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In the chaotic attractors we have come to know experimentally, there
frequently are distinguished ecritical points or closed orbits which
organize the geometry. Here, we describe the geometry of the Lorenz
attractor in terms of a yoke of outsets from three such distinguished
organizers, and speculate on the generalizatiom of this cutstructure to

other chaotlic attractors.

1. Neat heteroclines. Consider tweo basic sets of a flow, Alpha and
Omega. That is, each set is hyperbolic, invariant, and indecomposable, or

Axiom A. These are heteroclinic 4f there is a trajectory from one to the
other. Let us suppose there is a trajectory from Alpha to Omega. Thus,
some trajectory has Alpha for its alpha limit set and Omega for its omega
limit set. Then it follows that the outset (unstable manifold) of Alpha,
Out{A), approaches arbitrarily close to the outset of Omega, Out{Y).
Considering the implications of the hyperbolicity of Omega, and the
invariant manifold theorem, there must be an intersection of the boundary
of Out{A) with Out(Y) itself. We say that Alpha is neatly heteroclinic to
Omega 1f the dimension of Out(A) is one more than the dimension of Qut(Y),
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and the boundary of Out(A) is identical to Out(Y). This is the case in

the Lorenz attractor, as we shall see.

2. Yokes and Coboundaries. We now suppose, for simplicity, that the

basic sets under discussion are hyperbolic critical elements, that is,
critical points or closed orbits. Further, we consider three of these, A,
B, and Y, where both A and B are heteroclinic to Y. We call this a
heteroclinic yoke., We will see that these yokes can behave very much like

homoclinic cycles in some flows: 1in the presence of reinsertion, they may
make horseshoes, knots, and chaos. Now suppose the yoke 1s neat, that is,
both of the heteroclinic links are neat. Then Out(A) and Out(B) are both
bounded by Out(Y). Due to the hyperbolic structure of the three critical
elements, the closure of the union of the three outsets is locally

attractive. It is a candidate for an attractor, in fact.

3. Reinsertion. Note that the three outsets of a yoke must go
somewhere. The omega limit sets in the boundary of these outsets are also
yoked. But in the case of a neat yoke, if we suppose that the entire
boundary of Out(A) and Out(B) is Out(Y), then Out(Y) has nowhere to go.
So, this is only possible if Out(Y) either goes off to infinity, or it is
reinserted, as Rossler would say. That is, the boundary of Out(Y) is
found in the closure of the union of the three outsets, the candidate
attractor. And both of these cases occur in the Lorenz attractor, as we

show visually in the next section.

4. Example: the Lorenz attractor. Here is a neat yoke, expressed

in a sequence of eight drawings which we made while trying to understand
Perello (1980).
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FIGURE 1. Here are two saddle points, A and Y. They are hyperbolic, in
three dimensions. One, A, has index 2, with spiral dynamics on its planar
outset (shaded). The other, ¥, has index 1, with nodal dynamics on its
planar inset (dotted), In(Y¥). The two outsets are attractive, as shown by
the neighboring trajectories. As Out(A) and In(Y) are both two-
dimensional, they could intersect transversely im three space. Lf they
did, the transversal intersection would have to be a trajectory, the
heteroclinic trajectory.
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B

FIGURE 2, Adding another saddle point, B, essentially identical to A, we
make a yoke like this. Both A and B are heteroclinic to Y. They are

transversally heteroclinic, as the two planar outsets (shaded) intersect

the planar inset (dotted) transversally. There are two heteroclinic
trajectories in this yoke. Note that the arriving outsets are incident
upon the departing outset, at Y, Thus, it is possible that this is a neat
yoke. Next, we will see where these outsets end up.
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FIGURE 3. As the arriving outsets, Out(A) and Out(B), both have spiral
dynamics, the departing outset which bounds them, Out(Y), swirls around
and reinserts, as shown here. It can not go off te infinity.
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FIGURE 4. The result of reinserting is this: as each branch of Out(Y)
gwirls around one of the shaded outsets, it approaches near the other
shaded outset. It gets attracted, as outsets are attractive, Thus, the
omega limit set of Out(Y) is withia the closure of the uniom of the three
voked outsets.
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FIGURE 5. And here, for comparisen, 1s a computer drawing of the Lorenz
actractor. Inspection of the equations reveals the three distinguished
saddle points, right where we want them. But the planar Iinset of the
saddle point in the lower center is qualitacively invisible. It is a kind
of separatrix. Mow we will add it to the picture, with its Full

extension.
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D

FIGURE 6., Referring to Figure 4, we run the flow backwards in time, to
extend the planar (dotted) inset outwards from Y. It follows the
heteroclinic trajectories (dashed) back to the yoked saddles, A and B,
scrolling as it goes.
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FIGURE 7. Extending the dotted ineset farther backwards in time, it
scrolls up tightly around the one-dimensicnal insets of A and B, In(A) and
In(B). We have mot saild much about these curves so far., But 1f we could

reverge the arrow of time for a moment, we would have a neat heteroclinie
from T to A (likewise, from ¥ to B) and thus In(A) and In{B) comprise the
boundary of Out(Y). We may call this a neat reverse yoke. The boundary
of Out(Y) also contains the repellor at infinity.
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FIGURE 8. Extending the dotted inset farther backwards still, the four
ends of the scrolls are pulled out along the curves, In{A) and In(B),
toward their source at infinity.
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