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Abstract. This is an introduction to c¢ellular dynamical
systems theory, a mathematical strategy for creating
dynamical models for the computer simulation of biolog-
ical organs and membranes, and other systems exhibiting
natural intelligence. Full details will be published
elsewhere [1]. This strategy 1is based upon complex
dynamics (an extension of nonlinear dynamical systems
theory to networks of serially coupled dynamical sys-
tems) as described in earlier publications [2].

Historical introduction

Reaction/diffusion equations were Introduced by the
picneers of biological morphogenesis: Fisher (1930),
Kolmogorov-Petrovsky-Piscounov (1937), Rashevsky
(1940}, and Turing (1952). Rashevsky introduced spatial
discretization corresponding to biological cells. These
discretized reaction/diffusion systems are examples of
cellular dynamical systems, probably the first in the
literature, Further developments were made by
Southwell (1940-45), Turing (1952), Thom (1966-1972)
and Zeeman (1972-1977). The latter includes a heart
model, and a simple brain model exhibiting short and
long-term memory. The ideas outlined here are all
inspired by these pioneers. For full biblliographies,
see [1].

Cellular dynamical systems

By dynamical system we mean an autonomous system of
coupled ordinary differential equations of the first
order. More generally, we include vectorfields on mani-
foclds, both finite and infinite dimensional, which we
call state spaces. Thus, systems of coupled partial
differential equations of evolution type are included,
along with integro-differential-delay equations, and so
on. By dynamical scheme we mean a dynamical system
depending upon parameters in a supplementary manifold,
the control space. Dynamical schemes may be serially
coupled in various ways. The simplest, which suffices
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for most of our applications, is called a static cou-
pling. This is a function from the state space of one
dynamical scheme to the control space of another. The
canonical example is the driven pendulum. In this way,
a finite set of dynamical schemes (nodes) may be seri-
ally coupled by an appropriate set of static couplings
{directed edges) in a network (directed graph). This is
the primary object of complex dynamical systems theory.
Exemplary models for several physiological systems have
been developed and run, producing convincing simulated
data [2].

By cellular dynamical system we mean a complex dynami-
cal system in which the nodes are all identical copies
of a single dynamical scheme, the standard c¢ell, and
are assoclated with specific locations in a supplemen-
tary space, the physical substrate, or location space.
Exemplary systems have been developed for
reaction/diffusion systems by Southwell's relaxation
method: discretization of the spatial variables. In
these examples, pattern formation occurs by Turing
bifurcation. One of the most-studied examples of this
class is the Brussellator of Lefever and Prigogine,
Other important examples of this construction are the
heart and brain models of Zeeman. These models have
something in common with the cellular automata of Von
Neumann, yet possess more structure,

The behavior of a cellular dynamical system may be
vizualized by Zeeman's projection method: an image of
the location space (physical substrate) is projected
into the response (pifurcation) diagram of the standard -
cell, where it moves about, clinging to the locus of
attraction., Alternatively, the behavior may be vizual-
ized by the graph method: attaching a seperate copy of
the standard response diagram to each cell of the loca-
tion space. Within this product space, the instantane-
ous state of the model may be represented by a graph,
showing the attractor occupied by each cell, within its
owWn response diagram.

In either case, the behavior of the complete cellular
system may be tracked, as the controls of each cell are
seperately manipulated, through an understanding of the
standard response diagram provided by dynamical systems
theory: attractors, basins, seperatrices, and their
bifurcations. For an introduction to this subject, see
£31.

Biological organ models

Organs typically contain many different types of cells.



In the unusual case that there were only one type of
cell, one could imagine a medel for the organ consist-
ing of a single cellular dynamical system. This is the
case with Zeeman's heart model. An explicit cellular
dynamical model for the organ will require an explicit
model for the standard cell, which {(with luck) may be
found in the specialized literature devoted to that
cell,

However, if there are two distinct cells, then each
will give rise to a distinct cellular dynamical model.
The model for the organ will then consist of a coupled
system of two cellular dynamical systems, cne for each
cell type. More generally, the crgan model will consist
of a complex dynamical system, comprising a network of
distinet cellular dynamical models, one for each of the
distinct cell types.

Moreover, even if there is only a single cell type in
the organ (for example, a liver cell) a network of cel-
lular models may nevertheless be required. For there
are usually at least two important compartments in the
organ: the intracellular space, and the extracellular
space, The concentration of control metabolites or
humoral substances (such as the pacemaker substance in
Zeeman's heart model) in the extracellular space con-
tributes a second c¢ellular dynamical system to the
model. This second system arises through the discreti-
zation of the nonlinear Fickian diffusion equation for
the perfusion of metabclites through the organ. Even
if the substance in the two compartments is the same
(for example, cortisol in the adrenal cortex), there
will be two distinct cellular systems in the organ
model, The dynamics of the extracellular substance will
usually be modeled by a (discretized)
reaction/diffusiocn system, while the intracellular
dynamics may be modeled by reaction kinetics alone.

Nonlinear spectroscopy

Even with enormous computers, the simulaticn of a
detailed model of a realistic organ, on the scale of
individual cells, will be tco slow to be useful. Thus,
for models which can interact fruitfully with research-
ers on the frontiers of science, we must use computa-
tional cells larger than a single cell, These computa-
tional cells will be assigned average values of the
state variables of the individual biclogical cells (or
subcellular units, or extracellular spaces) contained
within it. If the size of the computational cell is
varied through a sequence of increasing sizes, from a
fraction of a single cell to the whole organ or organ-
ism, we obtain a family of distinct cellular dynamical



models for the same organ. Their spectrum of behaviors
comprises the nonlinear spectral analysis of the model-
ing scheme used to construct the family of models, The
shape of this spectrum may be very useful in optimizing
a model for a specific purpose, as well as for under-
standing the physiology of the organ or target system,

Numerical methods and experiments

The destiny of a cellular dynamical model is a computer
program. Although we may expect someday a theory of
these models, it may not replace simulation as the dom-
inant method of science, but only supplement it. Thus,
we need a technology of numerical methods adapted to
these large-scale gimulations. Beyond brute-force
integration of thousands of identical copies of the
standard dynamical scheme with differing (and slowly
changing) values of the control parameters, lookup-
table methods might be employed for accelleration or
ecocnomy. In any case, massively parallel hardware and
software will be needed, along with new methods of mon-
itoring large numbers of state variables. Color graph-
iecs 1is the method of choice at the moment, and we may
imagine a color movie projected upon a model of the
physical substrate of the organ as the monitoring
scheme.

The current state of the art seems to be simple experi-
ments with standard cells culled from the literature of
the physical sciences, such as the Duffing pendulum,
the cusp castrophe, and so on. From these experiments,
we may try to recognize some functions of natural
intelligence, such as memory, perception, decision,
learning, and the like. A number of such experiments
have been proposed elsewhere [3].
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