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BIFURCATIONS AND CHACS IN FORCED VAN DER POL SYSTEMS
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The van der Pol system, modified through the addition of constant force and bias
terms and explored through simulation, reveals an unsuspected bifurcation of
codimension two. Forcing the system yields an abundance of chaotic attractors

and bifurcations.

1. INTRODUCTION

We began our simulations with the intent to illustrate the bifurcation
sequences of codimension one, described in the companion paper [1]. These
illustrations reveal the detailed structure of the red aigar (Sec. 2, Figs. 1-
5) and the blue sleeve (Sec. 3, Figs, 6-11). Unable to resist the temptation
to explore further, we added sinuscidal forcing to the standard shift, and
discovered an abundance of chaotic attractors and bifurcations, very similar to
the sequence studied by Rossler [2] (Sec. 4, Figs. 12-17}). Finally, combining
the two bias parameters without forcing, we mapped the full bifurcation set in
the control plane, finding the bhlue goblet, an unsuspected bifurcation of
codimension two (Sec. S, Figs. 18-22). This appears to be identical to one
discovered by Takens [3; 5, p. 371] and found in a related context by Fitzhugh
{11], Guckenheimer and others [4; 5, p. 70].

2. STANDARD BIAS
The equations under consideration are
x =y,

. 2
¥=-x1*1* €1 -x )y * a,
€ > 0, a € R. The system has the trivial symmetry (x,y,a) <——:>
(-%X,—¥,-a). It has only one critical peint, P = (a,0). Figure 1 gives the locus

of ¥ =0 fora=0, 0.9, 1, 1,1, 2 and € =1. Note that every line y = constant

hag, at most, two cuts with the graphs shown in Figure 1,
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Figure 2 displays the linear character of P as a function of (€,a). It
turns out that this system has exactly one periodic orbit and that it is the only
attractor of the system for a € (-1,1) for any € » 0. For a € (-=,-1] U [1,=)

the only attractor is P,

Figure 3 shows some of these orbits for € =1 and values of a equal to .99,
-.%6, -.84, -.5%, 0, .5, .84, .96, .99. For the same value of € in Figure 4 we
present the section of the current attractor as a functicn of a. The family of
periodic orbits {P0O) can be seen as a eigar, 1In Figure 5 the plet of the period

T of the PO against a is shown. The amplitude (xsu - xinf) cf the PO has a

p
guadratic behavior when a -~ *1.

Figures 3 bis, 4 bis and 5 bis are obtained when € is set equal to 4. In
Figure 3 bis the displayed POs have values of a equal fo -0.999, -0.9926,
-0.99%1776, -0.99177072, -0.99177071, -0.9917707, -0.99, —-0.5 and 0, respectively.
Symmetrical figures are obtained for positive values. The selected values are
chosen to display the well known canard effect due to the presence of a slow
manifold [6]. This effect is hard to see in Figures 4 bis and 5 bis. However it
can be checked in Table 1, which offers some numerical data to reproduce Figures

3 bis to 5 bis.

3. VELOCITY BIAS

We merely move the bias to the first equation. The behavier of the system

changes in a dramatic way. The equations are

XxX=y -c¢c,

2
¥=-x* €1-x )Y

€ > 0, ¢ € R, with the trivial symmetry (x,y,C) <——> {-X,-y,-C)., We always

suppose ¢ # 0O, Two critical points appear, = (xt'c)' where

. 1)1/2‘

Py
1
x, = - (5

2
4€ C

Note that, letting ¢ go to zero, one of the points goes to the origin and the

other escapes to infinity.

The linear behavior of P is shown in Figure 6 as a function of (¢,c). It
is always a repellor for € > 0. P_ is always a dissipative gaddle (i.e., a
saddle such that the divergence is negative at it). Figure 7 displays the

invariant stable and unstable manifolds of P_ for the following couples of {€,c):
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(1,0.5), (1,0.6), (4,0.1), (4,0.2), (0.25,1.8) and (0.25,2.2).

bocording to cur numerical results it seems that for every € » 0 there is
exactly one positive ¢ {(and, of course, this happens alsc for —-¢) such that there
exists a homoclinic orbit to P, Let c~(€) be this value. 1In Figure 8 we

present the curve c*(€). Table 2 offers some of the related nurerical data,

Now we fix € =1, The attracting POs present for ¢ = 0 can be continued in
the range (-c*{1),c*{1)) and it is (according to numerical simulation) the only
attractor in this range., The family of POs terminates at each end in the
homoclinic orbit (the so-called blue sky catastrophe) and, accordingly, the
period T goes to %o, We shall call this family a . For c e
(~o,~c*(€)) VU {(c*(€),*) there is no attractor. Figure 9 shows the PO for c =
-.569, -.4, -.2, .4, .569. Figures 10 and 11 are similar to Figures 4 and 5,
For € =4 the results are given at Figures 9 bis (for c = -,1%9, ~-.13, -.07, .07,
.13, ,159), 10 bis and 11 bis. Finally Table 3 offers the related numerical
data.

4. STANDARD BIAS WITH FORCING
Here we consider the following equations:
x =y,

2
¥ -x * €(1 - x }y * a * b coswt

Next we describe the results of a rough exploration by simulation, For (¢,a,b,w)
= (4,1,2,3), starting at (0,0) for t = 0 the orbit becomes attracted by a stable
PC. Throughout the exploration we keep (€¢,a,w) = (4,1,3}, Slowly varying b and
starting each simulation at the previous attractor one gets a sequence of
period—doubling bifurcations. Figure 12 shows, for b = 2, 2.5, 2.84 and 2.87,
orbits which we call 1-PO, 2-PO, 4-PO and 8-P0O because they are seen as 1, 2, 4,

B periodic pointg under the time —153 map {that we design as F}).

A slight further increment of b to 2.88 gives what seems to be a 32 piece
strange attractor (32-SA). Figure 13 displays the points obtained using F and
magnifications. Then we have an inverse cascade of fusions of attractors (see
[z, 7, 8, 9]). Figures 14, 15 and 16 show the 4-5A (for b = 2.88%), the 2-5A

(for b = 2.89) and the orbit for b = 2,89, respectively.

A further increase to 2.9 shows that the SA is destroyed (of course, by
heteroclinic tangency, see [7]) and we observe an attracting 7-PO. Figure 17

displays this orbit for b = 2.9, 2.8, 2.6. Now we can go backwards in b. This
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attracting 7-PO exists till some value near 2.5 for which the crbit disappears

through a gaddle-node bifurcation. The stable manifold of the corresponding

saddle bounds the basin of attraction. It is the transversality of this manifold

with the SA, which seems to be the closure of the unstable manifold of a 2-PC

of

saddle type (the one obtained by continuation of the previously attracting 2-P0O),

the reason of the destruction of the SA. Then two different attracting POs, or

an attracting PO and an SA, can simultaneously coexist. The basins of some of

these attracters can be small and difficult to detect if random initial

conditions are choesen. Further analysis will be the object of a future paper.

Table 4 gives initial c<onditions (t = D) for the displayed figures.

5. DOUBLE BTAS

In this section we combine the two previously studied biases. It will be

apparent that the gymmetry existing before in the termination of the family of

attracting POs can be destroyed.
The sktanding equations are
X=y -cC,

. 2
b -x * €1 -x Yy *a, € >0

with symmetry (x,y.a,c) ¢<——» (~%,~¥,-a,-Cc), We can suppose a,c # 0, the other

cases being already discussed, and even we can suppose ¢ > 0. The critical

1 1 a
. 1/2 .
ints are P, = (- Q4+ 14+ CH i
po £ { sec X ( 2 2 ec) ch They exist if
4¢ C
1
a > —€c —4€c

(*}

(for positive €c). P, always has index +1 and P_ is always a saddle. The linear

+

character of Pi is given in Pigure 18, P_ expansive means div X(P_) > 0. When

equality holds in (*), only one critical point appears. In Pigure 18 we also

show the curve ¢(a,c) = 0 (for ¢ =1) for which we get a homoclinic connection. A

similar picture for € =4 is given in Figure 18 bis, Table § offers numerical
data for the figures. Table 6 presents values of (¢,a) producing homoclinic

orbits for increasing values of c.

Let us analyze the neighborhcod of the peint a = -1, €c = 1/2 in the

parameter space. First set a = -1, €¢ = 1/2 and change variables through
1
f=x+l,1’)=y—;. We get £ =9, B = E(2€n - €N - £/2). We note 7 =

£/2
€{2-¢)’

=0or M= Figure Z0 describes the vector field., For a fixed B > ©

o if ¢

the
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Z€T
1vzen Then % < 2¢7 and the slope in A is less

maximum of 7 is obtained for ¢ =
than 2€¢. A similar result is obtained for % < 0, £ € (0,2), bounding the slope
for large enough values of -7. Therefore, flow entering through the positive %
axis escapes through the positive £ axis, and, after, through the negative 7

. uog
axis. Forward and backward images of the negative £ axis go to W , W . Local

: u,s
expressions for W '~ near (0,0} are

k4 I

Bo= W (E)=a(-E) 0 ta(-£) v ...,
u,s o 1
rl > ro, xo = 3/2, ao = 13_1/2. For § - -« we get
] oo sc> 5].
W m= W (E) = by(~§)  t B(-E)  t ...,
€
Sl 3 SO' so = 3, bO = - ;_, and
| =] to t1
Wom = ¥o(E) = oy—E) O eyl-E) ¢
€, < t_, obtaining ¥,(¢) = hyperbola + € 2/2¢7% + ..., where nyperbola means the
locus of 7 = 0,
i, 1, 2, &, 8,
SR T Bl O S Ui e B DI ST

A sketch of wu,s is also given in Figure 20.

We next describe the (global) behavior for (a,€c) near (-1,1/2).

THEOKEM: Near a = -1, e¢e = 1/2, the bifurcation diagram given in Figure
21 holds.

Proof: Bs the only essential modifications to the flow are near the origin,

we only need to examine this region. The proof shall alsc give quantitative
1+ 8

information. We set € > 0, a = -1 — @&, @ = 2e with a,8 smwall. The condition

1 a

2

— + 1+ gg * 0 is written as 8 - 2a(l * B) = 0, Hence, curve (1)-(2) is
4 C 2

B
1+ 87
= (0,0), and the behavior is the same.

given by a = On this curve the field has a double fixed point as at {a,g8)

2
From the fact that there are only two fixed points for 8 - 2a(1*8) : 0,
their character already discussed, the only thing to prove is the location of
Z 2
branch (5) for which we get a homeclinic connection. Let y = £ - 2a(l * B8) »

0, ¥ > 0. We introduce the changes

- 3/2 -1 - ~i/2
£ = oy e ), 1= (2 M y-areyzer, = T -0 G

giving
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£ = (1487
By
3/2
1 8-y, 1* 1+y Bey
2
ne gt e e oy ey sey i g - — £y
¥ (148) (14 8) (1+8)

Let us introduce k = (B-Y)/¥. When a,f - 0 (and, hence, ¥ ~ 0) the dominant term

and the main perturbations are

2 1/2
Er=m, M =& - & *’)‘/(4ek1}*se£n).
: 2 1 2 1 3
For ¥ = 0 this is a hamiltonian system, for H = ;’n - ;“f * ;‘g , with a
separatrix given by
3 3ginh{T71/2 )
L e T

ZCDShZ(T/Z) 2cosh3(r/2).

The Melnikov function [5, Ch. 4; 10] is given by

K ° 2 2
4 ¢ ) (riar =4 € (k fatr2 fen’l
R | - £ knt2émy R R
2
-ZfBETI
linear in k. The value of k in order to get connection is k = f 2 =
2 -8 r7
f sinh cosh 12 5 1z 2
R S — - _ —_
-3 = - ", . Hence B =-37y, or &= S0 A+ ... (foxr B < 0).

2 -6
sinh cosh
j-R

This gives (5). Similar checks give the results concerning periodic orbits. O

This result agrees with numerical simulations {see Table 5). HNow we lock at
the behavior of the homoclinic connections for ¢ = «. Using the same method of
scaling variables and time, displaying a hamiltonian plus perturbations, aftex
some computations to higher oxder than before, we get a = 5/7. This is the
asymptote to the curve g(a,c) = 0 of homoclinic connections for ¢ - = for any ¢.
This agrees with Figures 18 and 1B bis, and with Table &. The curve p{a,c) = O
never reaches the line a = 1, and it seems that for € = 1, ¢ increases
monotonically when a - 5/7, while for € > 1, a reaches a maximum on p(a,c} = 0Q

and then, when decreasing to 5/7, ¢ goes monotonically to «=.

We return to Figure 18. Single arrows mean Hopf bifurcation and double
arrows mean creation of a PO by inverse blue sky catastrophe. The conjecture,
supported by the previous analytic discussion and several numerical experiments,
is that in Sl U s2 there is a punctual attractor; in Q (unbounded region) the
attractor is just one PO, and, 1in Rz-(Q U Sl u sz) there is no attractor. A path
like cl,cz.ca,c4 in the parameter space {for any € > 0) produces families of POs,
as shown in Figure 19: red cigar, blue sleeve, Hopf-connection (direct gobletl}

and connection-Hopf {inverse goblet), respectively.
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a. X, X Peried
inf sup
0] ~-2.008620 2.008620 6.6633
.1 -1.946181 2.063823 €.6788
.2 —-1.874301 2.112698 6.7258
.3 -1.792173 2.155544 6.8051
& -1.,693699 2.191935 6.9183
.5 -1.571987 2,220220 T.0660
.6 -1.412658 2,235991 7.2454
7 ~1.184127 2.236798 7.4352
.8 - .B07333 2,150291 7.5269
.84 - ,581432 2.074460 7.4573
.88 - ,303718 1.953738 7.2716
.92 — ,011883 1.781628 6.9755
.96 - ,360085 1.549512 6.6284
.97 - ,458713 1.475628 6.5406
.98 - ,568854 1.388712 €, 4536
.99 - ,703418 1.275994 66,3677
Table la: € =1
X, X Period
inf sup
-2.022963 2.022963 10.203%
.2 -1.99913%9 2.044498 10,3458
.4 -1.972056 2.064318 10.8040
.6 —-1.939767 2.082796¢ 11.6967
.8 -1.896882 2,100197 13.3698
.88 —-1.872418 2.106901 14.4959
.96 -1.831121 2.113474 16,3747
.99 -1,764276 2.115906 18B.2484
.9917 -1.684231 2.116033 19.1733
99177 -1.514461 2.115715 20.0614%
.9317706 -1.405560 2.114634 20,3409
.9917707 -1.176177 2.105610 20.5273
. 99177071 - .6l6834 2.010342 19.1280
L99177072 - .162242 1.841492 16,1990
. 99177073 - 090650 1.807267 15.6060
, 991771 .120522 1.693909 13.6742
.9918 L 406494 1.509359 10.7124
,9926 .625961 1.341057 5.3845
,999 .907310 1.090591 6.4244
.9996 .942492 1.056693 6,3379
. 9999 L 959613 1.039984 6.3103
Table 1b: € =4
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€ cx{€)
0.1 4,.921542
0.2 2.491228
0.3 1.689162
0.4 1.2909%6
0.5 1.052638
0.7 779078
1 .569529
2 .307091
3 .210359
4 .159864
5 .128919
7 .092957
10 .065551
Table 2
c X, x Period
inf sup
.1 -2.024675 1.990147 6,7123
.2 -2.038161 1.969425 6.8719
.3 —2.048942 1.946643 7.1306
4 —2.0568%95 1.921988 7.8129
.5 ~2.061893 1.895579 9.3739
.55 —-2.063237 1.881707 12.1738
.565 —2.063485 1.877454 15.8887
.569 —-2.06353% 1.876312 21.7364
.5694 -2.063544 1.876198 25.6603
5695 -2.063546 1.87617C0 29.8378
Table 3a: € =1
o] X, x Period
inf sup
.04 —-2.027075 2.018759 10,4569
.c8 ~-2.031100 2.014461 11,3751
.12 —2.035040 2,010065% 13.8633
.14 -2.036979 2.007830 17.2059
.15 -2.037941 2.006703 21.2342
.155 -2.038420 2.006137 25,8253
.157 —-2.038611 2.005910 29.5204
.159 -2.038802 2.005683 38,4049
1596 -2.038859 2.005615 47.5895
.1598 -2.038878 2.005592 58.7766
Table 3b: € =4

321
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b X 4 Fig
2 .996 -.626 1za
2.5 1.003 -.651 12b
2.84 1.013 ~-.587 l2c
2.87 1.013 -.573 124
2.88 1.015359 -.579361 13
2.885 1.012503 —-.564710 14
2.89 1.017725% -.597039 15,16
2.9 1.101703 =.,713349 17a
2.8 1.371443 -.382202 17t
2.6 1,157%8 -.59054 17¢
Table 4
a [ a c
-.99999952 . 4995 —-.999999 .12481588
-,999599808 . 499 -.99999 .12439064
-.99999299 . 498 -.99%9 . 12273488
-.9999 . 49283590 -.999 .10993464
-.999% .47767821 -.995 ,0BOOG557
-,99 43218198 -.99 .0B042535
~.98 .40632647 ~.9 .0B695508
-.95% .36238802 -.7 .10185668
-.9 33739337 -.5 .11737645
-.8 .34057534 -.3 ., 13364175
-.5 . 40279066 -.1 15083604
-.3 .4583433% .1 ,16924222
=.1 .52738296 .3 .18934203
.1 .61948395 .5 ,21209498
.3 .76258558 .7 . 24005527
.45 .96849067 .9 .28910545
.5 1.09172511 .95 , 34497425
.5% 1.28684964 .9541 . 38550468
.B 1.65722509 . .95414067 . 3693
.65 2.64787700 . 9541 . 39913685
7 11.0412399 .95 47743240
.71 36.476921 .9 1.01942836
. 71272558 1loo . 74291038 10
L7148 545.626 71722746 100
.71412984 1000 .71458062 1000
Table Sa: € =1 Table 5b: € =4
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€ a € a € a
10 .971481 10 .792950 .1 683450
20 .986726 20 .855072 L2 .702112
40 .993566 40 .92379% - 708495

100 .997471 100 973108 2 .714842
10 .722878
20 .731684
40 . 748630
100 .794949
Table 6a: ¢ = Table 6b: ¢ = 10 Table 6c: ¢ = 100
€ a € &
1 .711841 .1 .731367%
.2 .713078 2 .713984
.3 .713709 -4 . 714142
2 .714341 1 . 714247
10 .715151 2 , 714300
20 716052 4 . 714359
10 .714502
Table 6d: ¢ = 1000 Table €e: c = 4000
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Fig. 3, Periodic attractors with standard bias, € =1.
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Fig. 19. Bifurcation diagrams for four selected arcs in the control plane,
Fig. 18.

L1128
-

Fig, 20. Vectorfield corresponding to the bifurcation point of todimension
twe in Figs. 18, 18bis, and 19, showing the stable and unstable
manifolds of the doubly degenerate critical point.

@>@
e X

Fig. 21, Bifurcation tableau for the bifurcation of codimension two.
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Fig. 22. Response diagram for a cycle around the bifurcation point of
codimension two: the blue goblet.

(a) The goblet within the separatrix.
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(b) Same, with the separatrix removed for a better view.
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