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In 1975, Isnard and Zeeman proposed a cusp catastrophe model for the polarization of a social group,
such as the population of a democratic nation. Ten years later, Kadyrov combined two of these cusps
into a model for the opinion dynamics of two *“nonsocialist™ nations. This is a nongradient dynamical
system, more general than the double-cusp catastrophe studied by Callahan and Sashin [1987]. Here,
we present a computational study of the nongradient double cusp, in which the degeneracy of Kadyrov's
model is unfolded in codimension eight. Also, we develop a discrete-time cusp model, study the
corresponding double cusp, establish its equivalence to the continuous-time double cusp, and discuss
some potential applications. We find bifurcations for multiple critical-point attractors, periodic
attractors, and (for the discrete case) bifurcations to quasiperiodic and chaotic attractors.

1. Introduction

We study a family of models motivated by applications
in the social sciences.

Background

Isnard and Zeeman have introduced a style of appli-
cation of catastrophe theory for the social sciences. In
an exemplary model, the cusp catastrophe is applied
explicitly to a country whose leadership is responsive
to the opinions of its people. It models the split of the
people into two groups, hawks and doves, on the basis
of their foreign-policy positions [Isnard & Zeeman,
1977]). The degree of relative political influence of
hawks and doves in each of the societies depends in
this model on two control parameters: the perceived
cost of a war, b, and the fear of defeat, a. The state
variable, x, is this degree of influence, or the govern-
mental policy determined by it, ranging from peaceful
(x < 0) to hostile (x> 0).

Arms races

A further application to the arms race of two nations
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suggests itself very naturally. The armament and hostil-
ity of one nation will surely affect both the fear of war
and the cost of war within the other nation, and thus its
armament level, and vice versa [Abraham, 1986]. It
has been known that the strength of the peace move-
ment in West Germany was crucial in supporting the
forces which were essential in bringing M. Gorbachev to
power, which in turn increased the influence of the
peace movement in both parts of Germany. A slightly
more complex configuration of political groups and.
their influence on decision making is discussed in Holsti
& Rosenau [1988], in which the classification of the
opinions in the population in foreign policy affairs are
listed as: hardliners, internationalists, isolationists, and
accomodationists.

Richardson

The response of a nation to the armament of another
hostile nation has been subject to mathematical model-
ing of various types. Probably the first, and one of
the best known, was introduced by L. F. Richardson
in 1919 [Richardson, 1960a,b). More recently these
have been discussed in the framework of nonlineardy-
namical systems [Grossmann & Mayer-Kress, 1989,
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Campbell & Mayer-Kress, 1989; Mayer-Kress, 1991]
and genetic algorithms [Forrest & Mayer-Kress, 1990].
Other approaches have been based on mathematical
game theory.' Game theory has also been used to model
aspects of public opinion formation, which can then
be fed back to the general sociological state of a nation
[Axelrod, 1984].

Kadyrov

An application to the international relations of two
nations, modeled by a coupled system of two cusps, or
double-cusp model, was proposed by Kadyrov, in
which the control parameters are the scaling factors of
linear coupling functions from the state of one cusp to
the controls of the other.? His model has a nongradient
factor of one dimension. When this factor is set to
zero, a special case of the gradient double-cusp catas-
trophe studied by Callahan and Sashin (of codimen-
sion eight) is obtained [Callahan & Sashin, 1987;
Callahan, 1982). We call this the symmetric case.
Kadyrov studied the response diagram of the coupled
scheme of the nongradient double cusp by simulation,
discovering degenerate fold catastrophes, and the sur-
prising periodic attractors we call Kadyrov oscillations
[Kadyrov, 1984]. This oscillation is reminiscent of that
found by Smale in the context of two coupled cells
[Smale, 1976). It may be useful in applications to
situations of partnership or codependence, in which
one wants to avoid a persistent state of repetition, a
vicious cycle. Oscillations can occur in situations where
strong polarization in one population is combined with
a strong coupling to the dominant forces in the other
country: Any transition to a new policy in the country
X leads to an increased support of the opposition in
country Y, which in turn leads to a transition to a new
policy in country Y, which leads to an increased
support of the opposition in the country X, which
leads to a transition to a new policy in country X, etc.
Our study was motivated by Kadyrov's paper, but we
envision the double-cusp models as universal model
families, applicable to a wider range of social dichot-
omies, such as competition and cooperation in the
political and economical sectors.

Callahan and Sashin

A double-cusp model for anorexia and other psycholog-
ical disorders has been studied by Callahan and Sashin.?

!8ee, for example, Brams [1985] and Wendroff [1990],
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“See any text on Catastrophe Theory, e.g., Poston [1978].

translation.

This is a different kind of model, belonging to the
context of elementary catastrophe theory. Our model,
although sharing the same name, is a nongradient sys-
tem. It has limit cycles, which do not occur in the
gradient systems of catastrophe theory. Our model is
similar to that of Callahan and Sashin in the special case
which we call the symmetric case, mentioned above.
But, in the more general case, our double-cusp models
may still be applied to a wide variety of two-partner
systems, as suggested by the work of Callahan and
Sashin. Thus, applications may be envisioned to con-
flict resolution, cooperation, codependence, and so on.

Degeneracy

The response diagram obtained by Kadyrov appears
degenerate, as its bifurcation curves involve two simul-
taneous bifurcation events, each known to be generi-
cally of codimension one. A generic codimension-one
event has a bifurcation set, in the control space, of
codimension one. Thus, in a two-dimensional control
plane, the bifurcation set is a curve. Generically, two
bifurcation curves should be transversal. That is, they
should cross without tangency, or not at all. The coin-
cidence of two bifurcation curves, each corresponding
to a different bifurcation event, is thus very degenerate,
or nongeneric. The modification of a scheme to remove
such degeneracies is called unfolding the scheme.* We
investigate the unfolding of the double cusp by compu-
tational means. The results of this investigation, de-
scribed in the next three sections, are quite compatible
with singularity theory. Further, in Sec. 6, we investi-
gate a discrete-time analog of the double cusp, for which
the critical point solutions can be found analytically,
looking forward to computational economies in future
work with several coupled cusps [Abraham, 1990]. For
this discrete scheme, we find an equivalent unfolding
and response diagram. We also find more complex
solutions which are excluded in the continuous model,
namely bifurcations to quasiperiodic, and also chaotic,
solutions. In the conclusion, we speculate on some
directions for future work,

2, Two-Cusp Catastrophes, Continuous-
time, Kadyrov Style

We will adopt the notations of the Isnard and Zeeman
model for hawks and doves [Isnard & Zeeman, 1977).

dyrnfsl!wm]. As this may be difficult to find, we would be happy to send copies of this paper, in the original
1
relevant papers are found in the list of references, see especially Callahan [1982].



Although a bit different from the usual notations of
catastrophe theory, this is compatible with Kadyrov.
Let

dlx, a,b) = -%x‘+gx2+a.x

where ¢ is a real-valued function of three real varia-
bles, and ¢, denotes the partial derivative with respect
to x. Recall that in the language of complex-dynamical-
systems theory, a dynamical scheme is a dynamical
system depending upon control parameters.” The
dynamical scheme of the cusp is

x' = ¢.x,ab) = -x’+bx+a

with the familiar response diagram shown in Fig. 1
(taken from Isnard and Zeeman, Fig. 11). The control
parameter a is called the normal factor, and controls
the overall height of the graph, G, or bias. The control
parameter b is called the splitting factor, and it controls
the spread between the two layers of the fold. In the
application of Isnard and Zeeman to opinion forma-
tion in a democratic nation, the splitting factor repre-
sents the depth of the split in public opinion between
the two segments of the population.

In the spirit of complex-dynamical-systems theory,
we may couple two cusps in a minimal network. Each
of the control parameters of one of the cusps may be
expressed as a function of the state of the other. We
consider in this section only one special case, that of
Kadyrov's two-nation model [Kadyrov, 1984; Abra-
ham, 1987]. Thus, we let the normal factor of each be
proportional to the state of the other. Then the scheme
is described by the system of two ordinary differential
equations:

3
X =-x"+bx+vay,

Yy o= —-y3+dy+£‘x ;

Here, ay has replaced a as the normal factor of the x
cusp. Thus, in the context of Kadyrov's application,
the normal factor (height or bias) within each nation is
proportional to the state (armament level) of the other
nation. The parameter b retains its significance as the
splitting factor. Rhyming notations have been chosen
for the y cusp, in place of the letters used by Kadyrov.

These equations define a dynamical scheme with
two-dimensional state space, (x,y)eR? and four-

*For definitions, see Abraham [1987).
®See p. 185 of Poston [1978] for a discussion of umbilics.
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Fig. 1. The cusp catastrophe of ECT, from lsnard and Zeeman,
Fig. 11,

dimensional control space, (a, b, ¢, d) e R*. Due to the
source of this dynamical scheme within elementary
catastrophe theory (ECT), we may expect this to be a
gradient system [that is, the gradient of a function,
¢(x, ¥)]. In general, it is not, for the partial derivative
of the x* function with respect to y is a, while that of
the ¥’ function with respect to x is ¢.

Thus, in the symmetric case, in which a=¢, the
coupled system is a gradient scheme with three-
dimensional control (that is, the gradient of a potential
function of two variables, depending upon three con-
trol parameters), equivalent to one of the standard
catastrophes of ECT.® Its potential function is

| B | 1,2
¢(x, ¥) = ~E[x +y‘)+§bx +m:y+~2~dy j

Its bifurcation set is an algebraic surface in R?,

But in the general, asymmetric case, we have a
non-ECT response diagram. The asymmetry may be
interpreted, in Kadyrov's application, as a difference
between the nations in response to the same stimulus,
perhaps due to paranoia. Kadyrov has obtained, for
example, the section of the bifurcation set shown in
Fig. 2, where (b, d) has been chosen in the Kadyrov
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wedge, that is, such that b > 2d and d > 2b (adapted
from Kadyrov, Fig. 6). In Kadyrov’s context, such an
oscillation represents a potentially undesirable situa-
tion, in which the two nations take turns increasing,
then decreasing, their armaments, a costly and waste-
ful scenario. In a context of codependence, such as
Callahan and Sashin have studied, the oscillation may
be a model for a cycle of indulgence and withdrawal.
The cusps represent fold catastrophes as before, while
the parabolic curves represent blue-loop explosions.’
We may explain these in more detail by considering
phase portraits in the four distinct regimes of the
sections (A through D) in Fig. 2. Some corresponding
phase portraits are shown in Fig. 3. The jargon from
bifurcation theory may be found in Part Four of
Abraham [1982-88].

Fig. 2. The bifurcation set of the double cusp, from Kadyrov,
Fig. 6. The colors indicate the number of fixed points at a given
parameter combination: red = 1, yellow =3, purple=5, brown=9
fixed points. Note that due to degeneracy there are no regions with
7 fixed points.

(A) In the central region enclosed by the two cusps,
there are four static nodal attractors (one in each
quadrant, I, II, III, and IV), four saddles (their insets
comprising the separators of the four basins), and one
central nodal repellor.

(B) Here there are two point attractors (in quadrants
I and III), two saddles, and one central repellor. Across
the bifurcation curve between A and B there are two

fold catastrophes, in each of which a point attractor
and a saddle mutually annihilate. (If nondegenerate,
these would occur one at a time across disjoint curves.)

(C) Two attractors as in B, but across the bifurca-
tion curve between B and C there is a fold in which
one saddle and the central repellor annihilate. This is
a basin bifurcation. That is, the net effect of the event
is a sharp change in the partition of the state space into
basins.

Fig. 3a

Fig. 3b

"In the blue-loop, an attractor and a saddle point annihilate, exploding into a periodic attractor. In other words, this is a saddle-node
bifurcation within the outset of the saddle. See Sec. 6.1 of Part Four of Abraham [1982-88].



Fig. 3c

Fig. 3d

Fig. 3. Phase portraits showing the transition from a multiple fixed
point to a Kadyrov oscillator. In all Fig. 3 plots, b=d = 1. Initial
conditions are chosen on two concentric circles in the basin of the
attractors: 50 trajectories on the outer circle and 30 on the inner.

(a) Plot with a=c=0.1. Here we see 9 critical points: 4
attractive, 4 hyperbolic, and (x, y) = (0, 0) is a repellor.

(b) Plot with a=c=0.5. Here we see 5 critical points: 2
attractive, 2 hyperbolic, and (x, y) = (0, 0) is still a repellor.

(c) Plot with a = ¢ = 1.0. Here we see 3 critical points: 2 attractive
and (x, y) =(0, 0) is a hyperbolic saddle point.

(d) Plot with a=1.0 and ¢= -1.0. We have an attractive
periodic solution: a Kadyrov oscillator.

Double-Cusp Models 421

(D) In this regime there is a single attractor (peri-
odic) and a central spiral repellor. Across the bifurca-
tion curve separating B (or D) from E, there is a
degenerate blue-loop explosion, in which both point
attractors (in B or D) explode simultaneously. (In a
nondegenerate analogue, each blue-loop event would
occur across its own distinct curve. Alternatively, there
might be a fold catastrophe, followed by a single
nondegenerate blue-loop.) We call the attractor a
Kadyrov oscillator.

The degeneracy apparent in Fig. 2 consists in the
multiple bifurcations from four attractors (static) to
two attractors (static), and from two attractors (static)
to one attractor (periodic) across a single bifurcation
curve in the control plane. In the next section we will
unfold the system, by adding control parameters to
obtain a sequence of bifurcation curves, across which
the four attractors change to three, to two (each time
by a fold catastrophe) and finally to one (by a blue-loop
explosion). The dependence of the (g, ¢) section upon
the other two controls, (b, d), is indicated in the
tableau of Fig. 4. These critical-point maps have been
computed by Newton’s method, applied to the appro-
priate polynomial function (see Sec. 5).

Fig. 4. A four-dimensional portion of the bifurcation set belonging
to Kadyrov’s model. We represent the parameters a, ¢ as dimensions
in a tableau of small squares. The position of each small square
defines a location in the (b, d) subspace. The same representation has
been chosen in Figs. 7 and 14-19. Note: The upper right square
[(b, d) = (1,1)] is a reproduction of Kadyrov’s Figure 6. In all small
squares, (a,c) range from -2 to +2. (Same color coding as in
Fig. 2).
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3. Two-Cusp Catastrophes, Continuous-
Time, Unfolded

Recall that the Kadyrov scheme is described by the
system of two ordinary differential equations:

x' =-x3+bx+ay,

y = -y +dy+ex .

We now attempt to unfold this by adding terms

suggested by elementary catastrophe theory. Thus, we
will study the scheme:

X = =x34(by+by)x+(ay+ary) ,

-3+ (dy+di Xy +(cp+ ¢, %) .

yl

Terms in x2y and xy? have been omitted, as
singularity theory suggests their relevance for unfold-
ing under differentiable equivalence only.® Lacking a
suitable theory, we seek to establish the completeness
of this scheme by computer simulation. The main goal
of this paper is to report the results of these simula-
tions, which do suggest that this scheme is a generic
family of dynamical systems, transversal to a bifurca-
tion stratum of codimension eight. Actually, we are not
able to distinguish experimentally between codimen-
sions seven and eight. This involves bifurcations other
than these folds located so easily by the computational
methods described in Sec. 5.

Although this search is possible in principle, it is
very time intensive with the computational equipment
at hand. (We have used a network of three Silicon
Graphics Iris workstations.) The results of our explo-
rations of the eight-dimensional space of models are
shown in Figs. 5 to 7. Note: these are partial bifurca-
tion diagrams, in the sense described in the next
section.

4. Other Bifurcations

There are seven generic bifurcations of codimension
one, affecting attractors and basins, for flows in the
plane.® They are: excitation and the spiral pinch (two
forms of Hopf bifurcation), the static and periodic
folds (appearance or disappearance of an attractor
along with its separator), basin bifurcation (change in
a basin or separator only), the periodic blue sky (a
periodic attractor appears out of the blue), and the blue
loop (through a fold on an invariant cycle, a saddle-

8See Callahan [1987] for example, and the references therein.

connection becomes a periodic attractor). We believe
that all seven occur in our unfolded scheme. Thus, the
response diagrams presented in the preceding section,
showing fold and blue-loop curves only, are incomplete.
Although we have not yet located them in our simula-
tions, we might expect the following.

a. For ag and ¢, outside Kadyrov’s wedge, excitation
may occur for some of the static attractors in the
regimes of two to four attractors. :

b. For b, and d, in the distant corners of the second
and fourth quadrants, the Kadyrov oscillation may
vanish in a periodic blue-sky catastrophe.

¢. For some values of the eight controls, the central
static repellor may be transformed from a node to a
focus (not a bifurcation), and then undergo excitation,
producing a central static attractor of spiral type,
surrounded by a periodic repellor. A nearby periodic
fold (cusp style) will then create a small annulus
bounded by two periodic repellors, which is the basin
of a periodic attractor within.

d. In addition to these, there may also be basin
bifurcation curves. That is, as the parameters cross
these curves in the bifurcation diagram, a saddle
connection forms momentarily, as the outset of one
saddle (which separates two basins) sweeps past the
inset of another saddle.

5. Critical-Point Analysis

We began our investigation by reproducing Kadyrov’s
Figure 6. This figure is an a,—c,; cross-section, where

X' = x3+(by+ byy)x+(ay+a,y) 8))

Y =y} +e(dy+dx)y+(cy+c,x) )
and the “non-Kadyrov” variables: b,, d,, 4y, and ¢, all
equal zero. Kadyrov fixed b, and d,, inside the wedge -
defined by by < 2d, and dy < 2b,.

To reproduce Kadyrov’s Figure 6, we need only
calculate the number of critical points as a function of
the parameters. We find the critical points of the
system by finding all (x, y) pairs such that

0 = x3+(by+b,y)x+(a,+a,y) and 3)

0 = 3+ (dy+dx)x+(co+c;x) . (4)

Solving (3) for y and substituting into (4), we can
determine the number of critical points as the number

See Secs. 2.1, 3.2, 3.3, 4.1, 5.1, 5.2, and 6.1 in Part Four of Abraham [1982-88].



Fig. 5. A blowup of the central region of our unfolded version of
Kadyrov ‘s Figure 6. Same as Fig. 4, but now the non-Kadyrov term
is b; =0.1. Note: The algorithm used when |¢y| < 0.3 is different
from the algorithm used elsewhere. Due to convergence consider-
ations, we solve Eq. (4) for x first and then substitute into Eq. (3).

The three horizontal rows of pixels across the center of the
cross-section are caused by convergence problems or similar numer-
ical artifacts.

Fig. 6. Phase portrait for Fig. 5, region of seven critical points.

of real roots of a ninth-order polynomial. We designate
this polynomial, f.(x), the critical point function. Partic-
ularly near (b, d,, ay, cp) = (0, 0, 0, 0), the critical-point
function clearly shows the number of system critical
points produced by this parameter setting, see Fig. 8.
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This critical-point function is very useful in determin-
ing the bifurcation curves. For example, in Fig. 9, there
appears to be a region (B), corresponding to five critical
points, which has opened up in the midst of a region (A,
C) corresponding to three critical points. Wondering
whether the appearance of this region corresponded to
the appearance of two (saddle) critical points, we exam-
ined phase portraits for these parameter settings. We
found it difficult to determine whether these saddle
points are there or not in this manner. Yet, inspection
of the graph of f.(x) in these parameter regions shows
that two saddle points do form briefly, and we can
immediately determine the x-coordinates of these crit-
ical points. (See Figs. 10a, 10b, and 10c).

It is important to note that we will always be able to
form such a function from a system of connected cusp
models as long as we limit ourselves to linear coupling.
Thus, this function could be a very important tool in
locating precisely much of the bifurcation set of such a
model.

6. Two-Cusp Models with Discrete Time

The interesting properties of the cusp models described
above are given by the bifurcation behavior under
changes of control parameters. For a single cusp the
bifurcations are between solutions with one or three
critical points. In the discussion in Secs. 1 through 4 we
have used models defined by ordinary differential equa-
tions (ODEs). The equivalent dynamical behavior can
also be modeled with the help of diffeomorphisms f:
R — R, inducing a discrete-time evolution of a state
variable x € R through x,,, , =f(x,), where n e Z indi-
cates a discrete-time variable. This method has already
been used in the context of reaction—diffusion models
(see, for example, Keeler [1987]) and models for phase
transitions [Oono & Yeung, 1987; Oono & Puri, 1986].
Its advantages are better analytical accessibility, a large
reduction of numerical problems, and a dramatic in-
crease in computational speed.

In order to model a single cusp we define for a,
beR, b>0, the family f(x, a, b)=tanh(bx)+a (see
Fig. 11). As in the ODE case we have a splitting
parameter, b, and a normal parameter, a. For b< 1,
the slope of f(x, a, b) is everywhere less than one, and
therefore there exists only one fixed point, X, [that is,
f(x.,a, b)=x_.], and this is always stable and globally
attracting. The location of x, is determined by the
values of both a and b.

Now increase b, keeping a = 0. Since (0, a, b) = b,
the fixed point x,. becomes unstable for b = 1. Simulta-
neously, two new fixed points (x; = x,. < x,) are created.



424 R. Abraham et al.

Fig. 7. Tableaus for other values of the parameters (same color code as in Fig. 2). (a) The non-Kadyrov parameter appearing in the normal
factor of nation X, a,, has been changed from a,=0.0 to a, = 0.1. Notice the thin regions in the upper right cross-section corresponding to
3 (resp. 7) critical points which is opening between the regions corresponding to 1 (5) and 5 (9) critical points. Color code as in Fig. 2.
(b) Further unfolding as the non-Kadyrov parameter appearing in the normal factor of nation Y, ¢, is increased from 0.0 to 0.2. (c) The
unfolding which takes place as both non-Kadyrov variables appearing in the splitting factors of each nation, b,, d,, are changed to b, = 0.1,
d, = 0.2. Compare with Fig. 7b, where the non-Kadyrov variables appearing in the normal factors (ayp, c,) of each nation were changed by the
same amount. (d) Here, the non-Kadyrov variables appearing in both the normal and the splitting factors of nation X, b,, and a,, have been
changed to values of a,=0.1, d, =0.2.
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Fig. 8. The graph of the critical point function, f (x), at the
specified parameters. Notice this setting of the parameters occurs
within a region corresponding to 9 critical points: one unstable
critical point at the origin, four stable critical points, and four
saddles.

They are stable since f’(x, a, b)) — 0 for x — + o0 and [
is invertible. The degeneracy of the simultaneous cre-
ation of x;and x, can be unfolded by allowing a # 0. The
bifurcation from solutions of one fixed point to those
with three fixed points is of fold (saddle-node) type, and
corresponds to the fold in the ODE case. For any value
of b> 1 we can find a, # 0 such that the system under-
goes a saddle-node bifurcation at (a,, b). We observe
that for all ae R, b > 1, for which we have three fixed
points, x; and Xx, are stable, while x, unstable. Fora > 0

Fig. 9. An interesting cross-section (a,, ¢,) of the parameter space
for ay=0, ¢;=0, by= - 1.0, dy=2.0, b, =0.1, d, =0.2. Parameter
points in the lower right corner generate the critical point function,
J-(x), shown in Fig. 10a,b,c. See discussion following Eq. (4). Same
color code as in Fig. 2.
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we have x.<0 and for increasing a, x; and x, will
coalesce and disappear in a fold bifurcation. Analo-
gously for a <0, x, and x, will disappear. From the
construction, we see that approach to the stable fixed
points x; and X, is always monotone, and that the
rates (| f(x, a, b)-x|) at which the fixed points are
approached goes to infinity for |x| — + oo. This is an
important difference from the cubic functions studied
by R. Kapral, which exhibit a much more complex
bifurcation structure [Kapral, 1985, 1986]. His cubic
functions can have multiple critical points and therefore
are not invertible, which means that they cannot be
viewed as Poincaré maps of ODEs. Thus, the solutions
can overshoot, and show many artifacts, as in the Euler
integration of nonlinear ODEs. Using our map, we have
excluded the occurrence of such spurious solutions. But
in order to guarantee that the numerical solution shows
the correct qualitative behavior, for example, conserva-
tion of symmetries, careful implementation is required.

The eigenvalues of the fixed point, i.e., their local
stability properties as well as their separation, are
determined both by the splitting parameter b and the
normal parameter a. We also see that this system has
strong symmetry properties, which suggest nongeneric
behavior. In order to introduce a controlled and inter-
pretable symmetry-breaking condition for the generic
unfolding of the coupled-cusp system, and also in order
to be able to find the fixed points analytically, we intro-
duce a continuous, piecewise-linear function, p(x, a, b; ,
bg), with a set of solutions equivalent to the hyperbolic
tangent map f'(x, a, b).

The map p(x,a, by, bg) consists of three linear
parts, each determined by parameters specifying slopes
and y-intercept, determined by (b;, bg), of the local
linear segment. Whereas the relative location of the
three pieces with respect to each other controls the
bifurcation set, the local slopes permit explicit control

fel®)

21
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fc(-‘)
0.57

Fig. 10c

Fig. 10. Graphs of the critical point function f, [see discussion
following Eq. (4)]). (a) Graph of f.(x) at a point in the large yellow
region of Fig. 9 close to the purple region. From phase space
analysis, it is known that the critical point at (a;,¢,)=(0,0) is a
repellor and the other two critical points are attractors. (b) Graph of
J(x) in the purple region in the lower right corner of Fig. 9, showing
the appearance of the two saddles and leading to 5 coexisting fixed
points. {¢) Graph of f,(x) in the yellow region between the purple
and the red region in the lower right corner of Fig. 9, showing that
the system has returned to 3 critical points. Notice that now,
however, one of the attractors has disappeared along with one of the
saddles.

over local stability properties related to the fixed points.
This factor becomes especially relevant in the coupled
case when we not only consider fixed points, but also
periodic, quasiperiodic, and potentially chaotic solu-
tions.

The explicit representation of the piecewise-linear
mapping is given by

xn+l=p(xns a, bLs bR)=p0(xns bL’ bR)+a (5)

where

tann(2x) +/- .3

s/ T T
7
t ’
/
/ p————mSEmssms
0.5¢ / A
/ 7
/
- L i
-2 -1.5 -1 0.5y i 0.5 1 1.8 2
/v
4
dy s
______ -7 /
/
/
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Fig. 11. Graph of f (x, a, b) = tanh (bx) + a as a discrete version of a
cusp model (in the figure we have a splitting factor b<=2). The
symmetric case is given by normal factor a =0 (solid line) with an
unstable fixed point at the origin and two symmetric, stable fixed
points. For a positive value of the normal factor a only the stable
fixed point at positive x-values remains (a=0.3 dashed line), for
negative values of the normal factor a the situation is reversed
(a= -0.3, dot-dashed line).

Xnsi

1| 7

Fig. 12. Piecewise-linear approximation of the cusp function of
Fig. 11 for a positive normal factor, a > 0, and asymmetric splitting
factors, b, > bg. Notice that the stability of each of the fixed points
is uniquely determined by the derivative on each of the three
intervals defined by b, and bg.

po(x, by, bg)
spi+ | brl (@ -5y
= { ehx
s3x = | by | (€%~ 53)

|bg| <x
- by <x<|bg|-.
x<-|b|
(6)
Here b; and by play the role of the splitting factor,
and a plays the role of the normal factor, of the

continuous-time model studied above. For a positive
values of b; and a, the mapping is shown in Fig. 12.



Fig. 13. The cusp surface for the piecewise-linear cusp function,

p(x, a, by, bg) of Fig. 12, where b; = bg. Same representation of the
control and state space as in Fig. 1. Notice that most of the bifurcation
structure is concentrated in the upper right corner of the tableau,
corresponding to large values of b; and d;.

Figure 13 displays the cusp surface obtained from the
above mapping. As the splitting factor, b, changes from
a negative to a positive value, it is evident that the
central region of this mapping displays the divergence
and inaccessibility characteristics of the standard cusp
catastrophe.

We now make the generalization to the two-nation
model with the state of one nation, x, and the state of
the other nation, y. The change of state of both nations
is represented by iteration of the following map:

X pﬂ(xnsbl,s bR)+alyn+a0 ] (7)

n+1l

Vus1 = Po(Vp>dp,dp) + 1%, + € - (8)

As in the ODE case, coupling is achieved through
the normal factors. Solving analytically for the fixed
points of this mapping, we are able to obtain a tableau
of the dependence of the mapping on the control
parameters. In Figs. 14 through 23, this dependence is
shown as (a,, ¢,) slices within a (b,, d;) space, as in
Fig. 14. Because we are able to solve for the fixed points
analytically, we can resolve the numerical convergence
problem visible in Fig. 5. Furthermore, because this
mapping allows for symmetry breaking via bg and b,,
we are able to resolve an additional direction of unfold-
ing. However, at this time, coupling through the split-
ting factors has not been explored.
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Fig. 14. The tableau for the symmetric case where b, = by and
d; = dg, with the unfolding parameters a, = ¢, = 0.0. This is analo-
gous to Kadyrov’s continuous-time model, shown in Fig. 5. The
domain of both b, and d, is (-2, 2) at intervals of 0.5. Each q,, ¢,
slice is of the same domain, with a resolution of 0.02. The slopes (s,,
5, and s3) for both nations are set to 0.5. (Same color code as in
Fig. 2, except that nine fixed points correspond to a blue region.)
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Fig. 15.
a, and ¢, unchanged. Same color code as in Fig. 14.

Upper right quadrant of Fig. 14, with b,, d; in (0,2) and

Investigating the phase portrait of this mapping
for the symmetric case where ay=c,=0, b= b, and
dg - d;, we find much of the same behavior as found in
the continuous model. Figure 20 displays the analogous
phase portrait found in the regime of section F of
Fig. 3 where there exist two point attractors, two saddles
and one central repellor. In Fig.21, we show the
existence of the periodic attractor of period twelve
found in the regime of section F. We also find that in
increasing the slopes of the discrete mapping from 0.5
to 0.8, the periodic attractor changes to the quasi-
periodic attractor of Fig. 22. In Fig. 23, we were able
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Fig. 16. Figure 15 with b, =0.8-b, and dr=0.4-d;. Note the
unfolding in the bifurcation sets associated with 5, 7, and 9 fixed

points. Same color code as in Fig. 14.
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Fig. 17. Same as in Fig. 15, but instead of using the splitting
factors, we now change the normal factor for the unfolding, a, = 0.5

and ¢, =0.2. Same color code as in Fig. 14.

Fig. 18. Combination of the perturbations of the normal factor (as
in Fig. 17) and the splitting factor, bg = 0.8-b, and dg = 0.4-d; as in
Fig. 16. Same color code as in Fig. 14.

Fig. 19. Same as in Fig. 18 with the range of b, and d, being
changed to (- 2, 2). Each subgraph is separated by a value of 0.5 in
the splitting factors by and b;. Same color code as in Fig. 14.
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Fig. 20. Phase portrait of symmetric case for a,=0, ¢, =0.5,
b, = 1.0 and d; = 1.0, a region of five fixed points: two attractors, two
saddle points, and a central repellor.

X
-10 =5 0 5 10

Fig. 21. Phase portrait of symmetric case for a, = - 0.5, ¢, = 0.5,
b, =1.0 and d; = 1.0, a region displaying a periodic attractor.
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Fig. 22. The same conditions found in Fig. 21, but with the slopes
of both nations increased to 0.8, display the existence of a quasi-
periodic attractor.
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Fig. 23. The chaotic attractor found in the same region of Figs. 21
and 22, with all slopes equal to 0.5, except for s; of nation Y, which
has a value of ~1.5.

to find chaos, something not present in the ODE case
as guaranteed by the Poincaré-Bendixson theorem.
The existence of chaos in this case is generated through
the local separation of nearby orbits, which is caused
by those sections of the function, py(x,, by, bg) With
| po(x,, b, br)| > 1. The global boundedness of the
system is guaranteed by those sections of py(x,,, b;, bg)
for which |py(x,, bz, bg)| < 1. The balance between
these two factors typically results in chaotic attractors.
This controlled bifurcation to chaotic attractors is
quite different from the appearance of spurious solu-
tions due to discretization.

7. Conclusion

In this work we have applied modern computational

Double-Cusp Models 429

tools to generalize the results of Kadyrov on the inter-
action of two hostile nations. We explored large regions
of a four-dimensional parameter space and identified
regions according to the number of criticat points (equi-
librium configurations of population groups in each of
the two nations). We explored two basically different
mathematical approaches (continuous versus discrete-
time) to the modeling problem and showed that both
methods agree in their predictions over a large range of
parameters. The solutions of continuous models in two
dimensions are restricted to critical points and limit
cycles, but we identified parameter ranges for which the
dynamics of the discrete model was more complex than
that of the continuous model. For example, we found
bifurcations to multiple periodic orbits and also to
quasiperiodic attractors. We even found parameters
for which the double-cusp system shows evidence for
the existence of chaotic attractors. For the discrete
model we were able to find all fixed-point solutions
analytically, thereby avoiding numerical problems in
difficult regions of the continuous model.

At this point we do not want to emphasize the appli-
cations of the Kadyrov model itself, but more the
phenomenology and general analysis of the highly
complex behavior arising in this simple model family.
One main result of our exploration is the development
of visualization tools to present the solutions embedded
in a four-dimensional parameter space. Structures in
the space of solutions and trends can be recognized
directly in all four directions of variation of our model
parameters. With the faster discrete model, this makes
possible an almost interactive style of experimental
mathematics, impossible with traditional approaches.

Several directions for future investigations of models
of the Kadyrov type are suggested. The robustness
of the model against stochastic perturbations (shocks)
is currently under investigation using Chapman-
Kolmogorov equations. Conditions under which chaos
arises could be classified, especially in coupled systems
of three or more cusps. We also hope to apply our
models, in collaboration with political scientists, to
concrete political questions.
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