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Mechanics of Resonance

Ralph Abraham

ecently, my greatest pleasures have occurred in the company of some beautiful

older books I came across while studying the history of vibrations. Chief

among them is the history of mechanics from Galileo to Lagrange by Truesdell

(1960), in which he points out that mechanics belongs to our perennial wis-

dom. It was associated with our highest pre-modern knowledge, and is not just
a bad habit of the modern period. When our post-modern science emerges (if it ever does), I
believe we will come to see mechanics resume the place of importance it held in ancient and
Renaissance times.

In particular, the discretization of continuous systems for the sake of understanding them
in mechanical analogy was introduced by Leonardo da Vinci around 1500. Discretization
denotes the modeling of a continuous system by a finite number of discrete ones. It is a
cognitive strategy inverse to interpolation. For example, a length of flexible cable may be
modeled by a length of chain. In fact, this was essentially Leonardo’s earliest example of the
discretization strategy.

Later, the disenchantment of the Renaissance reduced this cognitive strategy to dogma.
This happened in 1600 with the burning of Bruno, according to Berman (1981), or perhaps in
1627 with the dream of Descartes, according to Davis and Hersh (1986). Leonardo’s strategy
reappears in 1646, in Huyghens’ study of suspension bridges, and again in 1675, in Huy-
ghens’ study of the vibrating string (Truesdell, 1960, ch. 1, pp. 45-49). By this time, the de-
generation of mechanics from cognitive strategy (in the spirit of Hermeneutics and verst-
ehen) to dogma (as in Physicalism, Reductionism, etc.) was well under way. Truesdell tells us
that the phenomena of resonance were known to the ancient Greeks, that Leonardo resumed
its experimental study early in his career, and that Fracastoro gave its correct explanation in
1546 (ch. 1, pp. 16-22).

In this article, I try to give the basic idea of the nonlinear resonance of vibrations by ex-
tracting a few episodes from the history of mathematical physics in the three-century period
beginning with Galileo. One immediate goal is that you should understand how to break a
plate of glass by singing, worrying it around its resonant frequency. You might be able to do
this without knowing how. The person who figured out how to do this was Duffing (1918),
an Austrian engineer. His discovery is the fundamental phenomenon of nonlinear resonance,
the double fold catastrophe, and it is this which breaks the plate of glass. If you understand
this, you can apply it to many other things, such as morphic resonance. A few such applica-
tions are suggested in the last sections.

OSCILLATION AND VIBRATION

Oscillation and vibration are two different things. An oscillator is something like a clock;
it reproduces its states in a cycle, traversing each cycle in the same period of time. The proto-
typical examples of oscillation are the rising and setting of the sun, the phases of the moon,
the tides, the mammalian reproductive cycle, and the cycle of the seasons. The modern non-
linear resonance concept applies primarily in the domain of oscillators, as studied by Duff-
ing. If two oscillators are nearby and influence each other, a resonance phenomenon may be
observed between them. But here, I wish to extend this concept to the classical context of
resonant vibrations, of strings for example. : :

Vibration is a spatially distributed field or family of coupled oscillators. In a vibratory
field, cooperative behavior might give the appearance of a wave traveling. Actually nothing
is moving, only individually oscillating up and down, like the surf. The cooperative behavior
of a field of coupled oscillators is a vibration. The prototypical vibrations are, of course,
strings, water waves, and sound waves. No others were known until the:relatively recent dis-
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covery of wave phenomena in the electro-
magnetic field, quantum mechanical oscilla-
tions, biological systems, and so on.

Resonance between vibrating fields is an
extension of the resonance of oscillators.
Imagine a vibrating guitar string for exam-
ple. If you have another vibrating string near
it, the resonance phenomenon between these
two vibrations or fields of oscillators is a co-
operative phenomenon among the individual
resonance effects between the oscillators of
the one and the oscillators of the other, col-
lectively composing the individual vibra-
tions. This is a much more complex phenom-
enon than the simple resonance of oscilla-
tors. Our goal is to understand this by means
of a mechanical analogy or model.

Examples of Oscillators

I think that the first man-made oscillators
were models of the natural oscillators. For ex-
ample, the ancient Egyptian water clock and
the pendulum clock of Galileo and Huyghens

are self-sustaining oscillators made in imita-
tion of the natural prototypical oscillators.

A pendulum is oscillatory, yet it is not an
oscillator in the strict definition I am using
here, that of requiring self-sustaining mo-
tion, because the widths of the swings of a
pendulum die away in a short time. How-
ever, a pendulum is oscillatory in the sense
that with every pendulum there is associated
a certain natural frequency. Around 1588,
Galileo had noticed that this frequency is
roughly independent of the width of the
swing, the so-called isochronous property of
the simple pendulum. So although the swing-
ing dies away, as long as it persists one may
keep time with it. In fact, Galileo timed his
astronomical observations in this way.

To make a satisfactory pendulum clock,
what was required was a mechanism that
would automatically keep winding up the
pendulum. Such an escape mechanism was
invented by Galileo (who never made it
work) and applied by Huyghens (who did).
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Figure 1. The principal participants and events, in order of appearance.
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In fact, Huyghens made a great number of
clocks. He had a machine shop in downtown
Amsterdam make clocks for him, and they
were all over the house. He noticed that even
though the clocks in separate rooms were
keeping time differently, one gaining time
every day, another losing time every day,
when he put them in the same room, close
together, they would keep time at the same
rate. If they had an error, it would be the
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Figure 2. These sketches from Leonardo’s note-
books, about 1500 A.D., show the weight of the
string concentrated in a single heavy bead near the
center. This is the earliest known example of a dis-
crete model for a continuous mechanical system.

same error. But more than that, the pendu-
lums would actually swing in phase. This is
the entrainment phenomenon discovered by
Huyghens in 1665. It is an aspect of reso-
nance.

The tuning fork interruptor, or door
buzzer, is another example. Like the pendu-
lum, a tuning fork is oscillatory but is not an
oscillator. One of the first electrical oscilla-
tors was Helmholtz’s invention of the door
buzzer, about 1850. He took a tuning fork,
put a nail close to one of its bars, and when
the tuning fork vibrated, contact with the
nail would complete a circuit with a battery
and a coil; the electromagnetic field of this
coil would give the impetus to strengthen the
vibration. The door buzzer would keep on
buzzing.

NONLINEAR RESONANCE OF
OSCILLATORS

First of all let us consider linear reso-
nance, a fiction of the imagination because
nothing in Nature is truly linear. A tuning
fork, for example, might be a linear oscilla-
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Figure 3. In this study of a suspension bridge from

1646 A.D., Huyghens employs the discretization
strategy of neccesity.

tor if it were infinitesimally thin. A pendu-
lum might be one if all of its mass were con-
centrated in a small bob at the bottom of a
weightless string, if there were no air in the
room, or if it swung only slightly, and so on.

The idea of the linear resonator, in the
case of a thin tuning fork, is that you sing at
it, and that tends to put it into vibration. But
if you are at the wrong frequency, its re-
sponse is nil. When you sing at the right fre-
quency (the natural frequency), the fork will
almost instantaneously go into a relatively
large oscillation. That is resonance. If you
raise the pitch of your voice gradually from
below the resonant frequency to above it, the
fork will respond only at the one frequency.
This behavior is shown by the response curve
(see Figure 4).

What happens with a nonlinear (that is to
say, real) tuning fork is that this response
curve is bent, as shown in Figure 5. Duffing
studied this by modeling the forcing oscilla-
tor (that is, the nearby voice) as a large pen-
dulum moving very slightly, and modeling
the responding oscillator (tuning fork or
whatever) as another (smaller) pendulum.
The mechanics of each pendulum is inher-
ently nonlinear. For the coupling between
them, he hung the smaller pendulum from
the bar of the larger one. He was interested
in the effect on the little one of the forcing
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Figure 4. This graph shows the response of the
sympathetic oscillator (pendulum, string or fork)
concentrated at single frequency, the resonant fre-
quency. This is the response diagram for the linear
resonator.

oscillation of the driving pendulum. This
one was so big that it was essentially unaf-
fected by the motion of the smaller one.
Recall that a simple pendulum has a natu-
ral frequency at which it likes to swing when
left alone. Suppose the big one is forcing the
small one at a frequency slightly lower than
its natural frequency. Then the small one

might respond with a very small oscillation

at that same frequency. Now repeat the ex-
periment, increasing the forcing frequency.
In the linear case, there would be no signifi-
cant response of the driven oscillator until
the forcing frequency reached the natural
(resonant) frequency of the driven oscillator.

But in the nonlinear case, the resonant be-
havior of the pendulum is bent over; the
whole response curve is bent over. As the
driving frequency increases, the sympathetic
response increases gradually until the driving
frequency reaches some critical value well
past the natural frequency of the follower.
Then abruptly, the response falls to a much
lower level. Decreasing the driving frequency
again, the smaller response persists until the
driving frequency gets to a critical value
somewhat above the natural frequency of
the follower. Then, again abruptly, the re-
sponse increases. This complete sequence is
called an hysteresis loop Abraham & Shaw,
1982). The interval between the two critical
frequencies is called the resonant frequency
interval or the bimodal regime. This is the
nonlinear analogue of the resonant fre-
quency in the linear context.

This is what Duffing discovered with the
small pendulum hanging from the bar of a
larger pendulum. He examined the complex
motions of the system by taking very careful
observations with a stroboscope. (According
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to Lord Rayleigh, the stroboscope was in-
vented by a pendulum scientist, Foucault.)
Extended vibrating systems (string, tuning
fork, wine goblet, etc.) behave similarly.
You may try this with your own wine
glass. You sing at a low frequency, and the
glass is not vibrating very much in sympa-
thetic response. You increase your pitch at
the same loudness, and it vibrates a lot. You
can see it and also hear it because the glass
essentially functions as a speaker cone. The
sound of the sympathetic vibration gets
much louder, although you are changing
only the frequency of the forcing sound and
not its loudness. When the responding sound
gets much louder, you have identified the
natural frequency, the resonant interval.
You can raise and lower your pitch, keeping
the same loudness. When you go down
through the lower endpoint of the resonant
frequency range, there is a snap up in the
loudness of sympathetic response of the
glass. It is this snap or popping that can ac-
tually break the glass. As you pop it again
and again, the glass weakens. If the glass
were a linear vibrator (for example, a very
thin plate of glass), you could probably
break it by forcing it at the resonant fre-
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Figure 5. This is the response diagram for a non-
linear resonator. ‘The response curve has been
bent over towards the higher frequencies. The
solid curves represent attractors, the dotted curve
indicates the separatrix between the basins of the
two competing attractors. Within the resonant in-
terval there are two sympathetic responses, a loud
one and a softer one. At the boundaries of this in-
terval are found the double fold catastrophies, in
which one or the other of the sympathetic vibra-
tions disappears.

quency, although you might have to use a
somewhat louder forcing sound.

We may how apply these concepts of reso-
nance of nonlinear oscillators to a field of
oscillators or vibrator. To do this, we may
use the discretization strategy invented by
Leonardo about 1500. In the case of the tun-



ing fork bar or guitar string, we have to
replace it with a discrete mechanical model.
We saw one bar of the tuning fork into
pieces about an inch long and then put these
pieces back together again with springs.
There is not much room for the springs, so
we take each chunk of aluminum and com-
press it into a tiny bead of enormous density
without losing any mass. Now we have
spaces of about an inch between adjacent
beads in which to put the springs. This be-
comes a discrete model in the style intro-
duced by Leonardo and much used in the
corpuscular mechanics of the 18th century.
We have a discrete mechanical model for one
bar of the tuning fork, as a string of dense
beads, - essentially pendulum oscillators,
coupled with small springs.

This model was used by d’Alembert at the
dawn of mathematical physics in 1749. He
made a model for the vibrating string by dis-
cretizing it in this way, imagining that
springs came between discrete heavy beads.
He then wrote down f = ma (Newton’s
equation for this discrete model), and con-
tinued as though there were more and more
beads, lighter and lighter and closer to-
gether, making a better and better approxi-
mation to the vibrating string. For details of
this analysis, see Buckley (1985).

The extreme case of this conceptual sim-
plification of Leonardo is exactly what Ray-
leigh (1960) did in his analysis of the clarinet
reed, in his fundamental book on acoustics
in 1882. He replaced the reed by a single
heavy bead at the top that was connected to
the base of the mouthpiece by a weightless
leaf spring. Then it is a simple kind of non-
linear oscillator, like a pendulum.

NONLINEAR RESONANCE OF
VIBRATIONS

If you place two tuning fork bars or two
vibrating strings side by side and you discre-
tize each in this extreme way into a single
bead, and the coupling between them is
modeled by another small spring, then you
have almost exactly the situation of
Duffing’s experiment. So the response dia-
gram of Duffing’s catastrophe, Figure 5, ap-
plies here.

Now consider more realistic discrete
mechanical models for the two strings, in
which each is modeled by a string of dense
beads connected by weightless springs. We
may model the coupling between the two
strings, the medium for the sympathetic re-
sponse of one to the motion of the other, by

an additional row of even smaller springs, as
shown in Figure 6. This is the final goal of
our exercise in mechanical modeling. Some
adaptation of Duffing’s response diagram
still applies, as each pair of beads (one from
string A, the corresponding one from string
B, and the very weak coupling spring between
them) has its own double fold catastrophe.

Morphic Resonance

If you want to understand, for example,
the phenomenon of memory in the vibratory
field, how to store and retrieve memories us-
ing vibratory resonance, this is how you
might do it.

Consider our basic = discrete mechanical
model for two coupled strings (Figure ). We
will suppose that string A is heavier: it is the
driver. And string B is lighter; it is the
Jollower. The coupling strings between the
two strings are weightless and very weak.
Imagine each string in a state of vibration.
Thus, each bead is oscillating across the di-
rection of the parallel strings. The coopera-
tion of the string of driving oscillators might
make the appearance of a traveling wave, a
standing wave, or whatever. But below is
string B, the follower. Each oscillating A
bead is forcing a corresponding B bead into
a sympathetic, resonant oscillation. And the
resonant response is subject to the Duffing
diagram (Figure 5). Maybe Pythagoras did
this experiment; I don’t know. But Saveur
did it by 1700 (Cannon & Dostrovsky, 1981).

The driving string is above, the following
string below. You pluck the upper one (the
driver) and observe the effect on the target
string (the follower) below. At a constant
amplitude (loudness) of the driving string,
you change its frequency (pitch). The lower
string will suddenly, at certain places, snap
up to the larger amplitude, the second state
observed by Duffing.

If you could observe piano strings care-
fully after they are struck, you might see
discrete disjoint segments of the string where
it is in the bigger mode or the smaller mode,
which differs only by fractions of a milli-
meter. This is the memory of a pattern.
Within the vibrating wave, there are two
states possible, almost identical, but one has
a slightly larger amplitude than the other. Of
all the oscillators comprising the coherent
phenomenon of vibration, some will be in
the loud state, others in the quiet state. If
you color the loud beads blue and the quiet
beads green, you would see a blue pattern on
a green background. That pattern is remem-
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Figure 6. The discrete mechanical model for two coupled vibratory fields.

ReVISION

bered in the vibrating string as long as it con-
tinues to resonate.

The pattern in the following string might
have been created by intentionally program-
ming the activity of the driving string, by
changing its frequency and amplitude pat-
terns. This mechanism would achieve the
storage of a selected pattern within the vibra-
tory field of the follower string. To retrieve a
vibration memory stored in this way, you
would have to drive the system with a very
sensitive device that is able to detect which
beads are in the loud state and which are in
the quiet.

This is a mechanical model for morphic
resonance: A pattern in one vibratory field
creates a related pattern in another coupled,
vibratory field. This particular scenario is an
application of just a single phenomenon of
nonlinear dynamics, the double fold catas-
trophe. (There are many others.) With it you

can break the glass, or if the glass is more’

flexible, like an automobile fender, you can
impress in it a memory in the shape of a
dent, and then retrieve that memory and get
its shape out into another vibratory medium.
This application was envisioned by Chladni,
the father of acoustics, around 1800. He
played plates of glass with a cello bow,
observing patterns in a thin layer of sand on
the plates.

Physiological Resonance

This has been an arduous metaphor to
follow, and perhaps not everyone wants to
know how to break a wine glass by worrying
it to death. However, I believe that this
mechanism of morphic resonance may en-
able us to understand many phenomena in-
volved in brain and mind functions. In fact,
it was proposed explicitly by Zeeman (1977),
around 1970, as a mathematical model for
memory traces in the brain.

To understand the occurrence of this kind
of vibratory pattern in physiology, we must
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observe that nature has designed biological
organs somewhat in the style of Leonardo’s
discrete mechanical model. Take a liver for
example. The liver is a mammalian organ
that consists primarily of one kind of cell.
(Most organs have many different types of
cells.) There is a lot of structure besides a
homogeneous mass of liver cells. We will
just try to imagine what kind of behavior we
would expect from a mass of liver cells.
First, there may be an oscillatory process
in each cell. Second, these oscillatory proc-
esses may communicate with each other
through different kinds of messages (which
are not entirely understood) passing between
cells. There is a whole universe of life in the
extra-cellular space, involving electrolyte
physics and biomolecular processes. Third,
the response diagram of each cell to an exog-
enous forcing oscillation may contain double
fold catastrophes or even more complicated
behavior. Thus, there may be amplitude pat-
terns spread over the liver. Finally, there is a
cooperative mechanism among the cells,
which is more or less predictable from this
kind of dynamics of coupled populations of
oscillators, based upon phase regulation
(Abraham, 1986). The oscillations are of ap-
proximately the same frequency for the dif-
ferent cells, and their relative phases organ-
ize into patterns. In sum, there may be am-

- plitude patterns, phase patterns, and fre-

quency patterns, as in radio communication.

If you observe phase patterns in the right
way, for example, the cells in phase with
each other would all appear blue to you, and
the cells out of phase with these would seem
green. Some cells would change from blue to
green and back again according to their
phase relationships, under the influence of
some external driving field of bioelectro-
chemical vibration. Then you would observe
this as a green pattern moving on a blue
background. This is how physiological vi-
brations might be mechanically modeled. A
lot of functions might be understood this
way, particularly of the pituitary, where
clocks have to be in phase; or in the repro-
ductive cycle, where there is the mysterious
phenomenon of the luteinizing hormone (LH)
spike.

In the middle of the reproductive cycle,
before ovulation, the lteinizing hormone
LH concentration in the blood suddenly rises
to astronomical levels. This LH is released
by the pituitary on receiving a message from
the hypothalamus of LH releasing hormone
(LHRH). Now imagine you are a pituitary



The certain sure sign of life is
vibration, and the mathematics of
vibration is a valuable strategy for

grokking life.

cell, and you have around your periphery a
bunch of vesicles full of this LH, which you
have been saving up for your moment, your
place in history. You must release your
whole store at the proper time and synchro-
nously with all your sister pituitary cells. If
all these pituitary cells let go their LH stores
on the same day, then your owner has a proper
LH spike and ovulation is possible. If you
get it a little bit wrong then there is no LH
spike and no ovulation and no subsequent
reproduction. Life itself depends on strict
cooperation!

How do all these pituitary cells know their
exact circumstances? Is it simultaneous ar-
rival of the LHRH message? If so, how does
the hypothalamus know how to do this, and
so on? I am suggesting that the answers to
these questions may be sought in the behav-
ior of discrete mechanical models, particu-
larly in models of resonant vibrations. The
mechanisms of morphic resonance, applied
to physiological models, may increase our
understanding of life processes.

There is a universal strategy in mathemati-
cal modeling, including all of mathematical
physics, mathematical biology, and mathe-
matical sociology up to the present time,
with very few exceptions (Abraham, 1984).
It is the exercise of this strategy, in combina-
tion with participatory experiments and ob-
servations that advances our grokking of the

world of phenomena and process. This is the -

hermeneutical view of the history of the
mathematical sciences, from Cro-Magnon
times to the present.

Applied to the vibrating string, following
Leonardo, Galileo, Huyghens, d’Alembert,
and Euler, it is mathematical physics. Ap-
plied to the pituitary, the liver, and the other
organismic vibrators (populations of oscil-
lating cells) it is mathematical biology. Ap-
plied to social structures and ecosystems, it is
mathematical sociology. The certain sure
sign of life is vibration, and the mathematics
of vibration (including mechanical models
for morphic resonance) is a valuable strategy
for grokking life.
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