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A CHAOTIC BLUE SKY CATASTROPHE IN FORCED RELAXATION OSCILLATIONS
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The chaotic attractor of a periodically forced Van der Pol oscillator (Shaw variant) is observed in digital simulation. and is
made to vanish in a blue sky catastrophe by increasing a constant (bias) term in the foree. The detailed bifurcation diagram,
based on extensive simulations, reveals the involvement of the homoclinic outset of a nearby limit cycle of saddle type.

1. Introduction

Chaotic attractors have been observed in a
number of studies of nonlinear dynamics; see e.g.
refs 1, 2. In dynamical systems with dissipation,
long-term behavior can settle into irregular post-
transient patterns in a low—dimensional subset of
phase space. Such attracting sets typically take
one of a few basic forms, so that recognizing the
occurrence of chaotic attractors can be of funda-
mental importance in understanding a dynamical
systermn.

Complete analysis of a dynamical system in-
volves construction of a phase space portrait, i.e. a
topological model of attractors and their basins in
phase space. Since full phase portraits are often
difficult to construct, it is useful to have other
strategies for identifying chaotic attractors. They
are sometimes found by observing qualitative bi-
furcations of a simple attractor as a control
parameter is varied. This is called onset of chaos
by a transition scenario. For example, the observa-
tion of a convergent sequence (cascade) of
period-doubling bifurcations [3] would be prima

facie evidence for a chaotic attractor. Such an
inference would, however, be indirect at best. For
example, period-doubling cascades are known to
lead to different basic forms of chaotic attractor
[4-9].

In this paper, we present evidence of a more
fundamental obstruction to the transition scenario
strategy for locating chaotic attractors. Namely,
the transition to or from chaos may be abrupt, or
catastrophic, in the sense that an infimitesimal
change in a control parameter eradicates a chaotic
attractor from the phase portrait. Such a discon-
tinuous transition will be called a blue sky
catastrophe [10]. When such a bifurcation occurs,
knowledge of the complete phase portrait 1s indis-
pensable since the dynamical system will make a
finite dynamic jump to a remote attractor, or
diverge to infinity [11].

Our evidence for a blue sky catastrophe comes
from numerical simulation of differential equa-
tions which model forced relaxation oscillations.
The existence of this blue sky catastrophe was
conjectured previously on theoretical grounds
[10].
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This bifurcation event coincides with a homo-
clinic tangency of invariant manifolds, of a type
studied previously [12]. However, our interest here
focuses on the effect this has on a chaotic attractor
(that is, on easily observed dynamic behavior),
rather than on the tangled structure of manifolds
per se.

After reviewing the basic theory of discontinu-
ous bifurcations in section 2, we describe a rela-
tively simple blue sky catastrophe for a periodic
limit cycle attractor in section 3, and then analyze
the chaotic attractor bifurcation in section 4.

2. Discontinuous bifurcations

According to Thom [13], the most typical and
fundamental manifestations of nonlinearity in dy-
namical systems are the (generalized) catastrophes.
The elementary catastrophes of gradient dynami-
cal systems are rigorously defined and classified in
Thom’s theory; the catastrophes of more general
dynamical systems, involving periodic and chaotic
behavior, can be defined with reference to
control-phase space, as illustrated in fig. 1. In gen-
eral, a control-phase space is the Cartesian prod-
uct € X P of the phase space P= {x,, x5,...,x,}
whose coordinates are the state variables of a
dynamical system, with the space C =
{#1, 9., 1, } of control settings, such as a volt-
age supplied to a motor, or a parameter in a
differential equation. Either € or P might in fact
be infinite-dimensional, but for the study of codi-
mension one bifurcations, a single scalar control
variable u is appropriate. Thus fig. 1 represents a
1-d control space C={u} crossed with a 1-d
phase space, the latter to be interpreted as a
projection of a multidimensional phase space onto
one dimension for the sake of simplicity.

The heavy lines and shaded regions in each
schematic diagram represent an attractrix, or en-
semble of attractors (equilibrium, periodic, or
chaotic) for various control settings u. For any
given value of p, a horizontal slice of the attractrix
gives the attractor(s) of the dynamical system at
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Fig. 1. Schematic control-phase space diagrams of continuous
and discontinuous attractrix bifurcations: at least some paths
through the attractrix (such as those labelled Q) cannot be
continued across g, when the bifurcation is discontinuous,
whereas all attractrix paths (such as P) can be continued across
a continuous bifurcation.

that control setting. In each diagram, an attractor
bifurcation (qualitative change} occurs as u passes
to- Following Zeeman [14], we define a discontinu-
ous bifurcation as one in which the locus in phase
space of the attractor changes discontinuously.
This means that some {or all) attractix paths, such
as those labelled Q on fig. 1, cannot be extended
continuously across g, without leaving the attrac-
trix.

As shown in fig 1, there are two varieties of
discontinuous bifurcation. Bifurcations in which
all attractrix paths are interrupted give rise to
hysteresis or divergence, and are known as danger-
ous boundaries [15] in control space. (Continuous
bifurcations are correspondingly known as safe
boundaries.) In other cases, some but not all at-
tractrix paths extend continuously across the bi-
furcation point, as observed in intermittency [11,
16). Such a discontinuous jump in attractor size is
neither a safe (continuous) nor a dangerous (hys-
teretic) boundary.

The term catastrophe was certainly intended by
Thom to apply in a general setting to include at
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least the dangerous boundaries. Zeeman [14] ex-
tends this further and defines a catastrophe to be
any discontinuous bifurcation. Since we are con-
cerned in this paper only with total disappearance
of attactors, we will be more specific and refer to a
dangerous boundary as a blue sky catastrophe - a
bifurcation in which an entire attractor disappears
abruptly from the phase portrait as a control is
varied.

Blue sky catastrophes do not “just happen”: for
chaotic attractors they are associated with
tangencies of invariant manifolds in phase space.
The first two-dimensional diagrams of this phe-
nomenon were constructed by Simo6 [17] using the
Hénon map as an example. Grebogi, Ott and
Yorke [18] examined discontinuous bifurcations in
the Hénon map and the quadratic map; they
named discontinuous bifurcations crises. The first
to observe a blue sky catastrophe (analogous to a
boundary crisis) in differential equations was
probably Rassler [19]. Ueda [20] observed a dis-
continuous jump in size of a chaotic attractor
(analogous to an interior crisis) in a forced Duffing
oscillator, and constructed detailed phase portraits
showing the invariant manifolds involved.

3. The periodic blue sky catastrophe

The simplest dynamic description of relaxation
oscillations is a nonlinear ordinary differential
equation introduced by Lord Rayleigh [21] and
studied extensively by Van der Pol [22], who rec-
ognized the broad range of physical phenomena it
encompasses. In the form used by Van der Pol,
the autonomous equation can be written

y+a(y?—b)y+ky=0, (1)
where dot denotes time derivative. The linear
damping term introduces negative damping for
small displacement y, so that the rest state is
unstable. For large y, on the other hand, nonlin-
earity makes damping positive, with the result that
all initial conditions in the (y, y) phase plane
settle to a unique limit cycle oscillation,
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Fig. 2. Phase portraits of eqs. (2), showing the catastrophic
disappearance of a limit cyele into the blue,

The same type of self-sustained oscillation oc-
curs in the equations

%=ky +ax(b—y?),
y=-x+0C,

)

which for C =0 is equivalent to the single
second-order equation (1). For C # 0, egs. (2) in-
troduce a constant forcing of the velocity y. This
type of forcing is qualitatively different from
acceleration forcing, which would result from put-
ting C on the right side of eq. (1). Acceleration
forcing is common in mechanical systems repre-
sented by second-order differential equations, but
velocity forcing may arise naturally in relaxation
oscillators of electrical or chemical origin.

By varying the constant C in egs. (2), the limit
cycle response can be made to vanish in a periodic
blue sky catastrophe. This bifurcation, which is
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closely related to the blue sky catastrophe for a
chaotic attractor discussed below, was investigated
by Abraham and Simé [23], and is illustrated in
fig. 2, obtained from numerical simulation of egs.
(2ywith k=0.7, a =10, b=10.1.

In fig. 2a, trajectories of eqs. (2) are shown for
C =0.1. Near the origin a repelling fixed point
sends trajectories spiraling out to approach the
limit cycle as r — + oc. Just above the limit cycle
is a fixed point of saddle type. The inset (or stable
invariant manifold) of the saddle is a pair of
trajectories asymptotic to the saddle as ¢ > + oo.
No trajectory can cross this invariant manifold.
Initial conditions near the inset are separated into
two basins, those which approach the limit cycle,
and those for which y = + o0 as t = +o0. The
inset is thus a separator.

In fig. 2b, with C =0.12, the phase portrait is
qualitatively the same, but both the saddle and its
inset are closer to the attracting limit cycle. Dy-
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Fig. 3. Sequence of schematic phase portraits of the periedic
blue sky catastrophe, showing the structurally unstable homo-
¢linic connection.

namic cbservation of simulated trajectories shows
that they slow down on the part of the limit cycle
nearest to the saddle fixed point.

Fig. 2c shows a qualitatively different phase
portrait at C = 0.14. The branch In, of the saddle
inset curls up inside the branch Out; of the outset
of S, as is perhaps more clear in the schematic
drawing of fig. 3. The schematic also emphasizes
that when the limit cycle exists, Out, (S) is distinct
from, although asymptotic to, the cycle. This is
not evident in fig. 2a because of the rapidly at-
tracting nature of this cycle.

The result in fig. 2c is that all trajectories reach
the upper part of the phase plane (without cross-
ing the inset) and diverge y = + co. There is no
attractor in the phase plane; increasing C slowed
the limit cycle until it vanished.

In betwen C =0.12 and C = 0.14 there must be
a homoclinic saddle connection. At some inter-
mediate value of C, the saddle fixed point just
touches the limit cycle, which would have infinite
period; this value of C is the threshold for stabil-
ity of the limit cycle.

4. The chaotic blue sky catastrophe

As predicted in [10], we have discovered that a
blue sky catastrophe for a chaotic attractor can
occur in a relaxation oscillator under time-peri-
odic forcing. Our example is the system

% =0.7y +10x(0.1 — y?}, (3)
y=-x+025s5n1.5+ C.

Retaining the constant ¢ makes the sinusoidal
forcing asymmetric. Phase portraits of eq. (3)
should properly be constructed of trajectories in
three-dimensional phase space with coordinates x,
y, and # =1.5¢ (mod 2), but it is convenient to
examine Poincaré sections in the (x, y) plane cor-
responding to a fixed phase of the driving term,
# = constant. The results are illustrated in fig. 4,
taking 8 = 7.
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Fig. 4. Phase portraits of the periodically forced equations
(3), showing the Birkhoff—Shaw chaotic attractor and its
catastrophic disappearance.

In fig. 4a with C'=0.08, the Poincaré section
resembles fig. 2a of eqs. (2), but with wings added.
As the angle # advances through one forcing
cycle, points on the attractor generally circulate
clockwise; wings are folded flat and new wings
emerge periodically. This is essentially the attrac-
tor proposed by Birkhoff [24] and first observed by
Shaw [25]; cf. [26, 27]. The attractor sections in
figs. 4a and 4b were each obtained from a single
computed trajectory, discarding the first 50 return
points and then recording the next 1000 returns to
# = 7. The return points were plotted sequentially
in the Poincaré section, landing most frequently
on the wings but always returning occasionally to
the intervening regions. That is, a single transitive
attractor is observed in digital simulation.

With pericdic forcing, the saddle fixed point S
of fig. 2 becomes a limit cycle of saddle type,

whose position at 8 =« is indicated in fig. 4 by an
asterisk (*). Asymptotic to this saddle as 1 = + oo
is an inset of infinitely many trajectories, each
recurring in the Poincaré section in a sequence of
points which approach the saddle cycle. Note that
the individual points on the inset in fig. 4 are not
successive images of one trajectory, but of many
different trajectories. In fact any point shown will
jump extremely close to the saddle cycle in one
period of the forcing term.

As in fig. 2, this inset is a separator. Initial
conditions on one side are in the basin of the
chaotic Birkhoff-Shaw attractor, while on the
other side all trajectories diverge to y — + o0 as
t— + 0.

For C =0.09 the phase portrait in fig. 4b is
qualitatively similar, but the saddle cycle is now
very close to the chaotic attractor, and the branch
In, of the saddle also comes closer. In the periodi-
cally forced system (3), the basin of asymptotic
divergence need not approach the chaotic attrac-
tor uniformly, but it must do so (by recurrence) at
locations in addition to the saddle cycle itself. The
intruding finger of In, in fig. 4b is the closest
approach at C =009, 8§ =7, but other fingers
could be found by following In, further backward
in time.

The phase portrait in fig. 4c corresponds to
C = 0.097. Shown are inset points, together with
500 trajectories started along Out,(S), that is in
the former basin of the chaotic attractor, and
plotted at their fifth return to the Poincaré section
& = 7. These trajectories wander chaotically on a
folding structure like the chaotic attractor at C=
(.09, but at C=0.097 they remain in this region
of the (x, y) plane only for a finite time. The
saddle cycle is now just inside the upright wing of
the former attractor. Fig. 4c shows some trajecto-
ries which started on Out, below the saddle cycle,
have folded above it, and are on the way to
divergence. Numerical evidence indicates that the
folding structure — analogous to the invariant set
of Smale’s horseshoe —is still transitive at C=
0.097, and with probability one an observed
trajectory will eventually be folded above the sad-
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Fig. 5. Schematic diagram of the homoclinic tangle formed
after the Birkhoff-Shaw attractor vanishes

dle cycle and diverge to y — +¢0. Thus the
Birkhoft—Shaw attractor has vanished into the blue.
The phase portrait in fig. 4c shows that at the
same time the saddle cycle touches the wing, the
inset In, passes homoclonic tangency with Out,.
The points cut from Out, by the first homoclinic
intersection will be carried above the saddle within
one forcing cycle, while other points must wait
more than one cycle. Mapping this intersection
backward in time by one forcing period, we con-
struct the second, thinner finger of In,, visible in
the first quadrant. Points cut out by this finger
leave the folding structure after two forcing cycles.
Since all points eventually leave the folding struc-
ture, it must be cut everywhere by infinitely recur-
ring fingers. The tangled inset has an intricate
structure, some of which is drawn schematically in
fig. 5. The full infinite tangle can be deduced from
fig. 5 by the mathematics of recurrence [28, 29].
The basic configuration, or signature of the
homoclinic tangency, is a type already studied
mathematically. Gavrilov and Shilnikov [12]
proved that such a bifurcation point is in their
terminology “inaccessible from both sides,” mean-
ing that there are infinite cascades of bifurcation,
accurnulating from either side at the critical con-
trol threshold. These bifurcations include saddle-

node bifurcations of subharmonics of increasingly
higher order.

It might be inferred that the homoclinic
tangency and associated attractor disappearance
might be so masked by these subharmonic bifur-
cations as to be an indistinct event. But on the
contrary, in extensive simulations we have ob-
served no evidence of the subharmonics. This is
perhaps explained by the fact, noticeable in fig. 4,
that In, passes the threshold of tangency with
Out, very rapidly as C is varied. Furthermore, by
analogy with a result on the basin size of such
subharmonics in another forced oscillator [28, p.
91] we may conjecture that the control ranges over
which subharmonics exist will decrease exponen-
tially with increasing subharmonic number.

The rapidly attracting nature of the Van der Pol
system probably plays a role here as well. Because
the volume contraction rates in phase space are so
great, the section of attractor in fig. 4 is nearly
one-dimensional. In other, weakly dissipative sys-
tems, fractal layers of a chaotic attractor would be
more evident, and subharmonic bifurcations might
be easier to detect.

In sum, the chaotic attractor disappearance is
the only bifurcation apparent in numerical simula-
tions. This bifurcation coincides with the homo-
clinic tangency of invariant manifolds.

5. Conclusion

We have examined the invariant manifold
geometry associated with the abrupt disap-
pearance of a chaotic attractor in a simple relaxa-
tion oscillator with periodic, asymmetric forcing.
This chaotic attractor, predicted by Birkhoft [24],
was first observed by Shaw [25]. The blue sky
disappearance of the Hénon-Pomeau attractor,
painstakingly drawn by Simd, is closely related to
the event described in this paper. The present case
is important to dynamical systems theory because
of its relatively simple geometry. In view of the
many manifestations of relaxation oscillations, the
blue sky catastrophe for the Birkhoff—Shaw attrac-
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tor will undoubtedly arise in applications as well.

This same bifurcation topology could also occur
in a dynamical system having an additional attrac-
tor, say a periodic limit cycle, lying above the
separator. If the additional attractor remains at a
positive distance while the chaotic attractor disap-
pears catastrophically, then the dynamical system
has one leg of a hysteresis loop. For example, the
transition to chaos in a turbulent fluid, such as
Couette flow, could occur through a blue sky
event involving only two modes of excited oscilla-
tion.
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