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A modification to a response-inhibition model for the hypothalamic-
pituitary-gonadal axis of the male reproductive system gives rise to two
periodic attractors in a bifurcation diagram exhibiting hysteresis and
intermittency. This is interpreted as a possible model for differential
hormonal release, system disorders and noise amplificaticn in the
endocrine system. The modification includes a response of the

hypothalamus to short feedback.

1. INTRODUCTION

Earlier systems of differential equations modeling the male mammalian
reproductive endocrine system have exhibited a Hopf bifurcationm (Smith,
1981). The basic model consisted of a nmegative feedback system of three
ordinary differential equations. The bifurcatlion parameter 1&g a
counterpart of blological age, and it was suggested that the omset of the
limit cycle qualitatively mimics the onset of puberty. Experimental data
obtained from laboratory animals display noisy almost-periodic time
series, however, In a recent paper, a modification was made to one of the

feedback functions for such a dynamical system {(corresponding in our model

i3



34 Abraham, Kogak, and Smith

to response of the hypothalamus to testosterone, which we call long
feedback). This produced a chaotic attractor, in the sense of probability
at least, in place of the limit eycle (Rfssler, Gotz, and Rossler, 1979;
see also Sparrow, 1981). This could be useful in adapting the model to
better mimic the data, which is characteristically noisy. However, this
modification of the long feedback function (raising the skirt to a V
shape) 1s difficult to interpret physiologically.

In this paper, we achieve a similar result with different
modifications of the model, First, the V-ghaped modification to the long
feedback function is replaced by a slight kink. The chaotic probable-
attractor persists, a&s shown in Appendix B. With a second modificatien,
based on the concepts of complex dynamical systems theory (Abraham, 1982a,
1982h, 1982¢), we introduce a response of the hypothalamus te the
pituitary hormone, which we call short feedback. Then, in an extensive

series of simulations, we discover a second periodic attractor, shown in
Appendix C, and a rich bifurcatiom diagram, indicated in Appendix D.

2. THE BASIC SYSTEM FOR LONG FEEDBACK

Here we review the simple model which exhibits a Hopf bifurcation. In
this model, the endoerine system consistas of three hormonal sources: the
hypothalamus (H), the pituitary (P), and the gonads (G}. Each of these
emits a single hormone: luteinizing-hormone releasing hormone(R) from H,
luteinizing hormone{L) from P, and testosterone(T) from G. We represent
the appropriate serum concentration of each (normalized or rescaled
values, relative to standard levels) by x, ¥, z, respectively. The domain
of the basic dynamical system 18 Euclidean three-space, with these
relative concentrations as coordinates., The system of first-order
equations for the rates of secretion of the three hormones inte the
relevant circulatory systems represents the long feedback loop of Figure
ls The basic equations are:

= f(z) - x

= hix) - ¥ (1)
=gly) - =

e e MWe

Choosing the simplest forms for the three stimulus-response (S-R)
functions £, h, and g (as shown in Fig. 2), a Hopf bifurcation is obtained
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{al (b}

FIGURE 1. THE LOKG FEEDBACKE CYCLE.
{a) schematic diagram (b) pictorial diagram

in system (1) by varying the parameter a. We regard this parameter as a
control of the statte coupling function, f. The other parameter, £[0], 18
held fixed.

The basic system is physiologically more plausible if all three S-R
functione are smooth ramps (Michaelis-Menten functions). For ease of
digital simulation, we shall use plecewise-linear ramps for our improved
basic system, shown in Fig. 3. This improved basic system exhibits the
same qualitative Features as the original basic system. The trajectories
are shown in Figs. Al and A2 in Appendix A. The traditional analysis is

summarized here for review.

{al [{-1] il

FIGURE 2. THE SIMPLEST 5-R FUNCTIONS OF THE BASIC SYSTEM.
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fa) [k} fel

FIGURE 3. PIECEWISE-LINEAR RAMP 5-R FUNCTIOM OF THE IMPROVED
BASIC SYSTEM.

We begin by loecking for the critical points of the improved basic
system. Setting the three rates to zero, we have:

x = £(z)
¥ = h(x) (2)
z = gly)
or, equivalently,
x = f(g[h(x)]) = F(x), (3)

where F = fogoh, which we shall call the zero discriminant function.
Zeroes of the vector field are revealed as fixed points of this function,
or equivalently, as intersections of its graph with the diagonal, D =
{x,x}.

In the original system (Figure 2) with g and h equal to the identity,
F is equal to f, and is monotone decreasing, as shown in Figure 4a. In
the improved system (Figure 3), F is still monotone, as shown in Figures
4b and 4c. The toe of F at x = ¥) occurs at the smallest of the three
saturation stimuli, so even in the improved system (Figure 3), all three
cases of Fig. 4 are possible. Im each, however, there is only one
crossing of the diagonal, D, at x = x,. Thus F(xo} = D(xg) = x5, and x,
determines the unique critical point of the improved system,

pp = (xg ¥p» Zp) = (x5, hixgl, g(h(xg)) (4)
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{a) b} fet

FIGURE 4, THE ZERO DISCRIMINANT FUNCTION.

Assuming that this point is typlcal (that is, not at a joint of £, g, or
h}, then the system is linear at Pg* Or, 1f we put

X=x-1x
YT=y=y (5)
Z=1z-1z

the system becomes
X" = =aZ = X
YYeueX-X% (8}
Z” = bY - Z

or, in matrix notation, P™ = AP

where
=1 0D =a
A= c =1 0 (7)
0 b =1

A has eigenvalues, (-abe)l/3 - 1, as shown in Figure 5. If m = 1, we get
a Hopf bifurcation, so we exclude this case (see Fig. 4a(cube root)) and

increase the radius, m, via a, b, or c.
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(a) {b)

FIGURE 5, CHARACTERISTIC EXPONENTS.
The spectrum of A, with corresponding phase portraits.

(a) Rest point, small m (b) Oscillation, large m

3. THE CHAOTIC ATTRACTOR

The modified long feedback reponse function introduced by Rdesler, Gotz,
and Rdssler (1979), and used by them and by Sparrow (1981) to obtain a
convergent sequence of bifurcations leading to a chaotic probable-
attractor, is shown in Figure 6(a). The large rise to the right is not
actually needed. We replace this by a plecewise linear form of the
Michaelis-Menton S-R function, as in the basic model of the preceding
section. This is shown in Figure 6(b). With the height of the skirt as a
control parameter, the sequence of bifurcations still converges to a
chaotic attractor. The details are shown in Appendix B. It may yet be
unacceptable physiolgically but monotonicity is violated only in a very
small region of hormone concentrations.
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FIGURE 6. THE LONG FEEDBACK FUNCTIONS FOR CHAOS.

(a) The original V-function. (t) The modified function.

4. THE NEW MODEL WITH SHORT FEEDBACK

We now include short feedback between the hypothalamus and the pltultary,
by supposing the hypothalamus (H) is sensitive to L, emitted by the
pituitary (P), as well as to T from the gonads (G), Thus we replace the
scheme of Figure 1 by the modified one of Figure 7, and add the new

H
X
v ¥
{ I
P
controls
h
¥
s ©
fa} 113

FIGURE 7. THE MODIFIED SCHEME WITH SHORT FEEDBACK.

(a) Schematic (b) Pictorial
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FIGURE 8., THE SHORT FEEDBACK FUNCTION.
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(b)
FIGURE 9. ZEROS OF THE MODIFIED SYSTEM.

(a) Choice of constants (b) Zero discriminant
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response function, e(y) to the x equation. We assume the new 5-R
function, e, 18 a plecewlse-linear ramp, like f, g, and h, as shown in

Figure 8, obtaining the modified system,

= aly) + flz) - x
= hix) - y (8)
= gly) - =z

He e

Seeking ecritical points as before, we see that (xu,yu,zn} is a
eritical point of the system (8) only if y, = hixgl, zg = glyg), and xg =
G(xﬂ}, where:

G{x) = £(g [h{x)]) + e(h[x]) = P(x) + E(x)

Unlike that for F previously, G is no longer monoctone. We will
suppose the parameters of the functions are related as shown in Figure 9a.
Then the graphs of E and F are as in Figure 9b. The toe joint, Yo
shoulder joint, ¥3» and height, d, of the new sensitivity function, e, now
join the height, a, and toe, b, of the original funetion, f, as the
control parameters of the static coupling function, fte.

5. THE TWO PERIODIC ATTRACTORS

We first fix the function f as one which provides a periedic attractor in
the basic model of Sectiom 2, as shown in Fig. AZ. We next choose
appropriate values for the toe and shoulder joints of the new response
function, e. Then, regarding the height of e as the sole control
parameter of the coupling function to the hypothalamus, simulation reveals
the bifurcation diagram of the double fold catastrophe. & similar result
has been discovered in a sequence of enzymatic reactions (Decroly and
Goldbeter, 1982).

The actual trajectories are shown in the sequence of computer
drawings in Appendix C. Thie diagram has been deseribed in great detail
as a model for intermittency and noise amplification (Abraham, 1983a).
Here is the idea. Reducing the three-dimensional state space of the
endocrine system fictitiously to eme (for example, by observing only the
amplitude of the oscillations) we may portray this bifurcation diagram in
a plane, as shown in Fig. 10.
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FIGURE 10. PERIODIC DOUBLE POLD CATASTROPHE.

Increasing the control parameter from the far left across both
bifurcation points, we observe a catastrophiec change from the normal cycle
to the alternate cycle at the right bifurcation point. Returning the
control to its original value, we observe a catastrophie return to the
normal eycle at the left bifurcation point. This is a hysteresis loop in
the control space. If, for example, the control parameter were determined
by another dynamical system, we might observe changes between the two
cycles intermittently. This provides a model for intermittency im the
context of serially coupled dynamical systems. In this particular case,
both of the states intermittently occupled are periediec.

Now suppose that the scale of the amplitude (vertical) axies in Figure
10, relative to the control (horizontal) scale, is small. Thus, a very
small oscillation in the control parameter results in a relatively large
alternation between the normal and alternate cycles, Further, a small but
noisy variation of the control parameter crossing both bifurcation points
repeatedly results in a large and noisy varlation between the two cycles.
This is a model for noise amplification in the context of serially eoupled

dynamical systems. We see in Appendix C that in our modified model for
the endocrine system, this exaggerated scale relationship applies. Small
changes in the control parameter (height of the skirt between 0.70 and
0.95) produce a large, hysterical wvariation between the mormal cycle and
the alternate state. The magnitude of this variation is clearly shown in
Figure C2(e).



Chaos, Intermittency in Endocrine System Model 43

6. APPLICATIONS TO THE PHYSILOLOGICAL SYSTEM

Suppose that in Fig. 10, the upper attractrix corresponds to the normal
cycle exhibited in adults. The lower attractrix i1s an oscillation of
smaller amplitude, and totally different perled. This suggests three

different possible physiological implications.

First, it is known that the hormone R effects the release of another
hormone, follicle-stimulating hormone, from the pituitary in addition to
L. The two different cycles of the model may correspond to the required
stimull for the release of the different hormones. The switching between
the two release mechanisms would be effected by variations in the control
parameter. This may thus be a mechanism for differential release of the
different hormones.

Second, in view of the results of Appendix C, we see that
amplification by the endocrine system of noise in the control parameter
(sensitivity of H to R) could account for observed experimental moise in
the serum concentratiom data of L and G.

As a third possible implication, suppose that the parameters in the
model correspond to two different cycles, one characterizing the normal
state, and the other a pathological state corresponding to some discrder.
Then, based on the diagram, we may propose twe therapeutic strategies.
First, as dynamical systems latch on attractors, we may try to force the
system from one attractor inmto the basim of the other, where it will then
latch. Although catastrophic, this seems to have found some support in
recent clinical findings (Jaffe, 1982), On the other hand, if a way were
known to adjust the height parameter of the short feedback response
function, e, of the hypothalamus to luteinizing harmenic, then a small,

gradual, temporary decrease would achieve the Bame effect.

7. CUSP CATASTROPHES

We fix the basic response function, f, as above. Fixing the height of the
new response function, e, at a convenient value, we now vary the toe and
shoulder joints to the right and left. The effect of moving the toe iz to
raise and lower the lower spike of the zero discriminant along the incline
of £, as shown in Figure D1{d), in Appendix D. As this spike passes
through the diagonal, D, the two eritical points annihilate. The periodic
attractor, originally created from one of these by a Hopf bifurcation,
eventually disappears (becomes nonattractive) as well, as ghown in Fig.
Di(e).
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Similarly, moving the shoulder joint of e to the right lowers the
upper splke along the incline parallel to £, as shown in Fig. D2(d). When
this spike passes through the diagonal, D, another static annihilation
catastrophe occurs. Taking these events together, we see that we have a
static cusp catastrophe, with toe and shoulder joint hormonal
concentrations as control parameters.

If the slope of f were above the Hopf bifurcation value (=8}, this
cusp catastrophe would involves two point attractors and a saddle point,
the static cusp catastrophe., If the slope of f is below the Hopf

bifurcation value but close to it {(which it was not, in our simulations)
then the twe pericdic attractors and the periodic saddle cycle would also
be related in a cusp catastrophe, the periodie cusp catastrophe.

Likewise, if the skirt of f were lifted as in Section 3 above, we
conjecture that three chaotic limit sets (two attractors and a saddle)
would be related in a chaotic cusp catastrophe. We have mot verified this

behavior with simulations, but the computer drawings of Appendix D are
highly suggestive.

8., CONCLUSIONS

In the literature of complex dynamice (Abraham, 1982, 1983) it is proposed
that serial networks of dynamical schemes provide a useful strategy for
the architect of dynamical models and applicatiomns. Further, it is
suggested that serial chains are important cases, and serial cycles are
most important. The basic model of Smith (1981) was chosen as a test case
for the theory. Here, we have put these proposals to a practical test.
This results in a plausible modification to the basic model, a serial
eycle with three dynamic nodes (Fig. 1), through the additiom of one edge
(Fig. 7). Simulations of the resulting complex dynamical scheme,
exploring the effects of variations in its five parameters, reveal a rich
bifurcation diagram. The qualitative interpretation of this diagram may
enable better modeling and simulation of endocrine systems, and the
discovery of new therapeutic strategles. Further, the application of this
style of modeling to other kinds of complex systems may likewise create
models for them, in which the basic phenomena of complex dynamics (chaos,
intermittency, catastrophes, hysteresis, and so on) may be fitted by the

model &
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APPENDICES: COMPUTER DRAWN ORBITS

These are computer plots of two—dimensional projections of trajectories of
the dynamical models into the (x,z) plane. They have been computed on a
DEC VAX 11/780 with 2.5MB of mein memory, and a floating point
accelerator. The ORBIT program, written in € and run under UNIX
V7/4.1B5D, uses a fourth-order Runge-Kutta algorithm with Richardson
extrapolation. The output was viewed on a Ramtek 610 color graphics
terminal (320x240 pixel resolution) and plotted on a Tektronix plotter.

A. BASIC MODEL, HOPF BIFURCATIONS.

Fig. Al. BASIC MODEL, STATIC DOMAIN,
The normal point attractor.

(a) Long feedback function.

(b} Short feedback function.

(e} Zero discriminant and diagonal.
(d) Detail of the intersectiom.

(e} Trajectories.

Fig. AZ. BASIC MODEL, PERIODIC DOMAIN.
The normal periodic attractor.

(a) Long feedback function.

{b) Short feedback function,

(e} Zero discriminant and diagonal.
(d) Detail of the intersection.

(e) Trajectories.

B. RAISED SKIRT MODEL, ONSET OF CHAOQS.

Fig. Bl. RAISED SKIRT MODEL, PERIODIC DOMAIN.
The perturbed pericdic attractor.

(a) Long feedback function.

(b) Short feedback functiom.

(e) Zero discriminant and diagonal.

(d) Detail of the intersection.

(e) Trajectorles
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Fig. B2. RAISED SKIRT MODEL, TRIPLE-PERIODIC DOMAIN.,
Attractive cycle exhibiting triple the normal period.
(a) Long feedback function.

(b) Short feedback function.

(c) Zero discriminant and diagonal.

(d) Detail of the intersection.

(e) Trajectories.

Fig. B3. RAISED SKIRT MODEL, CHAOTIC DOMAIN.
The chaotic attractor of RSssler et al.

(a) Long Feedback function.

(b) Short feedback function.

(¢c) Zero discriminant and diagonal.

(d) Detail of the intersection.

(e) Trajectories.

C. SHORT FEEDBACK MODEL, BIRHYTHMICITY.

Fig. Cl. SHORT FEEDBACK MODEL, BIMODAL DOMAIN.

The normal periodic attractor dominates, but a new
attractor has been born.

(a) Long feedback function.

(b) Short feedback function.,

(¢) Zero discriminant and diagonal.

(d) Detail of the intersection.

(e) Trajectories.

Fig. C2. SHORT FEEDBACK MODEL, BIRHYTHMIC DOMAIN

point

The new periodic attractor, inside the normal cycle, has appeared

after a Hopf bifurcation of the nmew point attractor.
(a) Long feedback function.

(b) Short feedback function.

(c) Zero discriminant and diagonal.

(d) Detail of the intersection.

(e) Trajectories.

Fig. C3. SHORT FEEDBACK MODEL, ALTERNATE-PERIODIC DOMAIN.

The normal periodic attractor has destabilized, but the alternate

periodic attractor remains,

Smith
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(a} Long feedback function.

{b) Short feedback function.

{c) Zero discriminant and diagomal,
(d} Detail of the intersection.

(e} Trajectories,

Fig. C4. SHORT PEEDBACK MODEL, ALTERNATE-STATIC DOMAIN.

The alternate periodle attractor has become a point attractor,
through an inverse Hopf bifucation.

(a) Long feedback function.

(b) Short feedback function.

(e) Zero discriminant and diagonal.

(d) Detail of the intersection.

{e) Trajectories.

D. SHORT FEEDBACK MODEL, CUSP CATASTROPHES.

Fig. Dl. SHORT FEEDBACK MODEL, VARIATION OF THE TOE PARAMETER.
Compare with Fig. C2(e). Moving the toe to the left moves the
lower spike upwards, along the incline of f, as shown in Fig.
Dl{(d) here. 1In this case, the normal eycle has suffered a
perlodic annihilation catastrophe, involving a collision with its
geparator.

(a) Long feedback Functiom.

(b) Short feedback function,

(e) Zero discriminant and diagonal.

(d} Detail of the intersection.

(e) Trajectories.

Fig. D2. GSHORT FEEDBACK MODEL, VARIATION OF THE SHOULDER
PARAMETER.

Compare with Fig. C2. Moving the shoulder to the right lowers
the upper spike along the incline parallel to £, as shown in (d)
here. In this case, the alternate limit cycle has become a
perodic repellor.

(a) Long feedback function.

{b) Short feedback function.

(e} Zero discriminant and diagonal.

(d) Detail of the intersection.

(e} Trajectories.
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Fig. Al. BASIC MODEL, STATIC DOMAIN.
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(e}

Fig. Al. BASIC MODEL, STATIC DOMAIN,
The normal point attractor.

(a)
(b)
(c)
(d)
(e)

Long feedback function.

Short feedback function,

Zero discriminant and diagonal.
Detail of the intersection.
Trajectories.
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Fig. A2, BASIC MODEL, PERIODIC DOMAIN.
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(e}

Fig. A2. BASIC MODEL, PERIODIC DOMAIN.
The normal periodic attractor.

(a)
(b)
(e)
(d)
(e)

Long feedback functicn.

Short feedback function.

Zero discriminant and diagonal.
Detail of the intersection.
Trajectories.

5l
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10 2
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{a) (k)
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{eh {d)

Fig. Bl. RAISED SEIRT MODEL, PERIODIC DOMAIN.
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{e)

Fig. Bl. RAISED SKIRT MODEL, PERIODIC DOMAIN.
The perturbed periocdic attractor.

(a) Long feedback function.

(b} Short feedback functiom.

(c) Zero discriminsnt and diagonal.

(d) Detail of the intersectiom.

(e) Trajectories.
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Fig. B2.
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RAISED SKIRT MODEL, TRIPLE-FPERIODIC DOMAIN.
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{e)

Fig. B2, RAISED SKIRT MODEL, TRIPLE-FERIODIC DOMAIN.
Attractive cycle exhibiting triple the normal period.

(a)
(b)
(e)
(d)
(e)

Long feedback functionm.

Short feedback function.

Zero discriminant and diagonal.
Detail of the intersection.
Trajectories.
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Fig. B3, RAISED SKIRT MODEL, CHAOTIC DOMAIN.
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A

B

le}

Fig. B3, RAISED SKIRT MODEL, CHAOTIC DOMAIN.
The chaotic attractor of Rossler et al.

(a)
(b)
(c)
(d)
(e)

Long Feedback function.

Short feedback function.

Zero discriminant and diagonal.
Detail of the intersection.

Trajectories.
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Fig. €l. SHORT FEEDBACK HODEL, BIMODAL DOMAIN.
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[ed

Fig. Cl. SHORT FEEDBACK MODEL, BIMODAL DOMAIN.

The normal periodic attractor dominates, but a new

attractor has been born.

(a)
{b)
(e}
(d)
(e)

Long feedback Efunction.

Short feedback function.

Zero discriminant and diagonal.
Detail of the intersection.
Trajectories.

point
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Fig. CZ. SHORT FEEDBACK MODEL, BIRHYTHMIC DOMALN
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(el

Fig. C2. SHORT FEEDBACK MODEL, BIRHYTHMIC DOMALN

The new perlodic attractor, inside the normal cycle, has appeared

after a Hopf bifurcation of the new point attractor.

(a)
(b)
(e)
(d)
(e)

Long feedback functiom.

Sheret feedback function.

Zero discriminant and diagonal.
Detail of the intersectiom.

Trajectorles.
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Fig. C3. SHORT FEEDBACK MODEL, ALTERNATE-FPERIODIC DOMAIN.
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HﬁHHH‘HLH‘““ﬂﬂ—-___________.-fﬁ

(=)

Fig. C1. SHORT FEEDBACK MODEL, ALTERNATE-PERIODIC DOMAIN.
The normal periodic attractor has destabilized, but the alternate

periodic attractor remains.

(a)
(bl
(c)
(d)
(e)

Long feedback function.

Short feedback Function.

Zero discriminant and diagonal.
Detail of the intersection.

Trajectorles.
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Fig. C4. SHORT FEEDBACK MODEL, ALTERNATE~STATIC DOMAIN.
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Pl
\L_/—/

(=)

Fig. C4, SHORT FEEDBACK MODEL, ALTERNATE-STATIC DOMAIN.

The alternate periodic attractor has become a point attractor,
through an inverse Hopf bifucation.

(a) Long feedback function.

(b) Short feedback function.

{c) Zero discriminant and diagonal,

(d) Detail of the intersection.

(e} Trajectories.
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{a) (b}

(c) ©o{d)

Fig. D1, SHORT FEEDBACK MODEL, VARIATION OF THE TOE PARAMETER.
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()

Fig. Dl. SHORT FEEDBACK MODEL, VARIATION OF THE TOE PARAMETER.
Compare with Fig. C2(e). Moving the toe to the left moves the
lower splke upwards, along the incline of £, as showm in Fig.
Dl{d) here. In this case, the normal cycle has suffered a
periodic annihilation catastrophe, invelving a collision with its
separator,

{(a) Long feedback Function.

(b) Short feedback function.

{e) Zero discriminant and diagonal,

(d) Detail of the intersection.

(e) Trajectories.
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Fig. D2. SHORT FEEDBACK MODEL, VARIATION OF THE SHOULDER PARAMETER.
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(=)

Fig. D2. SHORT FEEDBACK MODEL, VARTATION OF THE SHOULDER
PARAMETER.

Compare with Fig. C2Z. Moving the shoulder to the right lowers
the upper splke along the incline parallel to £, as shown in (d)
here. In this case, the alternate limit cycle has become a
perodic repellor.

(a) Long feedback function.

(b} Short feedback function.

(c) Zero discriminant and diagonal.

(d) Detail of the intersection.

(e) Trajectories.
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