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IN PURSUIT OF BIRKHOFF'S CHAOTIC ATTRACTOR

Ralph H. Abraham
University of California

U. 5.A.

A history of the chactic bagel attractor, in theory and in experiments with
forced oscillators, from 1916 to the present, including an account of its

occurrence in catastrophic bifurcations.

1. HISTORICAL INTRODUCTION

There is a growing awareness of the gap between theoretical and experimental
concepts in chaotic dynamics, As the bagel is unique among chaotic attractors in
having a long history in theoretical as well as experimental dynamics, we have

chosen to emphasize it here, in hopes of closing this gap.

In 1932, Birkhoff published@ a remarkable paper on pemarkable curves [1}.
These are curves only 1n the sense that they are closed subsets of the plane of
measure zero, dividing the plane into two components. They originally arose as
attractors in twist mappings of a plane annulus, in 1916. Birkhoff showed they
are not Jordan curves, so he called them remarkable curves. In fact, they are
fractals. The suspension of a twist map provides a flow on a thickened torus,

with a remarkable surface, or fractal torus, as attracter., We call this a
Birkhoff bagel

Shortly after the appearance of Birkhoff's paper, Levingson conjectured that
this bagel might occur in a forced dynamical system of second orxder (2]. At
about the same time, Cartwright and Littlewood [3] guessed that the bagel had
already been observed in this context, unknowingly, by Van der Pol and Van der
Mark [4] in 1927. 1In fact, they reported the cccurrence of an "irregular noise"”
in the earphone of a forced necn glow tube device. This device may be regarded
as an analoyg simulator for some forced dynamical system of second order, but

probably not the well kxnown Van der Pol system.
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In recent years, experimentalists searched in vain for a chaotic attractor
in the forced Van der Pol system until 1580, when Shaw announced a sighting of
the bagel, at last [5]. Very elusive, this Van der Pol bagel ja very hard to
find, but Shaw discovered a variant forcing of the Van der Pol system in which
chaotic bagel attractors abound, which we call Shaw bagels, More recently, we

have found abundant chaos in a forced Van der Pol system [6].

In this paper, we briefly describe these regults, and present some
conjectures on catastrophic bifurcations in which a bagel suddenly appears or

disappears.

2. LIENARD'S DIFFEOMORPHISM
The Van der Pol system in Cartwright normal form,

Xx=y
P 2
¥=-x*k(lx )y, k>0

is obtained from Rayleigh's model for the clarinet reed,
0=y
R 3
Vax -y k(v-v /3 k>0

by differentiation. The equivalence of these two systems is conveniently seen by

applying Lienard's map,

2 2
L:IR ~ IR; (x,¥) = (u,Vv)
defined by

3
u=-y * k(x-x /3), k »0
v =X
which is an area-preserving diffeomorphism. That is, LP = R. This equivalence
ig useful to cobtain the phase portrait of the Van der Pol system, as the Rayleigh

system is easier to analyze directly.

For example, the Rayleigh system is analyzed by means of the two

characteristic curves,
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from which the limit cycle is found, as shown in Figure 1{a). The inverse image
of these two curves, under L, consists of the two axes, However, the analysis of

the van der Pol system directly invelves the curves,

)
.
i

0 (x - axis}

0 (graph of ¥y = x/k(1 - xz))

v
(=8
|

as shown in Figure 1(b}. oObviously it is easier to argue geometrically with the
y-axis than with the three pieces of the curve, DZ'

3. ACCELERATION BIAS

The forced Van der Pol system is conveniently regarded as a serially coupled
scheme of two dynamical systems, one of which is the Van der Fol system with an
acceleration bias, or constant forcing term,

X =y

A )
¥Y=-x*k(1-x )y * b

while the forcing system is

8 = znf {constant)

and the coupling function is

b=2asin @

where A > 0, or sometimes, to break the symmetry,

b=Asin 8 * a
for some constant, a » 0, The factorization of the forced Van der Pol system
into these two subsystems allows a geometric intuition on the behavior of the
forced system, at least, for slow forcing. For the response diagram of the
driven system, PA, may be obtained from the Lienard diffeomorphism. 1In the
Rayleigh coordinates, the pushforward, L _PA, is the velocity-biased Rayleigh

system,

Uu=x-a
RV
x

v
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for which the two characteristic curves are as shown in Figure 1(a), except for
Cl’ which is raised to the horizontal line, v = a. Obviously, the limit cycle

will disappear for {a} » i, leaving an attractive point. Evidently, there are

two Hopf bifurcations in the response diagram of this system, which we call the
red cigar , shown in Figure 2{a). Verification of this response has been

obtained by simulation [&].

Returning to the problem of the elusive bagel, we 3ee that forcing the van
der Pol system will not be likely to produce a chaotic attractor unless the force
is large enough to periodically pass at least one of the Hopf bifurcations.

Also, it will help if the forcing function is asymmetric, and rapid. 1In fact,

these intuitions have succeeded in producing abundant chaos [6].

4. VELOCITY BIAS

The Shaw variant of the forced van der Pol system consists of applying the
force to the velocity rather than the acceleration. Factoring into a serially

coupled scheme of two subsystems, we obtain

P

Xx=y-¢
w{

4
¥ = -x* K1 - x }y

As the Lienard diffeomorphism i's no help in this case, we may study the direct
characteristic curves, as in Figure 1({b), with the horizontal line, D1, raised to
level, ¢. This shows that in general, there are two critical points, a saddle
and a repellor. Thus, as the level, ¢, increases, the limit cycle may interact
with the invariant curves of the saddle. 1In fact, for sowe critical level, c =
tc., the limit cycle vanishes in a blue sky catastrophe, as simulation has shown

0
[6].

Thus the response diagram of this system contains a bounded snake of
pericdic aktractors, the blue gleeve, shown in Figure 2(b). This shows that the
trajectory grows rapidly when the force exceeds the critical values, ico. and
gives some intuitive explanation for the abundance of chactic bagels found in

this system by Shaw.
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5. BAGEL CATASTROPHES

The blue bagel catasircphe is, roughly, the suspension of the blue sky
catastrophe by a periodic forcing system. Previously, we had speculated on the
occurrence of this bifurcation in the forced Van der Pol system [7]. 1In
simulation, we did not find it. 1Instead, we found a red bagel catastrophe, in
which a periodic orbit catastrophically explodes intc a bagel [8]. We end this
bagel review with yet another catastrophic scenaric, related to the bifurcation

of codimension two studied by Chenciner [9].

We consider a flow in Sl * IRZ, cbtained from a forced oscillator with a
single control parameter. Before the catastrophic bifurcation, we have an
attractive invariant 2-torus (AILT) with a rational flow, and braided periodic
attractors and saddles. BAs the control is increased, the toral flow twists
faster, and the inset cylinders of the braided periodic¢ gaddles become tangent to
the outsets (first on one side, later on the other) and transversely homoclinic.
With enly cone side homoclinic, we have a chactic limit set of saddle type, as in
Smale's original horseshoe. But with beoth sides homoclinic, the tangle is
attractive, and comprises a bagel attractor. Thus, in a bifurcation sequence of
codimension one, an AIT explodes into an attractive bagel. The rotation number
is replaced by a rotation interval, probably containing the original rational in
its interior. Many related events, such as the annihilation of two bagels,
suggest themselves. It seems increasingly likely that chaotic attractors abound
in typical forced oscillators. Some further evidence for this is given ih a

companion paper [6].
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Fig. 1{a). Characteristic curves of the Rayleigh system, R, with x = 1,
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Fig. 1(b). Characteristic curves of the Van der Pol system, P, with k = 1.
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Fig. 2(a). The red cigar, in the response diagram for the acceleration-biased Van
der Pol system, PR, or equivalently, the velocity-based Rayleigh system, RV, with
k = 1. The control parameter, a, varies from -1 to 1.
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Fig. 2(b) The blue sleeve, in the response diagram for the velocity-biased Van
der Pol system, PV, with k = 1. The contrel parameter, ¢, varies from -1 to 1.
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