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ABSTRACT: Complex dynamical systems theory is an evolution of non-
linear dynamics, developed for modeling and simulation of biological sys-
tems. Here, we speculate on the potential of this strategy for the emerging
theory of social systems, and the implications for the future of our own
planetary society.

1. INTRODUCTION

Since the last glaciation, we have exiensive records of some ten
thousand years of the struggles of the human species for survival
within the ecosystems of Terra. We have coextensive records of the
evolution of consciousness, wisdom, intelligence, arts, sciences, and
technology. The mutual interactions between these two levels of
history have been critical to the survival of our colony up to the
present moment, and will continue to be critical, as we face the
challenges to come. In this essay, we examine the cognitive strategies
entwined in the historical records of the sciences, and propose an
extrapolation for the near future which may be essential for our
survival: the mathematical acceleration of secial theory.

We will begin with a brief history of the role of mathematics in the
development of the sciences since Newton, from the viewpoint of
modeling and simulation. Then, we will outline three case studies:
dynamics, physiology, and sociology. Finally, we propose an inex-
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pensive project for the accelerated development of a large-scale
model of our emerging planetary society, suitable for high-speed
simulation by existing supercomputers.

The motivation of this essay, and the proposed project, is the
challenge of meeting the oncoming evolutionary crisis, and sur-
mounting it, through a timely increase of our understanding of com-
plex systems and their transformations. For we feel that this increase
in understanding will come soon, or never.

2. HISTORICAL INTERACTIONS BETWEEN
MATHEMATICS AND THE SCIENCES

Mathematics is not a science, nor is science mathematical. The
applications of mathematics to the sciences involves, in fact, a rela-
tively small part of our mathematical activity, and an even smaller
smaller part of our scientific efforts. Yet historically. this interaction
has been particularly important in the development of each. This is
particularly true since Huyghens, Newton and Leibniz, who were
primarily responsible for the cognitive style which dominates scien-
tific theory today.

Applied mathematics, as we may call the interaction between mathe-
matics and the sciences, has two aspects: modeling and simulation.
Modeling denotes the creative activity of building a mathematical
model for a given phenomenon, or experimental domain. It may
involve any branch of mathematics in the architecture, construction,
testing, and evaluation of a model. Simulation, on the other hand,
denotes the operation of an existing mathematical model for pur-
poses of prediction, or study, of the target system. The computer
revolution has changed the dominant method of simulation from
classical analysis to numerical computation and graphical presenta-
tion. We wish now to focus on the modeling aspect of applied mathe-
matics, which was called mechanics in ancient Greece.

According to this mechanical paradigm, our cognitive strategy in
technical matters is mechanical. That is, we understand complex
phenomena by constructing models, rather than by verbal, symbolic,
or other representations. Models may be physical machines (such as
orreries or planetaria), pictorial representations (such as photo-
graphs) or mathematical models (symbolically represented, as in F =
ma). The relationship between the model system and the real target
system is a conventional (fictitious) one, and need not be an ideal
analogy in order to be cognitively useful. Many different models of
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the same target system (a spectrum of models) may be used at once, to
advance understanding. In fact, this may actually b¢ understanding.
We call this the mechanistic approach to science.

This approach differs from that of dogmatic science, in which the
model comes, over time, to be identified with the target system. For
example, a traditional physicist may assume that the electrostatic
potential of Maxwell's model has an actual existence in the phenome-
nal universe.

Accepting the mechanistic approach, let us review the role of the
modeling aspect of appiied mathematics in the history of the sciences
since Newton.

Throughout the period 1680-1930, there was a growing list of
spectacularly good models for physical phenomena. These have be-
come, with surprisingly littie evolution since their original creation,
the cornerstones of mathematical physics: dynamics of particles and
tontinua, electrodynamics, gravitational theory, thermodynamics,
statistical mechanics, quantum theory, and so en. In each case, his-
tory follows the same pattern: experimental evidence mounts, cogni-
tive strategies form and dissolve, data are increasingly numerical,
models become increasingly mathematical, and so on. Eventually,
someone has a revelation or intuitive leap, and theory emerges in a
new simplicity of understanding, clothed in a splendid mode! (Max-
well's equations, Einstein's tensor, etc.) which stands as an ideal
model for a long time. In this pattern of punctuated evolution in the
sciences, the mathematical models play a key role in the formative
stages and cognitive strategies, through interaction with the experi-
mental and theoretical developments. This common pattern is a
central point in this essay, and can be learned in detail from a singie
case study. An ideal case is d'Alembert’s wave equation for the vi-
brating string, which established the dominant modeling style of
mathematical physics in 1752.

We will now go on to consider three other cases, one each from the
physical, biological, and social sciences.

3. THEORETICAL DYNAMICS

The word mechanicsmeant model-making to the ancient Greeks, as
we have noted above, while the word dynamicsreferred to the medici-
nal power of plants. In the context of the physical sciences, these two
words have become synonymous, and denote the science of force,
mass and motion begun by Galileo. From the point of view of me-
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chanics (model-making), the history of mechanics {dynamics of parti-
cles and continua) provides outstanding examples of the role of
models in the creation of theory. It is very instructive to study them in
detail, but here we will be satisfied with a brief listing.

In 1560 or so, Galileo made use of real (physical) models (marbles,
inclined boards, leaning towers, and so on) to elucidate the basic
principles of motion. After creating the calculus in 1665, Newton
used it to make mathematical models for the same phenomena in
1685. From the study of these models grew classical analysis, one of
the main branches of mathematics. The goal of analysis was to obtain
predictions (that is, simulated data) from the models (differential
equations) by symbolic mtegration (that is, from explicit functions).

In 1863, James Thompson invented the first mechanical analog
computer for the simulation of these same models, providing a sec-
ond simulation strategy. In the 1920’s, Van der Pol began using
electronic analog computers for modeling and simulation, and these
became fast enough to compete with classical analysis as a practical
method. Later, during World War 11, they became fast encugh to be
used as bombsights, simulating trajectories according to Newton's
- model. Shortly thereafter, digital computers replaced them as the
simulation strategy of choice for most dynamic models.

The models created by Newton (coupled systems of nonlinear
differential equations) are basic to all the simulations which followed,
whether by classical analysis or analog or digital computation.

4. SIMPLE DYNAMICAL SCHEMES i

An outstanding problem of theofetical dynamics is the stability of
the solar system. In 1885, Poincare showed that Newton's methods
of classical analysis were inadequate to resolve this fundamental
problem. He went on to establish totally new mathematical methods
for the study of dynamical systems. These were geometric, rather
than analytic, and gave rise to new branches of mathematics such as
differential topology. The new methods, applied to systems of ordi-
nary differential equations, are now known as dynamical systems theory
(or qualitative nonlinear dynamics). They have provided a synthesis
of all the outstanding models of the physical sciences into a single
modeling strategy.!

A dynamical system is based upon a state space, or geometrical model
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for the virtual states of the target system. Each point of the state space
represents a single, instantaneous state, perhaps through some num-
ber of observable parameters. The dynamic is a infinitesimal rule of
evolution: each state is characterized by a unique evolutionary tend-
ency, described by a velocity vector.

The behavior of these mathematical systems is well-known,
through three centuries of experimental and theoretical findings. A
given initial state evolves along a unique trajectory. After a tempo-
rary phase, the transient response, this trajectory approaches asympto-
tically to a limit set called an a#tractor, and a dynamical equilibrium is
attained. These occur in three flavors: static, periodic, and chaotic.

Static altractors, also called rest points, have been extensively applied
- since the time of Newton. A system under the influence of a static
attractor approaches the final destination and slows to a halt.

Periodicattractors,also called oscillations, have dominated dynamics
for the past century. A system approaching an oscillation will behave
more and more like a perfect oscillation as time goes on.

Chaotic attractors, also called strange altractors, are newly discov-
ered, and provide for an understanding of many kinds of aperiodic
behavior. Much is now known to be signal, which was previously
considered to be noise.

in a given dynamical system, there are usually several attractors.
As each initial state will evolve to one of them, the state space may be
decomposed into sets sharing the same final fate, which are called
basins. The basins are divided by separatrices. The state space, with
the attractors, basins, and separatrices drawn upon it, is called the
portrait of the dynamical system. This portrait comprises the full
understanding of the dynamical behavior of the model, at least as far
as long-run prediction is concerned.

Most useful models contain adjustable constants, or controlparame-
ters, which may be used to adjust the dynamic on the fixed state space.
Such a model is called a dynamical scheme. As the controls change, so
does the portrait. The response diagram of the scheme is a graph
showing the dependence of the portraii upon the control parame-
ters. The response diagram is the master map which gives this kind of
model great power in applications. Points in this diagram where the
portrait changes in a particularly significant way are called bifurca-
tions.

Catastrophe theory has provided excellent pedagogic examples of
response diagrams for various schemes, establishing their impor-
tance as graphic representations in many scientific disciplines. Fur-
ther, it demonstrates the usefulness of mathematical theory in these
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applications, as the theory excludes many bifurcations which might
otherwise be expected.?

For our present purposes it suffices to observe that dynamical
schemes unify all the best-known models of the physical sciences
within a single modeling strategy.-

5. THEORETICAL PHYSIOLOGY

After the introduction of dynamical systems theory by Poincaré in
1882, and the maturation of mathematical physics from mechanics to
quantum theory, a disastrous gap opened between pure mathematics
and the sciences. Although mathematical physics was two centuries
old, biological science had hardly begun. Thus, unlike physics, biol-
ogy was forced to evolve with little support from mathematical
models. Of course a few scientists had extensive mathematical train-
ing, perhaps from backgrounds in physics or engineering. But the
mathematics which had evolved in that arena was not ideally suited to
biological modeling. So overall, one might say that theoretical biol-
ogy and mathematics were both retarded by 50 years or so by the lack
of interaction. Only in the past twenty years or so has there been )
significant interaction between theory and modeling used as a cogni-
tive strategy, and by now, the journals of mathematical biology are
filled with very sophisticated models.

The bulk of these models are, in fact, simple dynamical schemes.
And their style is much influenced by the historical models of the
physical sciences. And yet, when we try to transcend the reductionist
models for isolated parts of whole systems, the strategies of the physi-
cal sciences fail us. Physical systems are too simple to guide us. Thus,
new mathematical strategies have recently evolved for modeling the
complex systems encountered in biology, such as general systems
theory, systems dynamics, nonlinear control theory, urban dy-
namics, cybernetics, and so on.

One such strategy, a straightforward extension of the dynamical
systems theory of Poincaré to complex systems such as networks and
membranes of simpler systems, is called complex dynamical systems
theory. It evolved in efforts to create high-fidelity models of physio-
logical systems, such the endocrine control systems for the regulation
of sleep, eating, stress, and immune responses of mammals.*
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6. COMPLEX DYNAMICAL SCHEMES

Given two dynamical schemes, each with its own control and state
spaces, a simple kind of coupling may be defined by a function from
the state space of the first to the control space of the second. The first
is the driver in this coupled system, as its states operate the controls of
the other, follower system. By making such couplings among several
simple schemes. coupled networks may be built. These provide an
excellent modeling strategy in scientific areas where reductionist
experiments have led to good dynamical models for the individual
parts of a whole system. Each part-model is characterized by a re-
sponse diagram, which may be well-mapped through extensive com-
puter sirnulations.

Then the chalienge to the theory of complex dynamical systems is
to predict the behavior of the complex system, from a knowledge of the
behavior of the parts, and their couplings. At present, this theory is in its
infancy. Even if the component schemes are stabie linear ones, as is
frequently the case in systems dynamics for example, the behavior of
the complex system may be chaotic. Yet the emerging theory of
bifurcations of dynamical schemes is very promising here, as it pro-
vides the beginnings of an encyclopedia of atomic bifurcations, of
which all response diagrams are made. Viewed as exclusion rules, this
encyclopedia may be very helpful in interpreting the results of com-
puter graphic simulations of large-scale complex models. As it grows,
a useful theory will become available, and although the behavior of a
compiex may not be predictable from the behavior of its parts, it may
be obtainable from an affordable amount of computer simulation.
~ Other contributions to complex dynamical systems theory may be
expected from differential topology and geometry, and practical
experience will accelerate when personal supercomputers become
available in the near future. -

7. THEORETICAL SOCIOLOGY

This subject, beginning its ascent almost a century behind that of
theoretical biology, may be expected to grow at a faster rate. For the
gap between mathematics and the sciences has been bridged here
and there. Thus, the further advance of social theory could be me-
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teoric, if it makes uninhibited and interactive use of innovative math-
ematical models in the spirit of Newton. Euler, the Bernoulli's,
d’Alembert, and so on. For 70 years sufficed for the creation of
mathematical physics as we know it today, while a like period in the
history of mathematical biology advanced us relatively little.

Due to the explosive growth of social problems, the Jastest possible
advance of social theory, including an adequately predictive model, is
mandatory. Thus, we need to nurture the maximum interaction
between the ingredient subjects (complex dynamical modeling and
simulation, pure mathematics, all of the social sciences, computer
science) with adequate resources.

In the gowth of social theory, what sort of mathematical models
might be useful? Just as the simple dynamical schemes of physics had
to be extended to the complex schemes of physiology, further exten-
sion may be necessary to build successful models for a planetary
society. One modification has already been introduced by Stephen
Smale, in his microeconomic model for a trading society.® In this
model, the dynamic (that is, the rule of evolution) is specified not by a
unique velocity vector at each point in the state space, but by a cone of
favored directions instead. Another extension which may be neces-
sary for the modeling of very large and complex systems is a hierar-
chy, or spectrum, of models.

8. SPECTRAL DYNAMICAL SYSTEMS

By this invented phrase we mean a whole family of complex dy-
namical models for the same target system. For example, we may
have a hierarchy of models, ranked by differences of physical scale in
the state space: microscopic, fine-grain, coarse-grain, macroscopic,

- thermodynamic, and so on. Or, we may have parallel modelis of the
whole system, but seen from the perspective of disjoint local regions.
There may be similar models, distinguished by separate hypotheses,
decision strategies, policy-making styles, and so on.

This situation is already familiar, not in modeling practices, but in
the verbal analyses of social systems. These are parsed by aspects
belonging to separate subjects, such as pelitical analysis, economic
description, resources, needs, climate, foreign interactions, and
SO on.

Thus, we may foresee a further extrapolation of dynamical model
structure, in which the cognitive styles already firmly fixed in the
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various social sciences may separately be embedded, each within one
of a spectrum of interlocking complex dynamical models. The
models of the spectrum must be made ina universal strategy and style
so that they may be successfully combined, or coordinated, for pur-
poses of computer programming, for simulation and prediction, for
policy-making, and so on.

The master map or hypermodel which coordinates this spectrum of
models will probably be a known structure from differential topol-
ogy or geometry. But all this can be elaborated only in the context of
the actual future of mathematical social theory.

9. PROSPECTS FOR AN ACCELERATED DEVELOPMENT
OF THE SOCIAL SCIENCES

We believe that a successful model of planetary society is an
attainable goal for our species, complete with accurate predictions
_for millenia, simple models for chaotic states and transformations,
and short lists of alternative futures at the bifurcation points of psy-
chohistory. Indeed, the achievement of a satisfactory social theory,
following in the footsteps of physics and biology, mustprovide us with
such a model, and perhaps the extension of natural intelligence by
the computer revolution is 2 necessary prerequisite.

However, we may not wish to wait for a century or two for the
spontaneous development of this model, from science fiction to the
board-room computer. Indeed, we may not be able .0. So we must
ask: what are the prospects for the intentional acceleration of this

- natural development by a large factor, such as ten?

Certainly the exigencies of World War II created maximum accel-
eration efforts for various physical technologies, such as radar,
rocket propulsion, and nuclear reactions. The respective strategies
of England, Germany, and the United States for these accelerations
were very similar: draft the best people, combine them in an isolated
think tank with extensive resources and all the funding that can be
spared, provide inspiring leadership and desperate motivation, and
hope for the best. In all three cases, luck prevailed.

The history of analog and digital computing machines provides a
second precedent. Several centers in England and the United States
gambled on different strategies and took their chances, asin roulette.
Here too, luck prevailed.

Our current situation may be very similar to wartime, but with alt
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of us on the same side. As the battle for survival intensifies, the
detense budgets of the world may be redirected to a desperate pro-
gram to accelerate the development of the psychohistorical model.
The earlier wartime efforts may serve as the organizing plan for a
new crash program. .

Yet those were based upon applications of sciences with theories
already well developed. It may not be possible to accelerate the early
stages of emergence of theory. At least, we cannot guess how long
this might take.

We have much at stake. Should we trust to luck?

10. CONCLUSION

The history of the three sciences from the point of view of me-
chanics (model-making) has been considered, to suggest the possible
importance of complex dynamical models and supercomputer simu-
lations in the development of social theory, and an adequate model
for supporting the emergence of a peaceful planetary society.

It appears that mathematics, computer science and the social
sciences are poised for a rapid growth. But normal rate of this growth
may be much too slow to assist us in coming crises. We have no
precedent for the intentional acceleration of the formative stages of a
science.

As Einstein said: One can organize to apply a discoveryalready made,
but not to make one.

It 15 time to begin.
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