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In 1972, we proposed the blue sky catastrophe for periodic limit sets.
Here, we describe one for chaotic limit sets. This provides a pathway to
chaos quite different from the usual ones, which are all sequences of
subtle bifurcations. Further, models for intermittency and noise
amplification are given, based on hysteresis loops in a serially coupled
chain of dynamical schemes.

PART A. SUBTLE AND CATASTROPHIC BIFURCATIONS

The classification of bifurcations into these two types was suggested in
1966 by Thom(1972), and given explicit treatment {(under the names leaps
and wobbles) by the author (Abraham, 1976). In this part we have two
goals: to define catastrophic borders in the control space of a complex
dynamical scheme, and to discuss am example of a chacstrophe, that is, a
catastrophic border for the domain of a chaotiec attractor, in the context
of a serial chain of three oscillators.

Al, PARTITIONS AND BORDERS

We consider a vector field depending upon a parameter, alsc known as a
metabolic field, or dynamical scheme. Let C and M be manifolds of finite
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dimension, Eﬁg} a space of vectorfields on M, and F: L + X(M) the
dynamical scheme. If B(M) is the subset of X(M) consisting of
structurally unstable vectorfields, them the bifurcation set of the
scheme, B, is the inverse image of E(El_} under F.

Imagining the phase portrait of F{c) im {c)}xM for each ¢ in C creates

a4 control-phase portrait of F in CxM. We wish to concentrate on the

attractors (in the sense of probability, for example) in this portrait,
along with their basins and separators (the complements of the basins,

elsewhere called separatrices). Let A denote the locus of attraction, the
union of all the attractors of the scheme, and S denote the locus of
separation, the union of all the separators of the scheme.

A relatively open subset of the locus of attraction will be called an
attractrix. This is usally called a branch of the attractive surface in

statie catastrophe theory. A relatively open subset of the locus of
separation, similarly, will be called a separatrix. This is also known as
a branch of the repelling surface in static catastrophe theory.

We assume that the scheme, F, is generic in any reasonable sense.
Specifically, it is as transversal to gﬁﬁ} as possible, and over each
point b in the bifurcation set, there is a single bifurcation event in the
phase portrait of F(b). We see in examples that this bifurcation event
normally involves a single attractrix and a single separatrix, or it
involves no attractrix. Thus, B may be divided in two parts. Here, we
will be interested in the attractrix bifurcations only, in which an

attractrix and a separatrix are involved. Further, we will discuss only
the hypersurfaces contained in this part of the bifurcation set, which we
call the attractrix bifurcation hypersurfaces in the control manifold, C.

And finally, these may be isolated hypersurfaces im the bifurcation set,

or they may be hypersurfaces of accumulation, from one or both sides. We

will refer to one of these isolated attractrix blfurcation hypersurfaces
as a border, if an attractor appears or disappears during the bifurcation
occuring across it. Otherwise, we call it a partition. The borders
belong to the boundaries of the domains of attraction, the regions of

control space in which certain attractors exist., These domalns are the
shadows (images in C under the projection from C x M onto the first
factor) of attractrices, and the borders are shadows of boundaries of
attractrices, Borders may always be oriented, by a normal vectorfield
pointing toward the exterior of the region it bounds. Partitions belong
to the interiors of the domains of attraction, and may radiate inward from
a border. Precise definitions are given in Sectiom AS.
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A2, GSTANDARD EXAMPLES WLITH ONE CONTROL

Specializing the preceding definitions to the case inm which the control
space, C, is a line or circle, ylelds the most important examples. Thus,
F: C =+ X(M) 15 a generic arc or generic loop, the bifurcation set, B, 1s

zero-dimensional, every point is a hypersurface, and we fasten attention
upon the isolated points at which an attractrix appears or disappears.
These are the borders inm this context.

In case the dimension of the state space, M, is two, everything is
known about the bifurcations of generic arcs. The attractrices correspond
to static or periodic attractors. The separatrices are generated by the
ingets of limit points and cyclea of saddle type. The isolated points of
the attractrix bifurcation set belong to a known list of possible models,
while the accumulation points (also called thick bifurcations, Abraham and
Shaw, 1983) are due to a single phenomena: non-trivial recurrence on a

torus.

The different types of known bifurcation obviously fall into two
categories, subtle and catastrophic. The catastrophic ones are the
borders, while the subtle ones are the partitions. This classification is
glven in Table l. Drawings of the locus of attraction, in most cases, may
be found elsewhere (Abraham and Marsden, 1978, Abraham and Shaw, 1983),
4An exception is solidification, a type of Hopf bifurcation, which is shown
in Figure 1.

Another of these, the periodic blue aky event, will be described in
detail in the next section.

If the dimension of the state space, M, is three or more, then
chaotic attractorts may (and usually do) occur. The full list of these
objects 1s not yet known, even im three dimensions. Their bifurcations,
which include pathways to chaos, are just beginning to be discovered by

TABLE 1. ATTRACTRIX BIFURCATIONS OF GENERIC ARCS

CATASTROFHIC BORDERS SUBTLE PARTITIONS
Static creatiom

‘Static solidificacion Hopf excitation
Perlodic creation

Periodie solidification Neimark excitation
Hurder Subharmonic diviaion

Periodic blue sky catastrophe
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FIGURE l. SUBTLE AND CATASTROPHIC HOPF BIFURCATIONS.
The dashed eurves repel, solid attracts.
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experimental dynamicists. Yet we presume that these also will fall into
the two categories, subtle and catastrophic. So far, the examples known
are primarily of the subtle sort. (For some exceptions, see Arneodo,
Coullet and Tresser, 1980; and Grebogi, Ott, and Yorke, 1982.)

A3, THE BLUE CYCLE PERIOSTROPHE.

Recall that in the dynamic annihilation catastrophe, a periodic attractor
(attractive limit cycle, oscillation) vanishes. It collides with a limit
cycle contained in its separator. Its attractrix meets ite separatrix.

In 1972, we conjectured the existence of a blue sky catastrophe, in the

context of a dynamical scheme (Abraham, 1972}, As in dynamie
annihilation, a limit cycle would disappear into the blue sky. But in
this case, it would not be cancelled through collision with another limit
cycle, Instead, 1its period (length of ite time cycle) would become
infinite. It would just slow down, and cease to oscillate.

In the course of time, this conjecture was confirmed (Takens, 1974,
Devaney, 1977). In the blue sky event now well known, expressed in the
case in which the disappearing limit cycle is an attractor, a periodiec
attracter just slows down and stops. But in fact, at the moment of
disappearing into the blue, it does indeed collide with another
trajectory, also an oscillation of infinite perlod. This is a homoclinic
trajectory, or saddle self-connection, associated with its separatrix.
This also provides an fllustration of basin catastrophe, as the basin of

the periodic attractor vanishes at the moment of periostrophe, along with
its (poseibly unbounded) tail., The event is shown in Figure 2.

A4, THE BLUE BAGEL CHAOSTROPHE

This eveat will be constructed from the blue cycle periostrophe by
Carteslan product with & circle plus a perturbation, to obtain a generic
arc with known behavior. In other words, we perturb a blue cycle scheme
with a forcing escillation. Supposing the state space of the original
scheme to be & plane, as shown in Figure 3, the forced scheme will have a
solid ring for its state space, as shown in Figure 3. The plane within
this ring corresponding to phase zero of the driving cscillatiom will be
useful in our discussion. We call it the strobe plane (Abraham and Shaw,
1982).

Before the bifurcaticn of the forced scheme, near the border point of
the original blue cycle scheme, we have an attractive torus. The torus
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FIGURE 2. THE BLUE CYCLE PERIOSTROPHE.

meets the strobe plane in the periodic attractor of the original blue
cycle scheme, the one which vanishes inte the blue. This torus contains a
braid of periodic attractors. Their basins, within the invariant torus,
are separated by a complementary braid of periodic trajectories which are
repelling, within the torus. The saddle point of the original scheme
becomes a limit cycle of saddle type in the ring model (state space) of
the combined scheme., The inset of this limit eyecle is a scrolled
cylinder, generated by the inset curve of the original scheme, visualized
on the strobe plane. Likewise, the outset of the limit cycle is another,
complementary, scrolled cylinder.

After the bifurcation event 18 over, well beyond the border point of
the original scheme, the attractive torus is gone, braids and all,
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FIGURE 3. THE BLUE BAGEL CHAQSTROPHE, IN STROBE PLANE SECTIONS.

vanished into the blue yonder. The periodic trajectory of saddle type,
along with its complementary seralled cylinders, remains. But the
relationship between them is reversed.

During the bifurcation event, they have crossed. The crossing does
not cecur at a single bifurcation value of the control variable, for we
have perturbed the forced escillation iInto a generic arc. Thus the inset
and outset cylinders, visualized as curves withim the strobe plane, mnust
pass through each other within an interval of homoclinic transversal

intersection. We call this the homoclinic interval. There are many

possiblities for the prolonged passage, because of the likelihood of
Birkhoff rechambering bifucations (Abraham and Marsden, 1978). One of the
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silmplest is indicated in Figure 3. At some point in the homoclinic

interval, the attractive torus disappears, braids and all.

S0 far, we have described aspects of this generic are which are
mathematically known. But now, we venture into comjecture:

Within the homoclinic interval, the tangled inset of the periodic
gaddle behaves as a repellor, and as the separator for the basin of the
blue=bound attractive torus. Eventually, the torus will collide with this
tangled inset. But before this happens, the convelutions of the tangled
cylinder mold the torus inte a form much like the chaotic attractor found
by Rob Shaw. Discovered in experiments with the forced Van der Pol
scheme, this object looks like a very dog-eared bagel (Abraham and Shaw,
1982). Thus, at some point within the homoclinic orbit, there is a subtle
bifurcation, where the attractive torus becomes an attractive, chaotic

bagel. At the final endpoint of the homoclinie interval, the chaotic

bagel collides with the tangled inset, now tangent to the outset, of the

periodic saddle, and vanishes into the blue.

This is an example of a chaostrophe, as the chaotic bagel attractor
has disappeared discontinuously. It is also an example, in the context of
three=dimensional dynamical systems, of the fractal torus crisie described

for three dimensional maps by Grebogl, Ott, and Yorke (1982).

We may end this fantasy with the further conjecture, that this event
may be found experimentally inm the forced Van der Pol scheme.

A5. CATASTROPHES WITH SEVERAL CONTROLS

Now, we approach our second goal in this part, the definition of subtle
partitions and catastrophic borders, inm the general context of a dynamical

scheme with several control paramters. In review, the control space, c,
is a finite-dimensional manifold. The dynamical scheme, F: C+ X(M) 18
assumed to be generie in a sense we have not made precise. The
bifurcation set, B, is a subset of L. We consider a subset H of B which
is an oriented hypersurface of C, and which is isclated in the sense that
a meighborhood of H in C intersects B only in H. (In what follows, it may
only be essential that the hypersurfaces be isolated on one side.) Under
these assumptions, the isclated hypersurface corresponds to a single
bifurcation event in the portrait of the dynamical scheme.

Finally, the hypersurface i{s a border 1if this event involves either
the appearance or the disappearance of an attractor, and the hypersurface
is oriented toward the exterior of the domain of this attractrix.
Otherwise, the hypersurface is a partition,
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We now define a generic sub—arc of a dynamical scheme, which will

facilitate a more precise distinction between subtle partitions and
catastrophic border in this context.

As a hypersurface of C, B 18 of codimension one. Any curve d:I+c
in C (where I 18 an open interval of real numbers) which is transversal to
H may be composed with the scheme F to obtain an arc, £=Fod: I+ X(M).
This is a one-parameter dynamical scheme, the sort discussed in Section
AZ, As F is generic, so 1s £. We may refer to such a generic are,
derived from the dynamical scheme F, by composition with a curve
transversal to its bifurcation set, as a generic sub-arc.

Note that the bifurcation set of a generic sub=arc cutting H
transversally at the point h (at least, if it is sufficiently short)
consists of the single polnt, h. Pinally, we assume the short, generic
sub-arc crosses the border in the direction of the scutward normal, or
orientation. We call this a transverse at h.

This 1s the auxiliary notion we need for the definition of subtle
partitions and catastrophic borders im this multi-dimensional context.

!:!Ejl_l‘.ﬁt_ is the definition. Every point h in the hypersurface,
H, 18 either subtle or catastrophic. It is subtle if, roughly, the locus
of attraction is continuous over it. More precisely, the point h is a

subtle partition point if every sub-are transverse at h has a subtle

bifurcation at h, in the sense of Section A2, Otherwise, the point h is &
catastrophic border point. We use the word catastrophe at once for the

point, h, in the bifurcation set within the contrel space, and the
discontinuity in the affected attractrix.

A subset of an isolated, oriented, attractrix bifurcation
hypersurface consisting entirely of catastrophe points is called a
catastrophic border, or just plain border. We define subtle partition, or
partition, similarly. Every such hypersurface may be decomposed inte a
union of catastrophic borders and subtle partitions.

S0 much for the definition. A better idea of the distinction between
a subtle bifurcation and a catastrophe may be gleaned from the example

shown in Figure 4. Derived from the Andronov-Takens (2,-) model by
symmetry—-breaking, it is four-dimensional (Takens, 1974; Abraham and
Marsden, 1978). Both C and M are planes. So we show the tableau of
sample phase portraits within each region of the control plane, The
borders, im this planar control space, are the four solid curves radiating
from the central point. Omitting a neighborhood of this point, they are
all isolated, and involve an attratrix catastrophe, Two of these are
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Hopf

solidification

FIGURE &4, SUBTLE PARTITIONS AND CATASTROPHIC BORDERS.
Subtle partitions are represented by broken curves,
catastrophlc borders by solid curves.
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solidifications. The other two are a static creation, and a periodic
creation. The remaining five curves radiating from the central

bifurcation peint are subtle partitions.

PART B. HYSTERESIS, HOLONOMY AND NOISE.

Thom has written that the primary events in morphogenesis are the
catastrophic bifurcations, and we share this view. Im this part, we
indicate some subtleties of catastrophic borders in the context of
serially coupled chains of dynamical schemes. In particular, a chain of

three cscillators serves as our standard example.

BEl. HYSTERESIS WITH ONE CONTROL

Hysteresis refers to the failure of a system to return to its original
state, after a temporary change of its controls. We may interpret this in
the context of complex dynamical system theory (Abraham, 1983a) as
follows.

We consider three simple dynamical schemes, the output of one
determining the control parameters of another, in a chain. This is an
example of a gerial chain, and is shown in Fig. 5(a), with the standard
convention of complex dynamics: the solid dots represent the component
schemes, while the hollow dots denote the serial coupling functioms. We
will call the first scheme the master controller, and the whole serial

chain driven by it the slave chain. This 1s exemplified by the classical
model of Lord Rayleigh for forced oscillation, in which both systems of
the slave chain are running in periodic attractors. We assume now that

the master controller is an oscillator, relatively slow with respect to

the dynamice slave chain.
This forced oseillation is an hysterical, (or, each cycle is an

hysteresis loop) if the slave scheme (as a coupled dynamical system) does

not return to the same attractor after each period of the forcing
oscillation. Hysteresis is characteristic of serifal chains.

We mow illustrate this phenomenon in a system with a single master
control. An early example, found by Duffing in Lord Rayleigh™s model for
forced oscillations of the damped harmonic oscillator, is shown in Figure
5 (Abraham and Shaw, 1982). This is a periodic version of a configuration
common in elementary catastrophe theory, which may be called the pericdic
double fold.
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master controller {slow) a b
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intermediate oscillator {fast)
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FIGURE 5. HYSTERESIS LOOPS OF DUFFING IN A THREE COMPONENT CHAIN.

This is the portrait of the alave chain, a forced oscillator. Here
there is one control, corresponding to the frequency of the intermediate
foreing oscillation. This control is to be determined by the master
oscillator, The attractors are perlodiec, the separator is periodiec, the
bifurcation set in control space consists of two points (B and D). Both
borders, the two attractrices (solid surfaces) overlap in the interval
between these points, and in this interval they are separated by the
sepatatrix (shaded surface).

Here are some exemplary hysteresis loeops. (1) If the coupled
(slave) oscillator is on the outer attractrix (oscillation) over control
C, the eycle CEC in control space will leave 1t on the inner surface, as
shown in Fig. 5(b). (2) Starting again oo the inner attractrix over
point €, the eyele CAC will return the slave system to the outer
oscillation, as shown in Fig. 5(c). (3) The compound control cycle CECAC
will mot change the outer oscillation, but will change the inner
oscillation to the outer, as shown imn Fig. 5{d). We consider this

compound eycle to be a hysterersis loop also.
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FIGURE 5 (cont.)

The maps from the set of attractors over C into itself, determined by
all hyateresis loops at C, comprise what we have called {Abraham, 1983b)
the holonomy monoid of C. It 1e clear in this example that the

parameterizations of the hysteresis loops do mot affect the holonomy maps.
But in most cases, parameterization does affect the holonomy, as we shall
see in Section B3.

B2, HYSTERESIS WITH TWO CONTROLS

The simplest example of hysteresis with two controls (two-dimensional
control space of the drivenm system) is provided by the static cusp
catastrophe of elementary catastrophe theory. This is essentially three-
dimeneional, and thus is easily visualized. A periodic version, the
periodic cusp catastrophe, is essentially four-dimensional. One three-
dimensional section is identical to Figure 5. But viewing the strobe-zero
plane of one of the periodic attractors in place of the planar state

space, we obtain another three—-dimensional sectiom of the four-dimensional
diagram, as shown in Figure 6. Here, the borders are the two curves of
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FIGURE 6. PERIODIC CUSP CATASTROFHE,

the cusp, in the control plane. The attractrices, actually three-=
dimensional hypersurfaces in four—dimensional space, appear in the section
as surfaces.

We consider a closed curve in the control space, as shown, oriented
CABC. This may be the image of a periodic attractor of the master system,
a forcing oscillator. As this path crossed borders, it 18 a hysteresis
loop. Its holonomy map takes the lower cscillatiom attractrixz to the
upper one, which 1s left fixed by the map. As in the preceding section,
the parameterization of this path does not affect its holonomy.

This disgram ocecurs in Lord Rayleigh®s model for the forced
oscillator, as Duffing discovered, if the amplitude of the intermediate
oscillator is controlled by the master, as well as its frequenmcy. Typlcal
gutput, represented as a time series of a single state variable of the
final, driven oscillator, is shown in Figure 7. An interesting
application to memory has been made by Zeeman (1977).
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FIGURE 7., TIME SERIES OF AN HYSTERICAL CYCLE.

B3, STOCHASTIC HOLONOMY

Here 1s another example of hysteresls with two contrels. It is extracted
from Figure 4 This ie the portrait of another forced oscillator scheme,
which will again play the role of the slave system. Adding a closed curve
to the control space, enclosing the central point of bifurcation, we
consider the holonomy of this curve. A master oscillator may be fmaglned,
driving the controls of the slave system around this closed curve. This
time, the parameterization of the curve will affect the holonomy map. For
ease of visualization, we replace the control space by this curve, so that
the restricted diagram becomes three-dimensional. That 1s, we visuallze
the Cartesian product of the planar state space and the contrel eycle.
Ignoring subtle bifurcations, the result is shown in Figure 8, (See also
Abraham and Shaw, 1983.) Beginning at point B on the control eycle, there
is a single attractor, a point. MHoving counterclockwise, this scon
becomes periodic, by a Hopf blfurcation. But this is subtle, we pay no
attention., Later, there is a statlec creation event, but our attractor is
not affected. Two repellors and a saddle are created, all statie.

At last, there 18 a border at poilnt x. One of the point repellors
has a Hopf bifurcation, creates a nearby periodic repellor, and itself

becomes a point attractor., This is a solidification. So at point C,

there are two attractors in competition, one static and one periodic.
Soon, at point ¥, the other point repellor solidifies also. Now there are
three attractors in competition, at point D.

There follow three blue sky bifurcations. But these involve the
appearance out of the blue of periodic repellors. So, although they are
catastrophic, no attractor is affected. We ignore these also.

At point =, there is a periodic annihilation, and the periedic
attractor disappears. This is the crucial event in this example. At
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FIGURE 8. A STOCHASTIC HOLONOMY,

point A, there are only two attractors in competition, both static. The
basins are intertwined teardrops, like yin and yang,

At point w on the control ecycle, there is a static annihilation
catastrophe. One of the static attractors collides with its separator and
is cancelled. One point attractor is left, and we are back at the
beginning of the cycle, at point B.

Finally, we compute the holonomy of this curve, but beginning at
point A. We may start with either of the static attractors existing at
this point, which we shall call yin and yang. At the end of one period of
the driving cycle, the driven system will be in one or the other of these
states. The same result will be obtained, no matter which attractor we
start with, because at point B there is only one attractive state anyway.
Thus the result of one control cycle, yin or yang, defined the holonomy of
this closed curve, ABCDA, Which will it be?

All is simple until we reach point z. Just before this time, the

system must be in the periodic attractor, evem though two new attractors,
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the points yin and yang, have been born. At the moment border z is
crossed, the periodic attractor disappears. At this moment, the driven
system 18 in a well-defined phase of its oscillation, and thus in some
computable point im ite planar state space. This point 1is either in the
basin of yin, or it is in the basin of yang. We discount the possibility
that it is in the separator at that moment, as this has probability zero.
If it is in the yin basin at border crossing time, it will stay in the yin
basin until the next border crossing. Thus back at point A, after a full
cycle of the driving oscillation, it is still yin, and the holonomy of the
closed curve is yin: both yang and yin are mapped to yin.

We see that the holonomy 1s computable in this example, and that it
depends critically on the phase of the driven oscillation at the z-border
time. Thus, a elight change in the parameterization (not mecessarily
changing the period of the forcing oscillation) can switch the holonomy of
the curve from yin to yang!

But what would be the holonomy in case the attractor vanishing inte
the blue at phase z was chaotic, instead of periodie? In this case, which
must oceur very frequently in applications, we may only hope to calculate
the probability of the yin and yang results of a holonomy, based upon the
measure of the intersection of the disappearing chaotic attractor with the
basine of the non-disappearing attractors. These probabilities will
obviously be independent of the parameterization of the closed curve.

They depend only on the borders crossed. This is what we mean by
tochastic holonomy. It applies equally to the preceding example, in

which the attractor vanishing at z is periodic. The stochastic holonomy,

averaged over the attractor, apparently depends continucusly on the

parameterization of the curve. This is more useful than the exact

holonomy, which depends hypersensitively on the curve,

B4. MODELS FOR INTERHMITTENCY AND NOISE

We have already seen, in Figure 7(b}, a time series exhibiting a typical
example of intermittency. This is characteristic of serial chains, as we
have indicated. In this case, the model behind the time series is made of
three oscillators, serially coupled in a chain. The slave chain im this
case, a Eﬁrced oscillator system, is characterized by the periodic cusp
catastrophe of Duffing. A related phenomenon, shown in Figure 7(a),
differs in that the master eycle has been deformed, through a
nontransversal intersection with the borders, so as to significantly
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change the holonomy of the hysterical eycle. Through training, we may
learn to recognize holonomy from the observed behavior of a Bystem, and
thus to create a suitable complex dynamical model for it, We will discuss
e few variations on this scheme, to give four examples of this modeling
strategy.

A. In the situation illustrated in Figure 7(a), let the periodic
attractor of the master system be replaced by a chaotiec attractor. Then
the transitions between the two periodic states of the slave chain (forcad
oscillator) will become aperiodic in time. The time series will appear
noisy, and 1ts spectral analysis will reveal the spectrum of the master
system, with the discrete spectra of the two periodic states of the slave
system superimposed. The distribution of power between these two discrete
spectral sequences will be indicative of the stochastic holonomy of the
hysterical master macron: the master attractor, imaged in the slave
control space by the serlal coupling map. This is a strategy for modeling
systems displaying intermittency.

B. Suppose that without changing its stochastic holonomy type, the
macron 18 shrunk to a very small object mear the cusp. At the same time,
we will imagine the two attractrices of the slave portrait to be periodic
motions of the slave system of very disparate amplitudes. 1In this
situation, the moise of the master system is amplified greatly by the
slave system. This is a strategy for modeling nonlinear noise amplifiers,
which contribute their own periodic sequences to the output power
spectrum, but do not otherwise change the noise charateristics of the
input signal,

C. Suppose the slave system is made chaotic, so that while the cusp
portralt still applies, each attractrix is the locus of a chaotie bagel.
The borders, comprising the curves of the cusp in the contrel plane, are
blue bagel chaostrophes, as described in Sectionm B4. Then periodic input
from the master system is amplified to pericdically intermittent noise. 4
long time series might permit the recognition of the bagels from their
characteristic power spectra, 1f the master oscillation is known,
However, 1f the master system also becomes chaotle (through the action of
a fourth system on its controls, a four-component serial chain), for
example by a thick bifurcation resulting in a Rissler band, then the
analysis of the component systems from the output time series could be
hopeless. Still, exploration of serial chain behavior through fast
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simulations could provide enough experience to enable a strategy to evolve
for modeling complex systems such as physiological or ecological metworks.

D. Replace the portrait of Figure 7 with that of Figure B. With a
periodic master system, the macron (master cycle imaged in control space
of the slave system by the serial coupling map) is hysterical, with a time
geries such as that shown in Figure 9. Here the static attractors of the
slave system, vin and vang, occur periodically. But which one occurs
depends on the exact state of the trajectory of the entire serial chain at
the moment the master eycle crosses the critical border (blue cycle
perlostrophe) of the slave syvstem., 5o 1f we now allow the master system
to become chaotic through a subtle bifurcation (again, with a four-
component chain), these occurrences of yin and yang will become
stochastic. S5till, their average frequencies of occurrence will reveal
the stochastic holonomy of the master macrom in the control plane of
frequency and amplitude of the slave system. In this way, some
information about the component systems of & serial chaln may be gleaned
from a time series output from the final system of the chain.

Finally, we mote that the longer the serial chain, the more difficult
the analysis of its output im terms of qualitative behavior of its
component systems.
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