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Cellular dynamical systems, alias lattice dynamical systems, emerged as a new mathematical
structure and modeling strategy in the 1980s. Based, like cellular automata, on finite difference methods
for partial differential equations, they provide challenging patterns of spatiotemporal erganization, in
which chaos and order cooperate in novel ways. Here we present initial findings of our exploration of
a two-dimensional logistic lattice with the Massively Parallel Processor (MPP) at NASA’s Goddard
Space Flight Center, a machine capable of 200 megaflops per second. A video tape illustrating these

findings is available.

1. Introduction

Cellular dynamical systems (also known as cellular
dynamata or lattice dynamical systems) are a class of
mathematical structures belonging to the larger class of
cellular automata, and providing a wealth of spatio-
temporal patterns in a context indexed by continuous
parameters, Neural nets, for example, may be regarded
as cellular dynamical systems. Recalling the concepts
of cellular dynamical systems, we are concerned with
spatial lattices of identical dynamical schemes called
standard cells [Abraham, 1986]. A dynamical scheme
is a parametrized family of dynamical systems. The
parameters are called controls, while the dynamics
evolve in a space of states. Just as a dynamical sys-
tem is visuwalized by its phase portrait, a dynamical
scheme is visualized by its response diagram. For an
encyclopedia of response diagrams, see Part Four of
Abraham [1982-88]. When possible, we think of these
as families of phase portraits, lined up with the state
spaces vertical and the control parameters horizontal.
In the spatial lattice, the cells are coupled by coupling
schemes. Usually, these are functions from the states at
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one node to the controls at another node. The func-
tions may depend on their own control parameters. In
simple cases, each node is coupled to its nearest
neighbors only, In more complex cases, such as neural
nets, each node may be coupled to every other node. In
mathematical theory, there are three important cate-
gories of dynamical system: iterated functions, iterated
diffeomorphisms, and continuous flows defined by a
vector field. In digital computation, these distinctions
tend to break down.

In this paper, we concentrate on a single model: a cel-
lular dynamical system comprising a two-dimensional
lattice on the torus of 128 by 128 nodes, with a logistic
map at each site. The coupling is to nearest neighbors
only, by the simple coupling scheme known as Lapla-
cian coupling, explained in Sec. 2 below. The logistic
equation dates from Verhulst in 1838. This type of
cellular dynamaton corresponds to a partial differential
equation which occurs in the literature for the first
time, as far as we know, in 1930, in Roland Fisher’s
model for the spread of mutant genes in a Petri dish of
fruit flies [Fisher, 1930/1958]. Since 1980, there has
been a growing literature of experimental results,
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particularly for strings (one-dimensional lattices) of lo-
gistic maps. These maps provide the simplest examples
of a chaotic dynamical system, and were popularized
through the pioneering work of Robert May [1976].
The theory is well organized in a recent textbook
{Devaney, 1989]. For a recent survey of results on one-
dimensional logistic lattices, see Crutchfield [1987].
Following the wave of interest in the chaotic behavior
of the iterated logistic function itself, and the availa-
bility of computers capable of fast arithmetic, came
the pioneering work of Crutchfield, Kaneko, and others,
on logistic strings, in 1983, Experiments with two-
dimensional lattices have been inhibited by their enor-
mous computational cost. But preliminary results
have been very exciting. (Read Karpral [1986], Kaneko
[1989] and, if possible, try to see Shaw [1988] and
Crutchfield [1984]). Two-dimensional cellular autom-
ata (CAs) are rather less expensive to compute than are
two-dimensional celtular dynamata (CDs), and an inex-
pensive CA board for personal computers is available
from Systems Concepts, San Francisco, CA. However,
CAs are more difficult to utilize in modeling than are the
CDs which we describe in this paper. A fascinating
property of these cellular dynamata is their ability to
organize an ensemble of chaotic systems into a pattern
with recognizable and stable large-scale features. We see
this as a significant property from the point of view of
morphogenesis in complex natural systems, such as a
global ecosystem, an embryo, an immune system, a
brain, a society, or the origin of life, In this paper, we
introduce the conditions of our experiment, and de-
scribe the phenomenology discovered in our initial
exploration. The MPP and the Blue Room allow us to
compute at about one hundred times the rate of the
early explorers.

2. The Toral Logistic Lattice

The dynamical scheme employed as the standard
cell in this work comprises the iteration of the
function:

controls: (r,¢)e C CR?, both nonnegative , (2.1a)

states: xe[0, I]JCR, the unit interval , {2.1b)

dynamics: x|—f(x) = rx(1-x) + ¢ . (2.1¢)
In the ¢ =0 case, the response diagram is the familiar
period-doubling cascade shown in Fig. 1. In the case
where ¢ > 0 but small, the attractive locus is shifted
upward.

Fig. 1. The bifurcation diagram of the logistic map. Fixing a value
of the bifurcation parameter, r, on the horizontal axis and an initial
value, X, on the vertical axis, we iterate the map until the trajectory,
X0, X1 = f(xg), - . ., converges to an attractor. The attractors found in
this way are shown here in solid black, the focus of attraction. The
dashed curves show the locus of repulsion. For the values of r well
below 4, the attractors are all periodic trajectories. Here we see
periods one, two, four, and eight. Each bifurcation is a period-
doubling octave jump. More details may be found in Devaney
[1989].

Our two-dimensional lattice is an array of 128 by
128 nodes. Further, each node on the left boundary of
this square array will be the closest neighbor (to the
right) of the corresponding node (at the same height)
on the right boundary of the square. Thus, the left and
right edges are joined, as a cylinder. Further, the top
and bottom edges of the square (or cylinder) are
likewise joined. Thus, our lattice is a discretization of
the two-dimensional torus. Other topologies could be
studied with equal ease, but we have not explored
them in this work. At each node, we place one copy of
the standard cell, as described in (2.1). The Laplacian
coupling is defined as follows,

The first control parameter at each node is to be held
fixed, at a common value. Thus, for all (i,j) in the
range {0---127},

ry = 4*GN/1000 . (2.2)

Thus, as GN is fixed at a value between 250 and 1000,
all of the first control parameters are fixed at a
common value between one and four. The second
control parameter at each node is to be determined by
Lapacian coupling, which originates from the finite
difference method applied to the heat equation. Thus,
for all (i, ) in the range {0 --127}, the second control
parameter at a node is determined by the state at its



node, and the states at the four neighboring nodes
according to the coupling scheme defined by the
equation
¢y = CP*(xqy - X;)/1000 (2.3)
where x,, is the average value of the current states at
the four nearest neighbors, and CP is a constant in the
range [0, 1000]. After these couplings, all the coupling
parameters of the logistic schemes are bound, but new
control parameters, (CP, GN) e D C R* have been in-
troduced. These are control parameters of the coupling
functions, and we have chosen to fix them on a global
basis, rather than to distribute them over the lattice.
Thus, the fully coupled lattice is still a dynamical
scheme, running on a 16K-dimensional state space,
with two control parameters. Although we set these
controls only at integer values in our runs, we regard
them as real numbers. The values of these control
parameters we used, that is, the control space we
explored, is shown in Fig. 2.
Finally, we must clip the new state at each node, to
maintain its range in the unit interval. Thus, updates

Control space scans and dives
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SCan === dive O

Fig. 2. The Control Space Exploration. After coupling the entirc
lattice as described in Sec. 2, two parameters remain to be fixed by
the experimentalist — the coupling and the gain. Here we show the
plane region of these two parameters. Each diamond icon marks
the parameter values of one of our deep-diving experiments,
DL, ..., D6. The black lines with arrows show the path of our scans
(51, S2, and 53.) The labels in boxes identify three regions in which
our scans discovered interesting patterns.
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at each node are done in the sequence: compute the
second coupling parameter via Eq. (2.3), then compute
the iteration function via Eq. (2.1c), then clip by the
rule:

=1, x =1; (2.4a)
iffix)<0, x” =0 (2.4b)
else x* = f(x) . (2.4¢)

Then, replace x by x’ and resume. This method of
clipping is crude but effective.

3. The MPP and the Blue Room

Until recently, the MPP was a one-of-a-kind super-
computer. Now there are a growing number of MPP-
type devices. Maintained by the Space Data and
Computing Division of the NASA Goddard Space
Flight Center for research purposes, it consists of 16K
processors connected in a two-dimensional array, 128
by 128. It is accessible over a global DECnet, and is
programmed via MFORTH, a FORTH compiler for
the MPP written by one of us (JED). The FORTH
code producing the results described in this paper is
about thirty lines long! Our toral logistic lattice is a
natural fit to the architecture of the MPP, and our
implementation utilizes 20 bit fixed point arithmetic.
The range, approximately - 8 to + 8, is covered evenly
with one sign bit, three integer bits, and 16 fraction
bits. Thus, the state space [0, 1] is covered by 64K
numbers. A run of one million iterations of the cellular
dynamical system takes about 45 minutes, at about
1100 iterates per second. More precise arithmetic, and
larger lattices, may easily be accommodated by small
changes in the program. We chose these values to
obtain a good speed for our preliminary exploration.

The current state of the lattice may be viewed
conveniently on a personal computer or graphics
terminal located anywhere on the network. (We are
using a Apple Macintosh IT). We worked in the Blue
Room, the control room of the MPP. This is equipped
with a Panasonic optical disk video recorder and other
video peripherals ideal for our project. We were able to
record long sequences of states, and then to examine
them frame by frame, or at various speeds. The MPP
was able to compute thousands of iterates in the time
it took us to draw one state on the color monitor
and examine it. Thus, we were able to zoom through
the three-dimensional space of control parameters
(CP, GN) and iteration number, /, at high speeds. The
screen images were displayed with a rainbow palette of
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256 colors representing the interval [0, 1], with black
at zero, through shades of blue and green, ending at
one with red.

4, Findings

Our initial observations regard the relationship
between macroscopic patterns and periodicity. With
the gain, GN, at the larger values (900 or so), the
mdividual nodes are usually chaotic. Nevertheless,
large-scale organization is observed when the coupling
strength, CP, is sufficiently strong (500 or more). We
thought of the control parameter rectangle, C, as a
patch of ocean, and the MPP as a submarine in which
we could descend rapidly to unexplored depths. We
scanned just below the surface, at a depth of about a
thousand iterations (= 1K). Most of this layer ap-
peared chaotic. We made test dives to 50K wherever
we liked,

The initial condition used in this preliminary survey
of the phase space is a large symmetrical central disk of
0.22 gray on a very light 0.05 background. As a result,
this study produced symmetrical patterns, as shown in
Fig. 3. A random initial condition produced rather
different results, as shown in Figs. 4 and 5.

A sense of territory is provided by Fig. 3, which
shows the 1000th iterate at intervals of 200 in gain
(GN) and coupling (CP). With depth, we found that
chaotic transients sometimes persisted past a million
iterations, then settled down to a periodic attractor. As
the dynamics occurs in a vector space of dimension
16K, it is not always easy to recognize periodicity. We
have built tools to automate these perceptions. The
scans and dives we have recorded, indicated on the
phase space map of Fig. 2, are as follows,

Scan 1, This is a west-to-east scan at a depth of 1K,
in the far north of the patch, at high gain, GN = 990, as
shown in the map in Fig. 3. After extensive travels
through a terrain of chaotic mandalas, we encountered
recognizable patterns with CP values from about 478
to 585, We named this Aztec Island. Continuing
through another wvast plateau of chaos, we found
another ordered regime, Calico Mountain, with CP
from about 875 to 1000.

Scan 2. Another west-to-east scan at a depth of 1K,
this time in the central region, GN = 500, This begins
with a static attractor (all black) which persists from
the start, CP = 0, until almost 700. Then we burst into
Scroll Reef, a large regime of patterns with robust
personality, This extends to about CP = 970.

Scan 3. Here we scanned from the southern border
northward in the far eastern territory, with CP = 900,
again at depth 1K. Patterns begin around GN = 350.
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Besides the difficult-to-grasp chaos, we passed again
through Scroll Reef, attaining Calico Mountain at
GN = 660,

All these features are shown on the map in Fig. 2.
Next we did some diving, The six dives we recorded
are also shown on the map.

Dive 1, Aztec Island, at {500, 990). We started down
here to see what the dynamics of the Aztec patterns
looked like. We found rapid convergence to a period-
eight attractor, within 2K iterations.

Dive 2. Scans 1 and 3 cross on Calico Mountain. We
dove here at this crossing, (900, 990), from the surface
to our scan depth, and found rapid convergence to a
periodic attractor of period six. The Calico pattern was
very robust. (Later, we double-checked this. Diving
beyond 2K, we were surprised to see that this faded to
a static attractor by I'=2250.)

Dive 3. Slightly to the east of Dive 2, at (1000, 990),
we found convergence to a period-two attractor at a
depth of 5K,

Dive 4. Sailing south to Scroll Reef, we dove at
(800, 300}, the crossing of Scan 2 and Scan 3. Here we
found a period-eight checkerboard at a depth of 5K,

Dive 5. A bit to the east, at (890, 500) in Scroll Reef,
we found a period-18 checkerboard at a depth of 12K.
All three of our initial conditions converged to this
same attractor.

Reminiscent of the paintings of Marc Rothko, this
was one of our most beautiful dynascapes.

Dive 6. Very nearby, at (900, 500) in Scroll Reef, we
dove again, expecting another periodic dynascape. We
found a sort of convergence around 200K, but no
obvious period. We dove as deep as we could, well past
two million iterations, without discovering a periodic
cycle. We observed a vague period of nine, an almost
period of 28, a near period of 768. Below depth 2M,
we verified that there was no period shorter than four
thousand iterations.

5. The Video

Some of the runs described above have been re-
corded on a video cassette. We recorded these at a rate
of 10 frames per second (except Scan 1, at 30 frames
per second), as this seemed the fastest we could watch
without getting seasick. But the frames are not consec-
utive iterations. We usually strobed the periodic at-
tractors, so that the entire convergence could be
observed without flicker. Here are the captions for the
video sequences.

Scan 1. West to east at GN =990, through Aztec
Valley and Calico Mountain. In single steps, CP
increases from 0 to 1000, 33 seconds.
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NSRS
Fig. 4. Scroll Reef, 512 x 512, random initial state, 40K deep. Here, for comparison, is an image from the larger lattice, starting with a
random initial pattern, and diving to a depth of 40 000 iterations. The control point, in Scroll Reef, is near the point D6 on Fig. 2.
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Fig. 5. Aaztec Island, 512 x 512, random initial state, 8K deep. Similar to Fig. 4, but with control point in Aztec Island, near D1 on Fig. 2,
and diving only to 8000 iterations.
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Scan 2. West to east at GN =500, through Scroll
Reef. In steps of five CP increases from 500 to 1000,
10 seconds.

Scan 3. South to north, at CP =900, through Scroll
Reef and Calico Mountain, In steps of two, GN
increases from 400 to 1000, 30 seconds.

Dive 1. Aztec Valley, (500, 990), dive to depth 2K in
steps of eight, converging to the strobed attractor of
period eight in 25 seconds.

Dive 2. Calico Mountain, {900, 990), dive to depth
900 in steps of six, converging to the strobed attractor
of period six in 15 seconds.

Dive 6. Scroll Reef, (900, 500), dive to 1.56M in five
stages, 2.5 minutes.

a) 20 frames of 1K steps

b} 18 frames of 10K steps

c} 80 frames of 28 steps

d) 1200 frames of single steps

e) 160 frames of 768 steps

Then back up to a depth of 6000 iterations to look at
the scrolls at 1 and then 8 iterations per frame.

6. Conclusions

More work is needed to explore the full territory of
the two-dimensional toral logistic lattice with Lapla-
cian coupling. The availability of a machine capable of
more than 1K steps per second, along with digital
video recording on optical disk and direct transfer to
the color screen of a Macintosh II, makes such an
exploration practical. We hope, In time, to explore
further, with automatic tools for identifying periodic
phenomena, and for the quantification of spatio-
temporal chaos. Extension of the FORTH code to 512
by 512 lattices has been completed and preliminary
results are shown in Figs. 4 and 5.
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