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ABSTRACT

The phase entrainment of coupled oscillators, often confused with frequency
entrainment, was first described by Huygens in 1665 as the "sympathy of clocks™.
As it refers to the independence of the equilibrium phase difference from variations in
initinl conditions or the strength of the coupling, we refer to this phenomenon as phose
locking. In the context of ensembles of coupled oscillators, it has many important
applications. Recently, Vassalo Pereira has given a derivation of the sympathy of
clocks based on Andronov's model for the pendulum clock, showing that it is the
"tick-tock™ of the escapements, rather than the swings of the pendula, which are
responsible for the phase regulation. Here, we generalize Vassalo Pereira's result to
arbitrary coupled oscillators, to obtain a geometric theory of phase regulation due
to pulsatile forces. The extension of this geometric theory to chaotic attractors is
indicated as well.
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1. INTRODUCTION

The entrainment of coupled oscillators, in frequency and phase, is a fundamen-
tal phenomenon in the physical, biological, and social sciences. Both frequency
entrainment and phase regulation are classical topics in the theory of nonlinear
oscillations. The entrainment of the frequencies, restricting the frequencies of two
coupled oscillators to equal values (or to rationally related values, called harmon-
ics), is neatly explained by Peixoto's theorem [1]. Consider the isochronous case,
in which the entrained frequencies are equal. Calling the two oscillators 4 and
B, we arbitrarily choose a point on each limit cycle for its zero phase. Then each
has a well-defined phase defined around its limit cycle, #4 and #5. Let A denote
the phase of B, when A is at phase zero. Then A = #g — 4 throughout the
isochronous harmonic. If the coupling, or one of the oscillators, depends on a
control parameter, then the harmonic will be preserved under small variations of
the parameter. The amplitude, frequency, and phase difference, A, will vary with
this parameter. Plots of these functions, known as response curves, abound in
the literature of nonlinear oscillations. Here, we are primarily concerned with the
phase response curve, or PRC, of coupled oscillator systems. By phase regulation,
we mean the design of a coupled oscillator system to obtain a particular PRC,
specified in advance. Nature provides us with many such designs.

An astonishing example of such a design is the Huygens phenomenon. Around
1664, two self-sustained oscillators (pendulum clocks designed by Huygens and con-
structed by his clock-maker) were placed on the same table. The coupled system
was isochronously frequency-entrained. The phase difference, A, was observed to
be zero: the pendula swung in unison. After moving one of the clocks, and dis-
turbing their sympathie, Huygens observed that the same synchrony was restored
after twenty minutes or so (Huygens, 1893). Variation of the control parameter
(distance between the clocks) did not change A. The PRC of the coupled system
was a constant, zero. The clocks were phase-locked. Under the influence of Lord
Rayleigh, there have been many experiments with coupled pendula. The results of
Duffing are particularly well-known, although preceded by Martienssen [2]. They
showed that the PRC of such a system is not a constant [3]. So the simple coupling
of the pendula of the clocks, through the elastic medium of the table, does not
explain the Huygens phenomenon,

After three centuries, we have at last a satisfactory explanation by Vassalo
Pereira (Pereira, 1982). He has shown that it is not the swing of the clocks’
pendula, but the tick-tock of their escapements, that entrains their phases. His
argument, based upon a dynamical model of the escapement mechanism due to
Andronov, is simple and convincing (Andronov, 1963). According to this expla-
nation, the phase regulation mechanism is pulsatile. The tick of one clock, caused
by the fall of its escapement, transmits a soliton through the table, which delivers
a sharp, pulsatile forcing to the fulcrum of the pendulum of the other clock, and
vice versa. The dynamics of these acceleration pulses, regarded as perturbations
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of Andronov's model, entrains the phase difference to zero. This favorite phase
difference is determined by a hook in the periodic attractor of Andronov's model,
a geometric feature shown in Fig. 4.4.

In this paper, we generalize Vassalo Pereira’s result to arbitrary coupled oscil-
lators. This makes the explanation of the Huygens phenomenon more convincing,
and also provides a simple geometric strategy for predicting, or engineering, the
phase regulation of any coupled oscillators. This might have useful applications in
the physical, biological, and social sciences. Our main tools, based on the global
analysis of Section 2, are the phase regulation dynamic of a flexible coupling,
described in Section 3, and the shape form of an oscillator, in Section 4. These
provide a simple expression for the attractive phase differences of forced oscillators,
the favorite phase formula of Section 5. Evaluated in the context of Andronov’s
maodel for the pendulum clock, forced with periodic pulses, this formula reduces to
that of Vassalo Pereira. The geometric interpretation of the formula is illustrated
in Section 6. The application to phase locking of chaotic attractors is suggested
in Section 7. In this paper, we try to standardize, and supply with a new theoret-
ical foundation, ideas which are emerging in numerous applied and experimental
studies of pulse-forced oscillators [4]. Those interested primarily in the practi-
cal applications of phase regulation may skip the global analysis {comprising two
propositions and three corollaries), and proceed directly to Section 6.
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2. GLOBAL ANALYSIS OF FLEXIBLY FORCED SYSTEMS

We now turn to forced oscillators, in the context of complex dynamics (Abraham,
1984). In this section, we show how a dynamical scheme representing flexibly
forced oscillators, in a very general context, may be represented as a curve of
vectorfields, and relate this to classical perturbation theory. Recall that a dynam-
ical scheme is a dynamical system (vectorfield) depending on control parameters.
Now we consider two dynamical schemes, A and B, as in Fig. 2.1, each containing
an oscillator. We assume there is a static coupling from A to B. This means
that the instantaneous state of A (a point in its state space M,) influences the
control parameters of B (a point in its control space, Cpg) through a mapping,
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f: My — Cg. A forced oscillator, the forced Van der Pol system for example,
may be represented in this way, as follows.

| . l
C =(A,B,f) My

Cs

I—*--f
Ma

Fig. 2.1. A vwo-scheme complex.

A FORCED OSCILLATOR AS A COMPLEX DYNAMICAL SYSTEM

For the simplest possible case, we will assume that A has no control parameters,
or equivalently, that its controls will not be changed. Further, we will assume it
runs only in a single periodic attractor, and thus delete the rest of its state space
from the model. The state space could consist, then, of a single periodic attractor
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and its basin of attraction. But we will assume that the system has been running
for some time, and that all significant transients have died away. So we may delete
the basin as well, leaving only the attractor. Thus, we may model the states of A
by a single variable, its phase,

§=604€ My=T"=R/(2r) (2.1)

and its fixed dynamical system by the constant vectorfield,

0 =2r/ta (2.2)

where 74 is the period of the oscillation of A. Finally, we introduce a static
coupling from A to B, a mapping

f:Ms—Cg (2.3)

from phases of A to controls of B. Necessarily, this is a periodic function,

f(0+7a) = f(8). (2.4)

The coupled system is a vectorfield, X, on the product manifold N = M4 % Mg,
represented by

0 =2x/ty (2.5a)

' = Vy)(2) (2.56)

Here, we use # in place of #4 or £4, and r in place of 5. Also, for c € Cg, V. is
a vectorfield on Mp. Thus, for fixed #, the map z| — Vjg)(z) is a vectorfield on
Mpg. But adjoining equation (2.5a) to (2.5b), we may regard this as a vectorfield
on N. This particular suspension will be denoted in this paper by f*V. Thus,
X = f*V. All this is summarized in Fig. 2.2.
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Fig. 2.2. A forced oscillator as a two-scheme complex.

FLEXIBLE COUPLINGS

We will be especially interested in the case in which this coupling is weak. This
means that the image, f[T"], of the coupling map, f : My — Cp, is a small subset
of Cg, the control manifold of B, perhaps within a small neighborhood of a fixed
value, say ¢y € C'g. One way this arises in applications is in the context of a
flexible coupling scheme, in which the coupling map itself depends smoothly upon
control parameters,

f:DxMy— Cg; (d,#)] — fal#) (2.6)

where D) is the control space for the flexible coupling function, f. For fixed d € D,
let Xy denote the vectorfield on N = M, x Mg defined by (2.5), with fa(#)
in place of f(#). Let V = V*(N), the space of all C* vectorfields on N. Then
X:D—V;d|— Xgis ascheme on N. See Fig. 2.3.
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Fig. 2.3. A Hexible coupling scheme.

In this context, suppose that for a special value of the coupling parameter, say
dy € [}, the coupling map is a constant, or

Vo €T, fal0) = co. (2.7)

In this case, the coupling with d = dy may be regarded as the weakest possible,
and for d sufficiently near to dy, the coupling is as weak as you wish. The cou-
pling control parameter, d € [), turns on the weak coupling flexibly, as it moves
gradually away from dy, and the control ¢ = f4(#) is perturbed away from ¢ = ¢,
See Fig. 2.4,
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Fig. 2.4. A weal flexible coupling.

PERTURBATION FORM

We will now consider such a weak flexible coupling in the special case, common
in applications, in which the coupling contral parameter is ene-dimensional, or
D= R, If in addition dy = 0, we call d an amplitude parameter. Henceforth,
we will consider only this case, and will normally use a to denote the amplitude
parameter. Now the coupled system, {2.5) above, becomes a vectorfield X, on N,

6" = 2w /74 (2.8a)

' = l"‘r.l[&]{ﬁ} (2.8b)

where a is real, and fy(#) = ¢y for all #. The flexibly coupled system is itself
a one-parameter scheme. Letting Vg = V,,, we may rewrite {2.8b) in classical
perturbation form,

' = Vyla) + Wal8, 1) (2.8c)

where W,o(#..c) is smooth in a € R and in (f,z) e N = T % Mg, periodic in #
with period 25 /74, and Wy = 0. In fact, as a is real, we may think of a | — W,
as a curve at the origin in V', the space of smooth vectorfields on the product
manifold V. Likewise, X, = Vj, + W, determines a curve at Xo = f3 Vo € V, in
the suspension notation introduced for {2.5).
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SUMMARY

By flexibly coupling scheme A (the forcing oscillator) to scheme B (the driven
system), we have constructed a complex scheme, C = (A, B, f). Thus, we may
bring the methods of global analysis to bear on the problems of coupled oscillators,
and periodically forced chaotic attractors as well.

3. THE PHASE REGULATION DYNAMIC

We now make use of some simple constructions of global analysis to define a special
vectorfield which is natural in this context, called the phase regulation dynamic.
We begin with an arbitrary one-parameter scheme. At the end of the section,
we specialize to the flexibly-forced oscillator, which has been reinterpreted as a
one-parameter scheme in the preceding section.

AN ARBITRARY ONE-PARAMETER SCHEME

Let Xy be a vectorfield of class C*,k > 1, on a manifold, N, having a global
cross-section, . Let V = V*(N), the space of all C* vectorfields on N, and D =
D*(Z}, the group-manifold of all C* diffeomorphisms of £, both with appropriate
topologies. Then there is a neighborhood U of X5 € V such that all vectorfields
Y € U have £ as a global cross-section. Let F(Y) € D denote the first-return
map of ¥ on this cross-section. Then

F:Uc V¥N) = D¥E) (3.1)

is a smooth map from vectorfields on N in I to diffeomorphisms of the cross-section
L. This is a generalization of the classical phase return curve, or PRC (Pavlidis,
1973). We are going to make use of the derivative of this map at Xg. Technical
details of these methods may be found in Abraham and Robbin (Abraham, 1967).

Let I € R be an open interval containing 0, and
X:I-U;a|—=X,s (3.2)

be a smooth curve at X,. This is a one-parameter dynamical scheme. Let P
denote the tangent vector to the curve X at a = 0. Thus for a € I,

X, = Xo+aP +a*Qa) (3.3)

where Q(a) denotes the remainder in Taylor's formula. For small a, we may
approximate the curve X by the straight line scheme,

Xo=Xg+aP (3.4)

which is a common form of perturbation found in applications. Now let G, =
F(X,), comprising a curve in LX) at Gy, the first-return map of X.
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Definition 1. The unique vectorfield £ on ¥ satisfying

d
Go.£ = d_ﬂGulﬂ=ﬂ = Tan{P} (3.5)

is the phase regulation dynamic of the scheme X with respect to the cross-section
E. Here, G. denotes the push-forward of vectorfields by the diffeomorphism &,

Now, to simplify the discussion, we suppose that the phase regulation vec-
torfield £ is complete. Then let {4} denote the flow of £. For small a we may
approximate the true curve of first-return maps with an exponential ray (that is,
the exponential of linear ray) translated in the group D to the base-point Fj,

Famiao by (3.6)
all of which is summarized in Fig. 3.1. This approximation is the basis for our

interpretation of £ as the phase regulation dynamic for the favorite phases of the
forced oscillator, o which we now turn.

v D

Fig. 3.1.  The phase regulation dynamic.

APPLICATION TO THE FLEXIBLY FORCED OSCILLATOR

Recall that in the preceding section, we interpreted a forced system as a complex
dynamical scheme, consisting of two dynamical schemes, flexibly coupled. One, A4,
is the forcing oscillator. The other, B, is the periodically forced scheme. We now
apply our theory to this complex dynamical system, C = (A, B, f), regarded as a
curve, X, at Xp e V =V (N). If a = 0, there is no coupling. The target system,
with vectorfield ¥, on Mg before coupling, will be characterized by its portrait of
attractors, basins, and separatrices. Note X = f;ﬂ Va.



HYPOTHESES

We next assume that this driven system is structurally stable for a # 0, and that
X is a generic arc in the sense of Sotomayor (Sotomayor, 1968). This may be best
understood with the aid of Fig. 3.2. Note that the amplitude curve, k passes near
to, but not through, the point (1, 0). This point is the vertex

Fig. 3.2. Regime of the isochronous harmaonic.

of the Mathieu cusp, enclosing the two-parameter regime of frequency, 78/7a,
and amplitude, @, in which an isochronous harmonic may be found [5]. Thus,
as the amplitude of our flexibly coupled scheme increases from zero, under this
hypothesis of genericity, there is no isochronous harmonic until the bifurcation at
the value a; at which the parameter curve, k, meets the Mathieu curve, as shown
in Fig. 3.2. Meanwhile, with a € (0, a,), other periodic attractors, which are called
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harmonics, will come and go on the attractive invariant torus (AIT), T%(a), in the
fractal bifurcation event we have called Sotomayor vacillation. Despite the heroic
efforts of great analysts such as Chenciner and Hermann, this event is still only
partially understood. Nevertheless, the following is known. During the a interval
in which each harmonic exists, the rotation number of G, on the cycle 'y (the
image of a periodic trajectory 7., here moving smoothly with the parameter a) is
a constant rational multiple of 2, say p(a). As a increases from zero to a,, p(a)
changes from 75 /74 to one, along the devil’s staircase, as shown in Fig. 3.3.

T/7Ta

1

0 ay

Fig. 3.3.  The rotation number versus amplitude,

Our analysis, in Section 5 does not apply to the interval 0 < a < a;, %0 we
must assume initial 75 /74 close enough to 1 that the a range over which our
perturbation expansion for a; = 0 is useful substantially exceeds [0,a,]. Then
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behavior along the vertical amplitude curve k (numerically close to the vertical K
through the Mathieu vertex, (1,0), shown in Fig. 3.2) will be well predicted by
analysis along k for a similar a range, once a, is passed and the topology of the
flows on N become similar, as shown in Fig. 3.3.

Thus, for an approximate result, we must further assume now, and throughout
this paper, that 74 & 7g, 5o that a, is sufficiently small. Then the periodic forcing
of the individual attractors of V5 may be described in terms of the attractors of £,
which are called the favorite phases of the scheme, as follows. Recall the following
definition, due to Arthur Winfree [6].

Definition 2. Let [ be a periodic attractor of the vectorfield Vg on Mp. Corre-
sponding to the CMs of I" (all less than one in absolute value) there is an eigenspace
(of codimension one) in the tangent plane T, Mg for each point p in the image I',
complementary to the vector Vy{p). These subspaces extend to a distribution in a
neighborhood of T which is invariant under the flow of V5. The integral manifolds
of this distribution comprise the isochron foliation of I' [7]. The leaves of the
isochron foliation are called isochrons.

Intuitively, all of the points of an isochron are asymptotic to the same phase on
I'. That is, the trajectories of different points on the same isochron come together
as their transients die away. Asymptotically, they have the same isochronous
phase.

Proposition 1. The point attractors of V will become periodic attractors of X,
located (approximately) by the point attractors of £ The periodic attractors of ¥y
will become attractive invariant tori (AITs) of X,. The periodic attractors braided
around these tori will also be located (approximately) by the points at which the
vectors of £ are tangent to the isochrons of the original unforced periodic attractor.
Further, the periodic attractors of X, on the AIT tend, as a — 0, to the favorite
phases of the scheme. Within the zero phase section, I, the attractors describe
curves tangent to £.

This follows from (3.6), and is illustrated in Fig. 3.4. The discussion of the
periodic perturbation of the chaotic attractors that V5 may have is postponed to
Section 7.

SUMMARY

In this section, we have defined the phase regulation dynamic of an arbitrary one-
parameter scheme as a vectorfield on Mg, and related its qualitative features to
the harmonics of the flexibly forced scheme on .



Fig. 3.4.  The curve of fixed points approaching the favorite phase.

4. SHAPE FORM OF AN OSCILLATOR

As above, let V be a vectorfield on a manifold, Mg, for which we will now write
just M. Let 5 denote a periodic trajectory of period .,

1:RHM.1{I+§%}=T{£}, (4.1)

I' = 5[R] its image, a limit cycle, and py = 4(0) an initial point. With
T' = R/(2x) the circle with radian measure as above, 7 determines a unique
diffeomorphism, ¢ : I' — T, by

@lpo) = 0, @{1{ts + t2)) = d(v(t1)) + d(7(t2)) (mod2x). (4.2)

This is the phase of v, relative to phase zero at the fiducial point, pg. Roughly, ¢
is the inverse of ~, as shown in Fig_ 4.1.
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Fig. 4.1. Phase and isochrons of & periodic trajectory,

Our goal now is simply to decompose an arbitrary vector, W, € T, M, at any
point p € I, into components tangent and complementary to I'. We assume now
that ' is an hyperbolic periodic attractor: none of its characteristic multipliers
{C'M’s) are on the unit circle. Then the tangent space to M at p splits into a
line tangent to I, generated by +'(f) = ¥, = V(p), and a complement, [, defined
by the generalized eigenspaces of the CM's, in their aspect as eigenvalues of the
derivative, not of the Poincaré map, but of the time v map on M [8];

ToM =<V, > +1,. (4.3)

We use this splitting to decompose the tangent vector, W, = &, + ¥, where
Y, € I, and Z, €< V, >, s0o Z, = aV), lor some unique o € R, as shown in
Fig. 4.2. As this construction may be carried out for any vector Wy, € T, M, we
may define a one-form, a, € E';ﬂ:', by ap(Wo) = a, as constructed above, This
is the shape form of 4 at p. Note that it depends on the shape of 4, and the
configuration of its CM distribution and nearby isochron foliation, all of which we
call the geometry of 4.

Definition 3. Varying p around I', we obtain a section of the cotangent bundle of
M restricted 1o T, T M|, This section,

n:C=T"M;p| = op (4.4)
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is called the shape form of 4. Replacing p by its phase, ¢ = ¢(p), we may relabel
the shape form, 8; = ay, obtaining a section of ¢,

B:T' - T°M|T; ¢| — ap (4.5)

This may also be called the shape form of 4.

Fig. 4.2.  The splitting of the tangent space of M.

Either way, the shape form is related to the normal coordinates of the hy-
perbolic periodic attractor, I'. Any hyperbolic invariant manifold admits normal
coordinates (Hirsch, 1977). In the case of a periodic attractor, normal coordinates
are of the form (A, ®), where R is a coordinate chart on the normal foliation,
and ¢ is the asymptotic (isochronic) phase, an extension of ¢ to a neighborhood
of [. That is, a point 79 near I' with normal coordinates (R(zo), #(z0)) will
move (under the flow of V) to a point z, at a later time ¢, with normal coordi-
nates (R{z), ®(z,)). As z, is attracted to I', the normal coordinates tend to zero,
R(z¢) — 0, as t increases. Meanwhile, for all times ¢, if $(z) = ®(py) {that is, zg
is on the isochron of zero phase), then

P(z.) = ®(pe) = B(po) + ¢(pe) = t (mod2r). (4.6)

That is, the isochrons (coordinate hyperplanes defined by & = &, a constant) are
permuted among themselves by the flow of V, and all points in the same isochron
(such as (R, ®q) with ®; fixed) tend to the same trajectory on T, the trajectory
of (0, %q). See Fig. 4.3.



normal l coordinates
1 = R 1

Fig. 4.3. Normal! coordinates of an hyperbolic periodic attractor.

Returning to the shape form of +, the factors of the decompaosition Wy, = Ip+ <
V,, > correspond to the normal (within an isochron) and tangential (angular or
phase) coordinates, R and &, respectively. The one-dimensional factor in the @
direction (along I') is rescaled by the shape form, using the speed (length of V;)
as a unit. Thus,

W, = ap(W,)V, + U, (4.7)

where ay(W;)V, is the angular component of Wy, and the normal component
U, € I, is the CM eigenspace tangent to the isochron at p € I'. Note that
ay(Wy) = 0 iff Wy € I,

As we are favoring phase rather than time as the angular variable, the repre-
sentation of V, itself, in normal coordinates, is (0, 2x/7), rather than (0, 1). But
ap(Vp) = 1. And if an arbitrary vector, Wy, € T, M, is represented by (Wkg, We)
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in normal coordinates, then

T

aP{WF} = o

Ws. (4.8)
In the case of Andronov's model, Fig. 4.4, the isochrons are rays orthogonal to the
circular arcs, as Vassalo Pereira has shown, and the shape form of this oscillator
corresponds to the Euclidean orthogonal complement (Pereira, 1982). The analysis
of this section is comparable to that of earlier authors, simplified through the use
of normal coordinates.

Flg. 4.4. Andronov's model,
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5. THE FAVORITE PHASE FORMULA

We now apply the global analysis of Section 2 to the flexibly forced oscillator of
Section 3, using the shape form of Section 4 to obtain a useful formula for the
favorite phases of the weakly-coupled system. We now consider a one-dimensional
scheme, C' = (A, B, f), as in Section 2 (the f of 2.6). Thus we have:

I C R, an open interval about zero,
M = Mg, the state space of the forced scheme,
Vo, a vectorfield on M, the driven system
N =T! x M, the product manifold,
V, the space of smooth vectorfields on IV,
Xo = f3,Vo € V, the suspension of Vg,
E C N, a global cross section of Xy,
U, a neighborhood of Xg € V,
with all its vectorfields having T as a global cross-section, and
X:I=UcCV;a|— X, acurve of the form

B' = 2x/7a (5.1a)
' = Volz) + Walb, z), (5.18)

where W,(#, z) is periodic in # with period 27 /74, and Wy = 0. The parameter a
is called the amplitude of the coupling.

HyYPOTHESES

We suppose that ¥ has a unique attractor, v of period rg, hyperbolic and periodic,
and that [ is sufficiently small so that for all @ € I, X, has an attractive invariant
torus (AIT), T#(a) [9]. On this AIT, for most a, there will be complementary
braids of periodic attractors and periodic saddles. These may bifurcate as the
amplitude a changes [10]. Here, we make the isochronous hypothesis: T4 = 7,
and for all @ € I, all the periodic trajectories on the AIT are isochronous, 74 = 1¢.
Thus, fixing the point 0 € T* = My, and a point pg € T as the fiducial points
for phase reference (see Section 2), each isochronous harmonic (limit cycle of C')
on the AIT of X, (T%(a)) has a well-defined phase difference, with respect to the
forcing oscillator, A. We shall now give a precise definition of this phase difference,
in the form of a relative phase function, 4.

Fixing a, choose one of the harmonics, say §, with image ' c 7%(a) tending
to the image T € T%(0) of 4 as a — 0. This perturbed harmonic pierces the phase
zero section, & = {0} x Mp, at a unique point, pg. This point, if a is sufficiently
small so that fy is close to pg, lies on a unique isochron of I' in M.

Definition 4. The relative phase of ¥ with respect to - is the phase of the isochron
of v containing fig. The favorite phases of the scheme are the relative phases of
the attractive harmonics. See Fig. 5.1.
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Fig. 5.1.  Determination of the phase difference.

THE INTEGHAL APPROXIMATION

The submanifold ¥ = {0} x Mg (which we may identify with M) isa global cross-
section for Xy, There is a unique vectorfield £ on M which is tangent to the curve
of first-return maps, G, = F{X,) in J{M). This is the phase regulation dynamic
of Section 3. which approximates the PRC of the forced system. And according
to Proposition | of Section 3. the critical points of £ locate, in an approximation
improving as a decreases, the favorite phases of the isochronous harmonics. Thus
the dependence of these critical phases upon the amplitude a approximate the
PRC of the Hexibly forced oscillator scheme, €. This approximation may be
useful because, in general, there will be no explicit formula for the exact favorite
phases. Thus, we seek an explicit formula for £, the favorite-phase formula, based
upon the shape form, a, of the original periodic attractor of Vg, 4 in M. First, we
will need an integral approximation for the first-return map.

Let a be the shape form of 5. an hyperbalic, periodic attractor of the vec-
torfield Vg on Mg, of period r5. Let W be a periodic perturbing vectorfield on
N, that is. W(#.r} is periodic in #, with period 74. Suppose W sufficiently small
so that X = (V4 + W) € U, thus has ¥ as a global section. Let G = F(X) be
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the first return map of X. For a point r near I, let (R(z), ®(z)) be the normal
coordinates. Then the map

$alG: Mg — T z| — ®(G(zx)) = (G(R(z), ®(z)) (5.2)

is a measure of the phase shift of the perturbed system, from the point of view of
the isochrons of the unperturbed system. We should like to apply this map to the
points of the perturbed isochronous harmonic. But we do not know where it is,
except that it is close to I'. So instead, as an approximation, we apply this map
to T (defined by R(z) = 0). Thus, we consider the phase shift map,

A:T = T ¢| — &(F((0,9))). (5.3)

See Fig. 5.2. Here is an integral approximation formula for this map.

return pagh of p
o

Mg

Fig. 5.2.  The phase shift map, &.
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Proposition 2. With these notations,
Ao~ [ apnW(gnpodt (5.4)

where t| — p, is the trajectory of ' (from the chosen initial point, py) and ¢; =
o + 2xt/T4. The approximation improves as W decreases in the C° norm.

Proof. The estimation of this approximation is a classical exercise, using the
mean value theorem, in normal coordinates for 4 in M. We simply approximate
the actual trajectory of X, in N, starting from (¢, o), by the known trajectory
of X, from the same point.

To obtain the corresponding estimate for the phase regulation dynamic, £, we
must replace W by W, in the integral formula, and differentiate with respect to
a. First we replace W by W, in (5.4). Proposition 2 then becomes:

Do)~ [ ™ g W0 pe)alt (5.4a)

Then differentiating with respect to a and using the Definition of Section 3, we
obtain the following.

Corollary 1. Let
d
'5 — E&nlnzﬂ

Then & = af, that is,
#(p) = aplép). (5.5)
Note this is the isochronic (or €) component of &, which is zero at the favorite
phases, according to Proposition 1.
We now expand W, in Maclaurin's formula (as Wy = 0), and drop the re-
mainder:

We=aP {5.6)
as in (3.4). This means that the flexible coupling is approximated by the amplitude
scheme,

Volz) + Wa(#,z) = Volz) + a P8, 1) (5.7)
in which the amplitude parameter, a, turns on the perturbation, P, in a linear
way. Making this approximation for W in the integral approximation formula,

differentiating inside the integral as usual, and using (5.5), we obtain immediately
the following faverite phase formula.

Corollary 2. .
§(do) = akldo) ~ L ap P, pe)dt (5.8)

Note that Ag(¢da) = ad(edy).
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In many applications, the generator of the perturbation, P, is indifferent to
the state of the driven system. That is, P(#1,zrs) depends on &4 only. This
results in a simpler favorite phase formula, with separation of variables.

Corollary 3. If P(#,z) is independent of z, then

b(n) = [ ™ ap P(B0)it (5.9)

This is a simple generalization of the formula of Vassalo Pereira, for Andronov's
clock. For if P(#) is a rectangular pulse:

P(6)=P, if6, <0<0, +¢

P(8) = 0 otherwise,
then (5.9) becomes

b(do) = %"fnp.ﬁ (5.10)

where & = 74/27 ¢, ;1 = (1)

Here, ¢ is the phase of A when it ticks, #; is the time when A ticks, p; is the
state of B when A ticks, oy, is the shape form at the point p, which measures the
length of the projection of a vector (along isochrons) onto the tangent of T at p
relative to V', and P, is the constant force vector exerted by A during the pulse.

SUMMARY

In this section we have developed some methods to compute an approximate PRC,
or phase shift map, in terms of the phase component, £ = af = §, of the phase
regulation dynamic. [t turns out that the one-dimensional vectorfield §V4 on T
locates the harmonics on the AIT of the forced system.

6. A GEOMETRIC INTERPRETATION

We wish now to emphasize the geometric basis of the favorite phase dynamics.
First, we collect the theory in a compact summary.

THE GEOMETRY OF A PERIODIC ATTRACTOR

Let ¥y be a vectorfield on a manifold My, and + an hyperbolic, periodic trajectory
of period 7. Then the CM’s of « define a distribution of tangent subspaces on
v. For p € Mg, the CM subspace, I, is conplementary to the tangent vector
along 7, Va(p). Also, the CM distribution 13 tangent to the normal foliation,
by hypersurfaces of constant isochronous phuse, called the isechrons by Arthur
Winfree (Winfree, 1980). All this comprises what we mean by the geometry of
a periodic attractor. A useful aspect of this geomtery is the shape form, which
measures the component of a vector in the duection of Vg by projection along I,
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PERIODIC FORCING

We now apply periodic forcing to the situation above, of period 7.4, by increasing
an amplitude parameter a from zero. We view this in suspension, that is, in the
ring model of Fig. 3.4. The original unforced oscillation, v in Mg, then corresponds
to an attractive invariant torus, T%(0), of the suspended vectorfield, Xo = f3 Vp.
Every point of 4 in Mp (identified with Z, the Poincaré cross-section defined by
driving phase, 6 4, equal to zero) then sweeps out a spiralling trajectory on T%(0).
After turning on the perturbation (a > 0) we still find an attractive invariant torus,
T?(a). Generically, this will have a number of periodic attractors, and an equal
number of periodic saddles, braided around it. We now assume that r4 = 75, and
that these braids are fsochronous harmonics. That is, they all wrap exactly once
around 7%(a) in a single turn around the ring.

FAVORITE PHASES OF THE FORCED SCHEME

Choose one of the isochronous, periodic attractors braided around 7%(a) and let
po(a) denote the unique point in which it pierces the Poincaré section, £. As
a decreases to zero, this strobe point, pp(a), approaches a point p = py(0) in
the direction of the CM subspace I,. This point, p, is a faverite phase of the
forced scheme. The strobe curvelike function a | — pp(a) is roughly tangent, at its
endpoint p = pg(0), to the CM subspace, I, as shown in Fig. 3.4.

THE PHASE REGULATION DYNAMIC

Using global analysis, we have derived a vectorfield of infinitesimal perturbation,
€ on Mg. Restricting it to v and projecting along the CM distribution, we ob-
tain the favorite phase dynamic, £ = (a€)Vp, a vectorfield on the cycle T, (or
equivalently, ¢.£s, a vectorfield on the cycle of phases, T'). The attractors of
this one-dimensional vectorfield determine the favorite phases of the weakly forced
system, while its repellors determine the periodic repellors. Some approximate
formulas help in the evaluation of this favorite phase dynamic.

ExXAMPLES

‘We now want to illustrate this geometric method of locating the favorite phases, in
a phase locked system of forced oscillation. Three simple examples will suffice. In
all three, the periodic force is pulsatile, and independent of the point of application,
as in Corollary 3. The original state space is the plane, Mz = R®.

Case 1. The clock. We begin with Andronov's clock, in which case our theory
reduces to that of Vasallo Pereira. The geometry of the original oscillation is shown
in Fig. 4.4. The periodic force is always upward. Resolving this into tangent and
normal (isochronous) components, we have the favorite phase dynamic shown in
Fig. 6.1.
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Fig. 8.1. Favorite phases of Andronov's clock (@ favorite, 0 least favorite).

Here, the solid dot is an attractor, the small circle a repellor.

Case 2. The butch cut. Here is a periodic attractor with a flat top. The periodic
force is again upwards, as in Case 1. Look carefully at the isochron foliation, which
turns back and forth. Favorite phase attractors and repellors alternate along the
flat stretch, because of the variation of the isochrons, as shown in Fig. 6.2.
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[ /]

Fig. 8.2.  The butch cut,

Case 3. The camel’s humps. Here is a periodic attractor with two humps. Each
contributes an attractive favorite phase, while between them is a repellor, as shown
in Fig. 6.3.

Fig. 6.3. The camel's humps.

Probably these examples suffice to get the full idea of the geometric theory of
phase regulation. In principle, it should be possible to engineer a forced oscillator
system to phase lock at desired favorite phases. Certainly this is easiest in the
case of pulsatile forcing. Perhaps this is the reason that nature loves pulsatile
communication. We then must wonder, as nature also loves chaos, if chaotic
attractors also admit favorite phases. We end with a single example, which does
permit phase regulation.



7. PHASE REGULATION OF ROSSLER'S BAND

As the original Rossler attractor appears, in its power spectrum, as a noisy oscil-
lator, it is a good candidate for phase regulation (Crutchfield, 1980). Further, it
has been observed to preserve a cross-section, with very gradual dispersion along
the attractor (Farmer, 1986). Thus, we may surmise that there is an approzimate
isochron foliation. Furthermore, there is a distinct hook at the top of the band,
rather like Andronov's elock. This suggests that a periodic, pulsatile force up-
ward, with the right period, might be able to synchronize the chaotic trajectory.
In fact, this experiment has been tried, and synchronized successfully (Farmer,
1986). Other chaotic attractors, such as Rossler's funnel, also have hooks; but
may not have approximate isochron foliations. Thus, they may not be such good
candidates for synchrony.

8. CONCLUSION

Forced oscillators generically produce AlTs with braided harmonics. Peixoto's
theorem on structurally stable dynamics in iwo dimensions explains this nicely
[11]. But where are they located? In many cases, such as Duffing’s catastrophe,
the phase relationship between the forcing oscillator and the isochronous harmonic
depends sensitively on various parameters. This is very counterproductive in many
practical situations. For example, if the LH surge of the human female reproduc-
tive endocrine cycle is not in the correct phase of the cycle, reproduction fails.
Thus, a strategy to guarentee phase locking is essential to nature. In this paper,
one such strategy has been presented. [t depends, in its simplest version, upon
a pulsatile periodic force, applied in a constant direction, to a periodic attractor
characterized by a distinct hook (or hooks) in its isochron geometry. As it applies
equally well to a forced chaotic attractor having approximate isochrons (unlike
periodic attractors, not all do) it may have simple applications in the biological
and social sciences.

NOTES

[1] See Ch. 5 of Pari One, (Abraham, 1982-88)

[2] The original papers are (Martienssen, 1910} and (Duffing, 1918) while an ex-
cellent summary may be found in (Stoker, 1950)

[3] See Section 5.5 in Part One of (Abraham, 1982-88)

[4] See (Rapp, 1984, Glass, 1979, Hayashi, 1986, Grasman, 1984, Hoppensteadt,
1982, Kopell, 1983, Cohen, 1982) and the references therein.

[5] These bifurcation curves, frequently called fongues, are described in many texts,
for example (Arnold, 1973/1978)

[6] See (Winfree, 1967) for the original description, also (Guckenheimer, 1975,
Winfree, 1980) or {Winfree, 1987)
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[7] For the full theory of this foliation, and its associated normal coordinates, see
(Hirsch, 1977)

[8] For an explanation of these equivalent aspects, see p. 523 of (Abraham,
1978/1982)

[9] See Part One, Section 5.5 of (Abraham, 1982-88)

[10] See Part Four, of (Abraham, 19582-88)

[11] See, for example, Part One of (Abraham, 1982-88)
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