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The chaotic attractor of dynamical systems theory has been widely heralded
as a new paradigm for chaotic and turbulent motione in nature. This idea
has been strongly supported by the experimental discovery of the chaotic

attractor of simulation machines. Is this experimental object an instance

of the mathematical model, or an artifact of nmolse amplification? Here,
we establish the existence of this artifact in the forced Van der Pol
system, explain how it could account for the experimental chaos of the
Lorenz, Rissler, and Shaw systems, describe a critical experiment to
distinguish between the noise-amplification and the chaotic attractor
models, and propose a new concept of dynamical stability.

1. INTRODUCTION

The chactic attractor of mathematical theory began with Birkhoff in 1916.
The chacotic attractor of simulation experiment arrived with Lorenz in
1962. (See Abraham and Shaw, 1983a, for historical detalls.) The
identification of these two objects has not yet succeeded, despite many
attempts during the past twenty years. Of course, everyone (including
myself) expects this to happen soon (see Hirsch, 1983). HNevertheless,
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there 1s an important reason to consider the loathsome alternative: the

quasi-periodic paradox.

2, THE QUASI-PERIODIC PARADOX

The attractive, invariant 2-torus is ubiquitous in dynamical systems. it
occurs, for example, in the "main sequence™ of bifurcations: static
attractor to periodic attractor by a Hopf bifurcation, to an attractive
invariant 2-torus (AIT) by a Neimark bifurcation. It is always found in
forced oscillators,such as the Rayleigh or Van der Pol. According to
Peixoto”s Theorem on the open genericity of structural stability for flows
on the 2-torus, the restricted flow on the AIT must almost always be a
braid of periodic attractors. Thus, the power spectrum of one coordinate
of a typical trajectory would reveal fundamental frequencies of two modes

of oscillation, rationally related. However, most of the time,

experimentalists observe not braids (rationally related frequencies) but

quasi-periodic motions (apparently irrationally related frequencies).

That is the quasi-periodic paradox. More than one scientist has lost
faith in mathematics because of the ubiquity of this illegal motion in the
natural world. In fact, in the forced Van der Pol system, quasi-periodic
motion persists over most of the parameter space (see Abraham and Scott,

1983). We now present three competing explanations of this paradox.

3. THE THICK BIFURCATION MODEL

This scheme is due to Sotomayer (1974). We suppose that the dynamical
system in question has one loose parameter. Thus, we are observing not a
single generic dynamical system on a single AIT, but a generic arc of
dynamical systems on a moving AIT. Therefore the braid bifurcatioms, at
which one braid of periodic attractors changes to another (the ratio of
frequences changes from one rational to another nearby rational), occur
very frequently along this arc. In fact, Herman (1979) showed that the
probability of bifurcation may be close to one. Thus, most of the time,
quasi-periodic motions will be observed. This explanation of the quasi-

periodic paradox is favored by mathematicians.

4. THE NOISE MODULATION MODEL

On the other hand, this one is favored by physicists (Ueda and Akamatsu,
1981; Shaw, 1981). Here we assume that the mathematical model is a single
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generic dynamical system, with a braid of pericdic attractors on an AIT.
But the experimental system simulating it has nolsy imperfections. For
example, the function generator providing the forcing voltage to am analog
computer has low-level noise in its power spectrum. This noise, if its
amplitude is sufficient, will cause the trajectory to leap from one basin
of attraction, on the AIT, to another. The smallest distance form a
periodic attractor to its separatrix (a periodiec saddle) determines the
critical amplitude of noise sufficient for quasi-periodic motion.

3. THE CHAOTIC ATTRACTOR MODEL

This rationale is a compromise of the two preceding ones. While adwitting
that noise modulation occurs in the simulation device, we suppose that
there is a dynamical system model for the device, including its noise. At
this point, we resort te the fact that chaotic attractors are known to
exlst in mathematical theory, even if we do mot yet know whether the
Lorenz system (for example) has one, or not. Thus, a mathematical model
for the simulation device may be regarded as a coupling (generie
perturbation) of the Cartesian product of an AIT (in three dimensions) and
an unknown system with a chaotic structure (in three dimensions or more).
Thue, our observation of the attractor inm three dimensions is a projection
of the actual chactic attractor in six dimensions or more. Hence, there
is no conflict with Peixoto™s theorem.

This obviously models the noise modulation scheme. It may be applied
to the thick bifurcation scheme as follows. Make a dynamical model for
the ambient noise in the single loose parameter. Serially couple this
model to the generic one, by selecting one coordinate (or some other real-
valued function of the state space of the chaotie model) to control the
loose parameter. The resulting coupled system will be quasi-periodic most
of the time.

6. APPLICATION TO EXPERIMENTAL CHAOS

We may take the best known chaotic flows of experiment (Lorensz, 1962;
R¥ssler, 1971; Shaw, 1981) as examples. For the sake of discussion, we
suppose (banish the thought) that these systems do not contain a
mathematical chaotic attractor. Then their apparently chaotic behavior
may, like the quasi-periocdic paradox, be explained by the noise modulation
(and related) schemes. For in each of these cases, the subject dynamical



120 Abraham

system is known to have an attractive invariant set (AIS) which behaves
like the AIT of the quasi-periodic paradox. For example, the AIS of the
Lorenz system is the outset structure of its three saddle points (Lorenz,
1963; Abraham and Shaw, 1983b). The AIS of the R8ssler system is the
outset, a Mobius band, of its fundamental limit cycle (Réssler, 1979;
Abraham and Shaw, 1983a). Finally, the AIS of the Shaw system is the
usual AIT of a forced oscillator (Shaw, 1981; Abraham and Shaw, 1983a;
Abraham and Scott, 1983).

And thus our question: is there chaos without noise? That is: is
there a chaotic attractor in these particular three-dimensional systems

(Lorenz, Rdssler, Shaw) without modulating noise?

7. A CRITICAL EXPERIMENT

We do not know the answer to this question. It could be yes for the Shaw
system, for example, and no for the Lorenz and Réssler systems. We do
know that it is no for the quasi-periodic motion on an AIT. So we imagine
there could be an experimental test for noise modulation; that is, a
procedure to exclude noise modulation as a model for chaotic behavior of
experimental systems. Here is a rough sketch of one such procedure.
Suppose a system is given with a single control parameter, which has
a bifurcation to chaos at one bifurcation value of the control. Then, if
the chaotic behavior is due to noise modulation, the bifurcation to chaos
will depend on the amplitude of the noise. For example if the noise in
the forced oscillator system is reduced, the appearance of quasi-periodic
motion on the AIT will occur for a higher value of the amplitude of the
forcing oscillation. Let noise ratio denote the ratio of power in the
continuous part of the power spectrum of the simulated system, to that of
simulation device at rest. Then the noise ratio, as a function of the
bifurcation parameter, could discriminate between moise-modulated, versus

truly chaotic, behavior.

8. DYNAMICAL STABILITY

The ubiquity of structurally unstable motions, in conflict with Peixoto”s
Theorem in the AIT context, suggests that structural stability is not an
appropriate concept for experimental systems. Here, we suggest an
alternative, very much in the spirit of Ueda and Akamatsu (1981). Suppose
our dynamical system, for simplicity, has a single attractor, and upon

perturbation , it still has a single attractor. In fact, let us suppose
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it is structurally stable, so that the attractor is not significantly
changed by any small, statie perturbation. Supposing the system depends

on control parameters, let us not serially couple the output of ancther

{possibly chaotic) system to these controls. Then the original system is
dynamically stable if its attractor is nmot significantly changed by this
dynamical perturbation, provided it is sufficiently small.

For example, the braided attractors on an AIT are structurally
stable, in the static, classical sense, according to Peixoto”s Theorem,
But they are not dynamically stable, because any amount of dynamical

perturbation (even periodic perturbation) may produce a chaotie attractor,

9. CONCLUSION

The formulation of the chaotic attractor model for noise modulation solves
the quasi-periodic paradox. It may solve a chaotle attractor paradex, if
there is one, in specific systems such as the Lorenz system. We still do
not know if there 1s chaos without noise in these systems, or not. But
noise ratio experiments may shed some light on this question. This 1is a
special case of a more general question: are these systems dynamically
stable? Here we may hazard a conjecture: all natural systems are
dynamically stable. Im fact, we will probably evolve the definition of
stabllity until this conjecture becomes true.
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