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Abstract

The ubiquitous cusp catastrophe has been pressed into service by Zeeman as a
rough qualitative model for many dynamical systems in the sciences, including a
democratic nation. The extension to two nations has been made by Kadyrov, who
discovered an interesting oscillation in this context. Here we speculate on the properties
of connectionist networks of cusps, which might be used to model social and economic
systems.

1. Introduction

Complex and cellular dynamical systems provide useful models for
morphodynamic systems, such as neural membranes, heart muscle, reaction-diffusion
devices, and microeconomic communities [1]. The connectionist neural net is an
important example, which uses the simplest standard cell, but achieves complex behavior
through a rich net of connections. In this paper, we suggest properties of a network of
cusps. The properties are built up through a sequence of examples, beginning with
published works of Zeeman and Kadyrov. A later paper will be devoted to the results of
simulations [2].

2. One cusp

The cusp catastrophe of elementary catastrophe theory (ECT) is the canonical
bifurcation of codimension two. It occurs with static attractors [3], periodic attractors [4],
and chaotic attractors [S]. We will adopt the (nonstandard) notations of the Isnard and
Zeeman model for hawks and doves (see their Sec. 11) [6]. Let

¢(x,a,b)= —-i—x4+-%—bx2+ax
Then the dynamical scheme of the cusp is
x'=0,(x,a,b)=-x3+bx +a

where ¢, denotes the partial derivative of ¢ with respect to x. This scheme has the
familiar response diagram shown in Figure 1 (taken from Isnard and Zeeman, Fig. 11).
The control parameter b is called the splitting factor, while a is the normal factor.

3. Two cusps

In the spirit of complex dynamical systems theory, we may couple two cusps in a
minimal network. Each of the control parameters of one of the cusps may be expressed
as a function of the state of the other. We consider here only one special case, introduced
in Kadyrov’s model: let the normal factor of each be proportional to the state of the
other [7]. Thus,
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Figure 1. Response diagram of the standard cusp

x’=-x3+ax +by

y’=-y3+cy +dx

where by replaces b in the preceding equation. This is a dynamical scheme with two-
dimensional state space, (x, y) € R2, and four-dimensional control space,
(a,b,c,d)eR? Due to the source of this dynamical scheme within ECT, we might
expect this to be a gradient system. In general, it is not. For the partial derivative of the
x* function with respect to y is b, while that of the y* function with respect tox is d.
Thus, in the symmetric case, in which we set b = d, the coupled system is a gradient
scheme with three-dimensional control, equivalent to one of the umbilics of ECT (see p.
185 of Poston and Stewart [8]). Its potential function is

00c,) = — g (A +y)+ 5 axlebry + 7 o2
Its bifurcation set (an algebraic surface ih R3) may'Bcv visualized in a plane cross-section

by setting any of the three control parameters equal to a constant. For example, with
b =d = 1, the bifurcation set section consists of two crossed umbilics.

But in the general, asymmetric case, we have a non-elementary response diagram.
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Kadyrov has obtained, for example, the section of the bifurcation set shown in Fig. 2
(taken from Kadyrov, Fig. 6). This (b, d) plane section is defined by a = landc =1 (or
any positive values in the wedge defined by 2¢c >a and 2a >c). The cusps represent
degenerate fold catastrophes or blue loops, while the parabolic curves represent basin
folds. We may explain these in more detail, by considering the phase portraits in the
seven distinct regimes of the section (A through G) in Fig. 2. The jargon from bifurcation
theory may be found in Part Four of [5].

Figure 2. Section of the bifurcation set.

679



Cuspoidal Nets

(A) In the central region enclosed by the two cusps, there are four static, nodal attractors
(one in each quadrant, I, II, III, and IV), four saddles (their insets comprising the
separators of the four basins), and one central, nodal repellor.

(B) Here there are two point attractors (in quadrants I and III), two saddles, and one
central repellor. Across the bifurcation curve between A and B there are two fold
catastrophes, in each of which a point attractor and a saddle mutually annihilate. (If
nondegenerate, these would occur one at a time across disjoint curves.)

(C) Two attractors as in B (but in quadrants II and IV).

(D) Two attractors as in B, but across the bifurcation curve between B and D there is a
fold in which one saddle and the central repellor annihilate. This is a basin bifurcation.

(E) Two attractors as in D (but ir quadrants IT and IV).

(F) In this regime there is a single attractor (periodic) and a central, spiral repellor.
Across the bifurcation curve separating B (or C) from F, there is a degenerate blue loop
explosion, in which both point attractors (in B or C) explode simulteneously. (Ina
nondegenerate analogue, each blue loop event would occur across its own, distinct,
curve. Alternatively, there might be a fold catastrophe, followed by a single,
nondegenerate blue loop.)

(G) One periodic attractor, like F. In these two regimes, F and G, we call the attractor a
Kadyrov oscillator. The existence of this oscillation in a system of coupled ECT
schemes is crucial for the applications we envision, and discuss below. It is reminiscent
of the oscillator found by Smale in the context of two coupled cells [9]. We ignore the
degeneracy of this scheme for the present, but will return to this in a future paper, in
which a complete unfolding will be suggested [2].

4. Cuspoidal nets
We may easily extend our definitions to an ensemble of N cusps. Let A be a real
matrix of size N by N, and consider the vectorfield on RN defined by
X = =x3+Ax;, i=1,,,,N

where the Einstein sum convention is implied by the repeated subscripts. This is a
dynamical scheme with N -dimensional state space, x e R", and N2-dimensional control
space, A €RN >N | From the connectionist point-of-view, this is a neural net, slightly
generalized from the usual linear one by the addition of the cubic terms. In the
symmetric case, A;j =Aj;, the system is of gradient type, with potential function,

o(xq, ... ,XN) =—%— (xf‘ +.. .+x16)+ -%—A;jx;xj

The interpretation of the attractors of the scheme as the local minima of this function,
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common to ECT and to neural net theory alike, is valid and useful here [10]. Further,
between the symmetric and the general cases, intermediate cases may be of interest, such
as the case in which A is symplectic. We might suggest to the neural net community to
experiment with these systems, which have long-term memory properties in their bistable
regimes.

An example of a cuspoidal net is illustrated in Fig. 3, in which each cusp is
reduced to a double fold by fixing its splitting factor, b; =+1. This net exhibits memory,
in that the temporary displacement of the local (normal factor) controls a; from neutral
values may effect a catastrophic shift of state, which is remembered after the return to
neutral.

Note that if two neighboring cells are coupled by the Kadyrov scheme of the
preceding section, Kadyrov oscillations may result from their interaction. There may
even be two or more Kadyrov oscillators within the network. And the coupling of two
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Figure 3. One-dimenstonal array of double folds.
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Kadyrov oscillators may easily result in chaotic behavior. Thus, a cuspoidal net with
four cells and Kadyrov (that is, linear) coupling is capable of multistable behavior, with
static, periodic, and chaotic regimes. We may conclude that models for social and
economic behavior, such as business cycles, may be constructed of cuspoidal nets. These
may be the simplest models exhibiting such behavior.

5. Conclusion

Complex dynamical systems, made from a finite set of identical dynamical
schemes by a complete graph of coupling functions of adjustable strength, may be
regarded as a potentially useful generalization of neural nets and excitable media.
Taking the standard cell from ECT defines an ECT net, and provides us with a head start
in the understanding of the global behavior of the network, and the geometry of its
response diagram. In this paper, we have described only one example of an ECT net, the
cuspoidal net, based on the cusp catastrophe of ECT. The oscillatory cusp of the Duffing
system also suggests itself for this treatment [4]. Exploration of these nets will require
extensive computation, and will provide serious challenge to our computer-graphic
visualization skills. Massively parallel machines would be particularly well suited for this
research.
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