffman.

A standard field is identified by two labels attached to each cell: the component of
control space occupied by its (standardized) control metabolite concentration, and its
attractor. These comprise a standard state for that cell. What we have achieved, through
standardization, is a physical location, in the state space of the cell, for each of the possible
attractors of a given regular component of control space. In fact, choosing one point in each
basin (we think of this as the average state of the cell, for the given attractor) we may define
the distance between two standard fields, as shown in Fig. 5. And thus, we can try to minimize
this distance. For standard configurations with separate addresses, we say the distance is
infinite.
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Fig. 4. Deformation to a standard field.
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Fig. 5. Distance between two fields.

Now, at last, we can imagine a possible algorithm for the abstraction process. Given several
instances, we standardize them. In the simpler cases, they comprise different data over the same
address. Otherwise, we copy the data to the same address with an integrative program. If there
is no intergrative program from an instance to a common address, it must be abandoned.

MNow, as described in the preceding section, we experiment with our favorite holonomies,
integrative programs which begin and end at the same address. From all the different initial
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Fig. 6. Abstraction, key, and instance orbit.

data, we are seeking common final data. So for each instance file, we run all of our holonomies,
generating its insfance orbit. Files (attractor fields) in the intersection of these instance
orbits are candidate abstraction keys for these instances. They must be tried, one at a time.

For each candidate, we apply the holonomy monoid to create its orbit. Then, the
distances from each instance to the orbit must be added, to measure the value of the
candidate abstraction. Varying the candidate, we seek to minimize this distance. If successful,
we have found an abstraction for the given instances. The abstraction on level M is an
integrative program leading to the key.

We think of the instances, standardized to the same address, as the pile of file folders, in
the earlier mechanical metaphor. But in this case, it is not the address which is the abstrac-
tion, but the file on level M, which points to a key file in the pile, as shown in Fig. 6.

Special purpose cells
Finally, we will describe the Hoffman-inspired neurophysiological mechanism for the
standardization of addresses. This requires adding some auxiliary cells to the neurophysio-
logical scheme. Thus we will have a complex dynamical scheme for the brain which has a
simple standard cell, inhomogeneous cell-types, and nonuniform control metabolite distri-
bution, in the framework of organic resolution (Abraham 1983c—0MI11).

First, there must be buffer cells. Their purpose is to sense nearby control metabolite
concentrations, and buffer them, simultaneously inhibiting any efforts of uniform cells to
change the address (control metabolite concentration) as if in response to excitation. They
have to steer away from the bifurcation set.

We may imagine a gradient-like dynamical system in the control space, moving away from
the bifurcation set toward a distinguished central point of each component (see Fig. 7). But
recall that an address is a control field, and the effect of buffer cells is to pull the image of
the (cellular) physical substrate into these sinks. The image is stretched tight across the
bifurcation set (see Fig. 8). The high gradients between cells on these boundaries will
overpower buffering, and limit gradients will exist. A typical control field is shown as a
graph in Fig. 9. So we propose an additional distribution of special purpose cells, the sample-
and-hold cells. These sense a region of essentially constant control metabolite levels, sample
these levels, and hold them. The geometric evaluation of candidate abstraction programs,
described above, is accomplished by the sample-and-hold cells,
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Here we have described a hypothetical scheme for communication between adjacent levels in
an hierarchical information structure of a conscious mind. In informatic and mechanical

,\ 13

x
Fig. 7. Standardization of control field, in progress.
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Fig. 8. Standardization of control field, completed.

Conclusion

metaphors, we have described the processes:

(a) old application of an existing abstraction to an existing instance:
(b) new application of an existing abstraction to a new instance: and
(c) new abstraction of similar instances into a new abstraction.

The informatic metaphors developed here are:

(1) address as a standard control field;
(2) data as an attractor feld;
(3) data comparison by a geometric distance;
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(4) program as a sequence of relative address moves, integrating data at each incremental
address, according to a dynamical system on the address space, and dragging the data along
the locus of attraction of the dynamical scheme for the standard cell, and

(5) filename (pointer) expansion by a integrative program.

Further, an homogeneous neurophysiological model has been proposed for the realization
of these processes and metaphors in mammalian brains. The application process is simple and
direct in this scheme, based on the informatic metaphor. The abstraction process is more
complicated. For this, we have introduced two supplementary distributions of special cells:
buffer cells and sample-and-hold cells. In this inhomogeneous neurophysiological model, the
mechanical metaphor (aggregation of files to a pile of a common address) becomes simple
and direct as well.

All this is based on the theory of complex dynamical systems, developed in the earlier
papers of this series (OM8-11: Abraham & Shaw, 1983; Abraham, 1983a,b,c) and developed
in the context of the bifurcation diagram of an imaginary neuron model. This theory provides
some guidance, even when the actual dynamical model is unknown. For this reason, we call
it a scheme, rather than a model, for thought.

Nevertheless, one could go much further with this theory if explicit dynamical models
{for a single neuron, for example) were known. In addition, the existence of buffer and
sample-and-hold cells is hypothetical here. This part of the theory is inspired by the work
of Hoffman, which goes much further is studying the function of special distributions of
cells. We should like a more concrete neurophysiological proposal for these cells. The
structure of the glial body, as a bundle over the cortex, is suggestive here. We propose these
problems to neurobiclogists.
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conversations with Fred Abraham, Walter Freeman, Alan Garfinkel, William Hoffman, Tim
Poston, Dan Sunday, Rene Thom, and Christopher Zeeman, the support of the Institut des
Hautes Etudes Scientifiques, particularly Nicolaas Kuiper, during the preparation of this
work, and valuable feedback from the referee on expository matters.
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