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In response to & recent conjecture, we explored two systems in analog
simulation, in search of the blue bagel chaostrophe—-in which a chaotic
bagel attractor disappears into the blue. We found an abundance of these
bifurcations im the forced Vam der Pol systems.

1. INTRODUCTION

In a recent conjecture (Abraham, 1983a, Section A6 and Fig. 3) a blue
bagel chacstrophe is proposed to exist ia the forced Van der Pol system.
This conjecture was based on the discovery of the chactic bagel attractor
in aystems of this type by R. Shaw (1981). Our idea was to study these
same systems in analog simulation, turning the knobs until the bagel
attractor collided with a homoclinie tangle, 1its separatrix, in a mutual
annihilation. We are grateful to Rob Shaw for sharing his lab with us for
these experiments. What we found, more complicated than expected due to
period doubling bifurcations, 1s presented here. The background of this
entire cycle of ideas is a drawing by Hayashi, Ueda and Kawakami (1970)
gracing the cover of Hayashi”s volume of selected papers (1975, p. 186).
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This drawing clearly shows an AIT (attractive, invariant torus) within a
homoclinie tangle, occurring in a forced, conservative, Duffing system.

2. ACCELERATION FORCIKG

First we explored the conventionally forced Van der Pol system, in the

form:

x = ky + px{a - 32} + Asinf
¥y=-x
g = 2nF

The fixed parameters, a = k = 9, y = 32, were chosen by twisting knobs and
looking for likely attractors im the strobe plane. The analog setup in
Rob Shaw”s lab, used for this work, conveniently includes a strobe pulse
and storage scope for direct observations of the of the Poincarf section.
Amid a sea of complex bifurcations, we selected a simple arc, shown in
Fig. 3. |Here A = 0.420, fixed, while F varies from the frequency of the
periodic attractor of the unforced system, 4.2 Hz, to double that, or 8.4
Hz. In Fig. 3 we see:
Two views of the fundamental escillation—

A. Full periodic attractor, F = 4.20 Hz.

B. Strobed periodic attractor, F = 4.20.
Subtle bifurcation to chaotie torus——

C. Full baby torus, F = 6.60

b. Strobed baby torus, F = 6.60

E. Strobed large torus, F = 7.05

F. Two strobed phases, 0 and n, F = 7.05

G. Strobed torus, F = 8,00,
Catastrophic bifurcation back to the fundamental--

H. Strobed pericdic attracteor, F = 8.15.
These two bifurcations are appareatly formed by a nearby homoclinic
tangle. However, we did not observe it. The large attractor, an AIT,
appears quasi-periodic because of noise modulation (see Abraham, 1983b).

3. VELOCITY FORCING

To observe analogous behavior in a chaotic system, we moved the driving
pscillator form the acceleration equation te the velocity, following R.
Shaw (1981). Thus, we explored the system
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x = ky + ux(a - y2)
¥ = =x + Asinf
6 = 2xF
with the same parameters, a=k =9, y= 32, A = 0,420, and F between 4.2
and 10.0 Hz. The results are shown im Fig. &:
The fundamental oscillation—
A. Strobed periodie attractor, F = 6.15.
Chaostrophic¢ bifurcation to a bagel--
B. 5Strobed bagel, F = 6.20.
This continues over a large range—
C. Strobed bagel, F = 9.20.
and chaostrophically collapses again to the fundamental,
D. Strobed periodie attractor, F = 9.25,

Again, these two catastrophic bifurcations are apparently related to
nearby homoclinie saddles, but we did not observe them. In particular,
the bagel in Fig. &4C clearly shows extensive dwell at the top and bottom,
suggesting the locations of the nearby, 4invisible, saddle orbit of period
two.

In Fig. 3, we conjecture a rough idea of the nearby homoclinic
tangles, following the inspiration of Hayashi, Ueda and Kawakami (1969, p.
251): For the conventionally forced system of the preceding section,
forced at about the fundamental frequency—-—

A. Corresponding to Fig. 3D, the baby torus in a homoclinic nest,
And at the end of its regime, at about double the fundamental frequency——

B. Corresponding to Fig. 3G, the great torus in a homoclinic box.
And for the wvelocity forced system of this section, at about the
fundamental frequency--

C. Corresponding to Fig. 4B, the chaotic bagel in & nest— and again
at about double the fundamental frequency--

D. Corresponding to Fig. 4C, the chaotic bagel in a homoclinic box.

4. BIFURCATION COMJECTURES

Without Ffurther experimental work, we may only guess at the bifurcation
sequences behind our observations, shown in Figs. 1| and 2. |Here, we
record a few guesses suggested by the observations. Consider first the
bifurcation, shown 1in Poincarf section from Fig. 1B to 1D. As  the
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AIT bifurcations eobserved in Van der Pol”s svstem.
420 Hz., fundamental.

4,20 Hz., strobed.

b.60 Hz., baby AILT.

6.60 Hz., strobed.
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FIG. | (conkt.)

E. F= 7,05 He., torus.

F. F = 7.05 Hz., opposite phases.
G. F= 8,00 Hz.,, blue torus.

H: F = 8,15 Hz., fundamental.
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Bagel bifurcations observed in Shaw’s system.
6.15 He,, fundamental.
+y blue bagel.
9.20 Hz., blue bagel.

+y fundamental.
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FIG. 3. Conjectured Homoclinic tangles.

A
B.
C.
D.

Like 1D.
Like 1G.
Like 2B.
Like 2C.
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FIG. & Conjectured bifurcation diasgrams.
A. Hopf imn a nest.

B. Blue torus or bagel.

C. Captive balloon.
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FIG.4 (eont.)

D. Subharmonic balloon.
E. Poppyseed.

F. Blueberry.



132 Abraham and Scott

teardrop shaped section of an AIT was observed to grow from a point as the
driving frequency, F, increased, a Nelmark bifurcation within a homoclinic
tangle is an obvious guess, as showm 1n Fig. 4A.

However, in the corresponding bifurcation in Shaw”s system, from Fig.
2A to 2B, the chaotic bagel springs forth fully grown. So we conjecture
here a blue bagel catastrophe, a8 shown in Fig. 4B. The disappearance of
the fundamental periodic attractor, due (in this proposed model) to a
statle annihilation (saddle-node) catastrophe as the frequency is
increased, dropa the trajectory onto the bagel, recently appeared out of
the blue, through the formation of a homoclinic tangle by the lower
periodic saddle. We could apply this model te the preceding bifurcation
as well.

These models are consistent with the well established theory of
generic arce of diffeomorphisms. But based on the observations, we would
prefer a model in which the fundamental attractor destabilizes into a
perlodie saddle with a homoclinie tangle, within which an AIT or a bagel
simultanecusly forms out of the blue, as shown in Fig. 4C. This captive
balloon catastrophe is theoretically unlikely, except at a bifurcatiom of

codimension two. Nevertheless, we seem to observe this repeatedly in the
analog simulations. This is an unsolved paradox at present, and deserves
further study. Suitable bifurcations of codimension three, containing all
three proposed arcs (4A, 4B, 4C) are shown in Figs. 4E and 4F. A third
control parameter, mnot shown, creates a saddle connection. The
" bifurcations at the higher forcing frequencles, from Fig. 1H to 1G and
from 2D te 2C, appear to be subharmonic (period two) versions of the
captive balloon catastrophe, as shown in Fig. 4D.

5. CONCLUSION

The occurrence of toral and bagel chaostrophes in forced Van der Pol
systems 1is established. It remains to draw the surrounding homoclinie
tangles, in the wonderful style of Hayashi, by actual simulation instead
of fantasy. [But that is very difficult. The ubiquitous coincidence of
two bifurcation events, called herea the captive balloon catastrophe, also
suggests further work, in search of a poppyseed bifurcation.
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