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Abstract.

Complex dynamical systems theory is a new development, in which

concepts of nonlinear dynamical systems theory (static, periodic and chaotic
attractors; basins and separators; structural stability; subtle and cata-
strophic bifurcations) are combined with concepts of system dynamics and
control theory (input/output, feedback, networks) for the purpose of
modeling complex systems, This paper presents an outline of the theory,
simple applications, and simulation techniques .
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INTRODUCTION

Complex dynamics has evolved in attempts to
medel and simulate complex systems, espe-
cially in physiology. Rs the concepts are
scattered throughout literature in diverse
fields, we attempt here to collect and
summarige them. More details and illustra-
tions may be found in the original papers
(Abraham, 1979, 1983; Abraham and Shaw,
1983b) .

COMPLEX DYNAMICS

A complex dynamical system is a network, or
directed graph, of nodes and directed edges.
The nodes are simple dynamical schemes or
dynamical systems depending on control
parameters. The directed edges are static
schemes, or output/input functions depending
on control parameters. These provide the
serial coupling from the instantaneous
states at one node into the control param-
eters of another.

Simple Dynamical Schemes

These are variously known as control vector-
fields, parameterized flows, and so on.

Defipitions. Let C be a manifold modeling
the control parameters of a system, and §
another manifold, representing its instan-
taneous states. Then a simple dynamical
scheme i=s a smooth function assigning a
smooth vectorfield on 5 to every point of C.
Alternatively, we may think of this function
as a smooth vectorfield on the product mani-
fold, C = S, which is tangent to the state
Eibers, {c} x 5. For each control point,

c £ C, let Xic) be the vectorfield asaigned

a8z

by the scheme. We think of this as a
dynamical system on S, or system of first
order ordinary differential egquations.

Attractors and basins. In each vectorfield
of a scheme, X(c), the main features are the
attractors. These are asymptotic limit
sets, under the flow, for a significant set
of initfal conditions in 5. These initial
states, tending to a given attractor
asymptotically as time goes to plus infin-
ity, comprise the Basins of X(c). Every
point of § which is not in a basin belongs
to the separator of X{c). The decomposi-
tion of 5 into basins, each containing a
single attractor, is the portrait of Xlc).
Attractors occur in three types - static

(an attractor limit point), periodic (an
attractive limit cycle, or oscillation), and
chaotic (meaning any other attractive limit
sat) .,

Diagrams. For each point ¢ of the control
manifold, the portrait of X(c) may be
visualized in the corresponding state fiber,
fc} % 5, of the product manifold, C x 5.
The union of the attractors of X(c), for
all control points ¢ of C, is the
attractrix, or locus of attraction, of the
scheme. The union of the separators of
X(e)l, for all control points, is the
separatrix of the scheme. Those sets,
visualized in the product manifold, comprise
the diagram of the scheme. Many examples
are fully illustrated in the literature.

Catastrophes and Subtle Bifurcations

For most control points, ¢ € C, the portrait
of X(c) is structurally stable. That is,
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perturbation of the control parameters from
£ to another nearby point cause a change in
the portrait of X{c) which is small, and
gqualitatively insignificant. In exceptional
cases, called bifurcation contrel points,
the portrait of X(c) significantly changes
as control parameters are passed through the
exceptional point. Many cases, generic in a
precige mathematical sense, are known, and
the list is growing. These bifurcation
events all fall into two categories. A
bifurcation is subtle if only one attractor
iz involved, and its significant gualitative
change is small in magnitude, For example,
in a Hopf bifurcation, a static attractor
becomes a very small periodic attractor,
which then slowly grows in amplitude. All
other bifurcations are catastrophic. In
some of these, called blue-sky catastrophes,
an attractor appears from, or disappears
into, the blue (that is, from a separator).
In others, called omega explosions, a small
attractor suddenly explodes into a much
larger one. All of these events are very
common in the simplest dynamical schemes,
such as forced oscillators. The bifurca-
tions are clearly visualized in the diagram
of a scheme, which is sometimes called the
bifurcation diagram. The theory up to this
point is adequately described in the litera-
ture (Arnold, Chow and Hale, Guckenheimer
and Holmes, Hirsch and Smale),

Static Coupling Schemes

Consider two simple dynamical schemes, X

on Cx I and ¥ on D x S. The two schemes
may be serially coupled by a function which,
depending on the instantaneous state of the
first (a point in I), sets the controls of
the second (a point in D). A static coup-
ling scheme is just such a function, but may
also depend on control parameters of its
own. Thus, let E be anocther control mani-
fold, and g:E x I + D. Then the serial
coupling of X and ¥ by the static coupling
scheme g is a dynamical scheme with control
manifold ¢ x E, and state space I X 5,
defined by

zlc,e) li,s) = [X(c) (i),¥(gle,i)(s]]

This is the simplest example of a complex
dynamical scheme, symbolized by

le

D
I|x
"¢ E

or equivalently by

[ -
X g Y

in the literature (Abraham, 1983a; Abraham
and Shaw, 1983B).

Serial Networks

A large number of simple dynamical schemes
may be coupled, pairwise, with appropriate
static coupling schemes. The result, a
serial network, may be symbolized by a
directed graph. This is the full scale
complex dynamical system. Its purpose, as
a mathematical construction, is to model
complex dynamical systems in nature. This
strategy has been introduced in Abraham and
Shaw (1983b).

SIMPLE WETWORES

Several pedagogic examples have been pre-
sented (Abraham, 1983b, 1983c). We review
them here.

Master-slave Systems

The simplest complex scheme consists of the
serial coupling (as illustrated above) of
two simple dynamical schemes. The behavior
of these simple examples is notoriously
complicated. Suppose that the control
parameters of the first (or master) system
are fixed. After startup, from an arbi-
trary initial state, the startup transient
dies away, and the master system settles
asymptotically into one of its attractors.
We consider the three cases separately.

Static master. If the attractor of the
master system is a static (point) attractor,
and the control parameters of the coupling
scheme are left fixed, then the control
parameter of the second (slave) system are
likewise fixed. Typically, this static
control point of the slave system will be
a typical (nonbifurcation) point, and the
slave system will be observed in one of
its attractors (static, pericdic, or
chaotic.

Periodic master. With fixed controls of
the master and the coupling function, a
periodic master attractor will drive the
slave controls in a pericdic cycle. This
is the situation in the classical theory of
forced oscillation. Experimental study of
these systems began a century of so ago,
and continues today.
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Chaotic master. This situation, forced
chaos, has received little attention so far.
Preliminary discussion may be found in
Abraham (L983c).

Chains of Dynamical Schemes

If three schemes are connected in a serial
chain by two static coupling schemes:

o--O-0--0O-9

a complex system with a very complicated
bifurcation diagram may result. If the
first pair comprise a pericdic master fore-
ing a simple pendulum, as described above,
the terminal slave may be either a period-
ically or chaotically forced system. Of
course, if all three systems are pendulum-
like (one basin, static attractor) the
serial chain is also pendulum-like, But a
pericdic attractor in either the first or
second dynamical scheme is adequate for rich
dynamics in the chain.

Cycles of Dynamical Schemes

If the directed graph of a complex scheme
contains a cycle (closed loopl then compli-
cated dynamics may occur, no matter how
simple the component schemes. The minimal
example is the serially bicoupled pair:

Even if the two dynamical schemes are
pendulum-like, the complex system may have a
periodic attractor. For example, Smale
{1976) finds a periodic attractor in exactly
this situation (and a Hopf bifurcaticn} in
a discrete reaction-diffusion model for two
biological cells. A cycle of three
pendulum-1like nodes is discussed below.

EXEMPLARY APPLICATIONS

We turn now to some simple examples of com-
plex dynamical models.

Coupled oscillators

We consider now a master-slave system, in
which the master system is following a
periodic attractor. Controls of the
master system and the coupling function
determine the freguency and amplitude of
the periodic cycle in the control manifold
of the slave system.

bBiiffing system. If the slave system is a
soft spring or pendulum, the coupled system
is the classic introduced by Rayleigh, in
which Duffing found hysteresis and catas-
trophes in 1918 (Abraham and Shaw, 1982).
The bifircation diagram is wvery rich, full
of harmonic periodic attractors and chacs.

Van der Pol systems. If the slave system
is a self-sustained oscillator, the

coupled system is the classic introduced by
Rayleigh, in which Van der Pol found subtle
bifurcations of harmonics (Abraham and Shaw,
1982} and Cartwright and Littlewocod
apparently found chacs (Rbraham and Shaw,
1983a). Both of these classical systems
have been central to experimental dynamics,
and research continues today.

Periodic Hysteresis

If a pericdic attractor in the master system
is coupled to the planar control space of
a glave system with a rich bifurcation dia-
gram containing multiple hysteresis (blue-
sky catastrophe) curves, the coupled system
may exhibit erratic behavior, in a nearly
pericdic pattern. An example of this
pericdic hysteresis, based on the Andronov-
Takens bifurcation diagram, has been fully
described (Abraham and Shaw, 1983b;
Abraham, 1983c).

Intermittency in an Endocrine Model

Models for physiclogical and biochemical
systems have a natural complex structure.
A recent medel for the reproductive system
of male mammals (hypothalamus, pituitary,
testes) is a very simple network (Rbraham,
Kocak and Smith, 1983)

Although the simple dynamical scheme at
each node is a point attractor in a one-
dimensional state space, the complex system
may have two periodic basins, each con-
taining a periodic attractor. This
phanemenon, sometimes called birhythmicity,
has also been found in a biochemical model
(Decroly and Goldbeter, 1982). Small
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changes in the control parameters of the
coupling functions cause intermittent jumps
between the two distinct oscillatory states.

Reaction-piffusion Systems

An unusual example of serial coupling is
provided by the reaction-diffusion model
for biological morphogenesis, introduced by
Kolmogorov, Piskunin, and Pontriagin,
Rashevsky, and Turing (Abraham and Shaw,
1982; Rbraham, 1983h). Given a spatial
domain or substrate, D, and a biochemical
state space, B, the atate space is an
infinite-dimensional manifold of functions
from b to B, . The reaction-diffusion
equation may be regarded as a simple
dynamical scheme of vectorfields on ¥,
depending on a control space, C. Meanwhile,
the spatial substrate is actually composed
of biological cells, considered identical
in structure. As the reaction-diffusion
scheme, the master in this context, deter-
mines instantanecus states of biochemical
{morphogen) concentrations in the substrate,
£:D + B, the cell at a fixed position in the
domain will extract the values of this fune-
tion at its locatien, £({d). This is a peint
of B, which may be regarded as the control
space for another simple dynamical scheme,
modeling the dynamics within the standard
cell. Let ggl(f) = £(d). Then g4 is the
static coupling function from master to
slave. But there are many slaves, each
distinguished by its own location, hence
coupling function. The directed graph is
thus a radial spray, or star, of slaves of
a common master. If in addition each cell
may be a source or sink of bischemical con-
trols, then each connection iz a serial
bicoupling.

SIMULATION TECHNIQUES

After the strategies of complex dynamical
systems have been used in an application,
the resulting model is simply a large
dynamical scheme. That is, a system of
coupled ordinary differential equations, or
partial differential equations of evelution
(parabolic or hyperbolic) must be explored
experimentally, to cbtain the bifurcation
diagram, which is the useful cutcome of the
modeling activity. As the exploration of
the bifurcation diagram is-an unfamiliar
goal of simulation, we review here some of
the strategies used.

orbit Methods

When the dynamical scheme consists of a
modest mumber of crdinary differential
equations of first order, simulation by the
standard digital algorithms (Euler, Runge-
Kutta and so on) and analog techniques
provide curve tracing in the bifurcation
diagram. A large number of curves, for
various values of control parameters and
initial conditions, reveal the principal
features of the diagram.

Relaxation Methods

When partial differential equations--reac=
tion-diffugion, hydrodynamic, plasma,
liguid crystal, solid state, elastodynamic,
and so on--are part of the model, they may
be treated most naturally as dynamical
systems by discretization of the spatial
variables. Thus, the infinite-dimensional
state spaces are projected into finite-
dimensional approximations. Finally, these
may be treated by orbit metheds, to obtain
a bifurcation diagram with loci of attrac-
tion and separation. This is essentially
the relaxation technigque of Southwell.

Dynasim Methods

With small or large, ordinary or partial,
the exploration of a bifurcation diagram

by analog, digital, or hybrid simulation is
extremely time intensive. A considerable
gain in speed may be cbtained with dynasim
methods (Abraham, 1979). Here, special
purpose hardware traces a large number of
orbits in parallel. Having thus found all
the most probable attractors at once, time
is reversed and the basin of each is filled
with its own color. This process is
repeated (perhaps in parallel) for different
values of the control parameters. When
dimensions are large, new technigques of
visualization must be developed.

CORCLUSTION

Complex dynamical systems thecry is a new
development. An outgrowth of nonlinear
dynamics and control theory, it aims to
provide complete strategies for modeling
and simulation of complex systems, whether
in the physical, biclogical, or scocial
sciences.
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