13

Visualization Techniques for
" Cellular Dynamata

Ralph H. Abraham

13.1 Historical Introduction

Complex dynamical systems (CDSs) [1] and cellular dynamata (CDs) [2] are
classes of dynamical models that have evolved in the context of applied work
over a period of years. The literature on one-dimensional cellular dynamata is
extensive [3]. Recently, two-dimensional lattices have become the focus of
several exploratory studies [4]. In this chapter, we describe some methods for
creating visual displays of important qualitative features of cellular dynamata
in one and two spatial dimensions. |
Reaction/diffusion equations constitute a special class of partial differential
equation (PDE) systems of evolution type. They were introduced and used
by the pioneers of biological morphogenesis: Fisher (1930), Kolmogorov-
Petrovsky-Piscounov (1937), Rashevsky (1940), and Turing (1952). Fisher
introduced the logistic/diffusion equation, particularly important for CD
research, as a model for the diffusion of mutants in a population of flys
[5]. Rashevsky introduced spatial discretization corresponding to biolog-
ical cells in his work on embryogenesis [6]. Discretized reaction/diffusion
systems provide examples of cellular dynamata, probably the first in the
literature. Reaction/wave systems are another source of important CDs.
Further developments were made by Southwell (1940-1945), Turing (1952),
Thom (1966-1972), and Zeeman (1972-1977). The latter includes a heart
model [7], and a simple brain model exhibiting short- and long-term mem-
“ory [8]. The arrival of scientific computation in Los Alamos stimulated
Ulam and Von Neumann to develop cellular automata (CAs) in connec-
tion with their efforts to solve the heat equation. During the 1980s, undet
the influence of the growing availability of computer graphic worksta
tions in the scientific community, experimental work on 1D/CDs (one spé
tial dimension) began. Later, as computational power became adequate,
2D/CD studies began to appear in the literature. The ideas of cellulat’§
dynamaton theory, inspired by these pioneers, are summarized in the next 3
section.
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13.2  Cellular Dynamata

Cellular dynamata are complex dynamical systems characterized by two spe-
cial features: the nodes (component schemes) are all identical copies of one

scheme, and they are arranged in a regular spatial lattice. We now recall the
basic definitions.

13.2.1 Dynamical Schemes

By dynamical system we mean an autonomous system of coupled ordinary
differential equations of the first order. More generally, we include vector-
fields on manifolds, both finite and infinite dimensional, which we call state
spaces. The phase portrait is a visualization of the dynamical system within its
state space. Thus, systems of coupled partial differential equations of evolu-
tion type are included, along with integro-differential-delay equations, and so
t on. By dynamical scheme we mean a dynamical system depending upon
. parameters in a supplementary manifold, the control space. The visualization
E of a dynamical scheme (in low dimensions) is provided by its response dia-
gram. The familiar pictures from elementary catastrophe theory (ECT) [9],

L dynamical bifurcation theory (DBT) [10], and geometric function theory
i (GFT) [11), are exemplary response diagrams. The chief features are the

¥ attractrix (or locus of attractors) and the separatrix (or locus of separators).

E The most widely known of these diagrams are the cusp (shown in Fig. 13.1),

t and the logistic period doubling sequence (shown in Fig. 13.2). We will make

 use of these to illustrate visualization techniques for cellular dynamata.

132.2 Complex Dynamical Systems

¢ Dynamical schemes may be serially coupled in various ways. The simplest,
L which suffices for most applications, is called a static coupling. This is a func-
 tion from the state space of one dynamical scheme to the control space of
f another. The canonical example is the driven pendulum. In this way, a finite
f et of dynamical schemes (nodes) may be serially coupled by an appropriate
et of static couplings (directed edges) in a network (directed graph). This is
jthe definition of a complex dynamical system, the primary object of com-
 plex dynamical systems theory. Exemplary models for several physiological
ystems have been developed and run, producing convincing simulated data

j112)

1323 CD Definitions

a cellular dynamical system, cellular dynamaton, or CD, we mean a com-
Elex dynamical system in which the nodes are all identical copies of a single
namical scheme, the standard cell, and are associated with specific loca-
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FIGURE 13.1. The cusp.

tions in a supplementary space, the physical space. Exemplary systems have
been developed from reaction/diffusion systems by numerical methods, such
as Southwell’s relaxation method, which proceed by discretization of the
spatial variables. Other important examples of this construction are the heart
and brain models of Zeeman. CDs have something in common with the cel-
lular automata, or CAs, of Ulam and Von Neumann, but possess more struc-
ture, and are in some ways more general.
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FIGURE 13.2. The logistic period doubling sequence.
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13.2.4 CD States

the space, CxS, of the response diagram of the standard cell. We regard this

map, or perhaps its image (a finite point set within CxS), as the global state of
the CD.

1325 CD Simulation

' Poincaré section of a periodic attractor.

i Our recipe applies to the discrete-time case only. We begin with an initial,
. global CD state, and fixed values of any free control parameters. Then, par-

] » to obtain the next local state at that node. This
¢ determines the next global state. Iteration of this global step produces a

j sequence of global states, the global trajectory. This approaches a global
 ttractor, in the space of all global states.

: 1326 CD Visualization

, The behavior of a cellular dynamical system under simulation may be visual-
 ized by various methods, here we mention three. In Zeeman’s method, an

Pomplete CD system may be tracked, as the controls of each cell are sepa-
Bitely manipulated, through an understanding of the response diagram of the
Bindard cell provided by dynamical systems theory, in terms of attractors,
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basins, separatrices, and their bifurcations [10]. We now give some examples
of these methods.

13.3 An Example of Zeeman’s Method

This method appeared first in a model by Zeeman for the human heart.
Organs typically contain many different types of cells. In the unusual case
that there is only one type of cell, one could imagine a model for the organ
consisting of a single CD system. This is the case with Zeeman’s heart model.
An explicit CD model for the organ would require an explicit model for the
standard cell, which might be found in the specialized literature devoted to
that cell. In this case, Zeeman uses a well-known qualitative model, with
unspecified coupling.

13.3.1 Zeeman’s Heart Model: Standard Cell

In Zeeman’s heart model, the standard cell is the cusp catastrophe. Each node
corresponds to a muscle fiber, and the standard cell is a model for the muscle
fiber dynamics. The two control parameters are muscle tension and the con-
centration of some transmitter chemical. The state variable is the length of
the fiber. The upper sheet of the locus of attraction corresponds to an elon-
gated state, the lower sheet to a contracted state.

13.3.2 Zeeman’s Heart Model: Physical Space

Let us imagine a heart-shaped region in the plane as the physical space of the
heart model. The spatial lattice of our CD model resides in this heart-shaped
region, and its standard cell is the cusp. Rather than map this lattice into the
space of the cusp, we will map the whole region. Assuming adiabatic con-
ditions (weak coupling), the image moves close to the locus of attraction.

13.3.3 Zeeman’s Heart Model: Beating

In Zeeman’s model, the beating of the heart consists of a sliding motion of the
image of the physical space over the fold catastrophe of the cusp, falling from g
elongated to contracted states, as shown in Fig. 13.3. Presumably, this would -;
be the result of a simulation of his model. In any case, this figure illustrates his
novel method of visualization, which may be applied successfully in many
other cases.

13.4 The Graph Method

We proceed with our examples of visualization techniques, using the one-
dimensional logistic lattice, the object of much recent research. First, we must
present this object as a CD.
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FIGURE 13.3. Zeeman’s heart.

13.4.1 The Biased Logistic Scheme
The logistic map is the real-valued function of a single real variable,
S(x) =rx(1 — x). (13.1)

- Here, the control parameter, gain, r, should be in the range [1, 4], so f may be
L regarded as a map of the closed unit interval to itself, f : I — I. It serves our
£ purpose to add to this function a constant called the bias, ¢, which is regarded
i as a second control parameter. Thus,

f(x)=rx(1 =x)+¢ (13.2)
; If this is to be regarded as a function from I to itself also, we must add
f clipping:
‘ if f(x) > 1, replace it by one,
if f(x) < 0, replace it by zero.

. Thus, we have an iterated function scheme with two control parameters. The
| response diagram of this scheme is a simple extension of the period doubling
j sequence of Fig. 13.2, as shown in Fig. 13.4, at least if the bias is small. (In
E our example and discussion below, following section 3 of Crutchfield and
Z Kaneko [3], the range of the bias will be within +0.001.)

1342 The Logistic/Diffusion Lattice

f In our application, the simple logistic/diffusion lattice, we will build a CD by
4 coupling the bias parameter of each node to the states of the closest neigh-
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FIGURE 13.4. Response diagram of biased logistic scheme.

boring nodes by Laplacian coupling, leaving the gain free. The physical space
will be the closed real interval, I = [0, N — 1], where N is the number of
nodes, equally spaced in the physical space. We will set N and r (at a com-
mon value for each node) at the start of any simulation. Below, we will use
=128 and r = 3.5.
At the ith node, i = 1--- N — 2, the next state, x;', is given by

xf =1 = x¥) + (i), (13.3)

where x? denotes the current local state, and the the local bias is determined
by

(i) = 5375 (xbo + 0y = 2x]), (134)

and 7y is set to a constant value at the start of a simulation. In our example,
y = 4.8 k or about 5000.

These formulas are applied at the endpoints, i = 0, N — 1, by special rules,
called the boundary conditions. In our example, we will use the toral boundary
conditions, in which the Oth and N — 1st nodes are identified. Thus c( 1)is
replaced by ¢(N — 2) in Eq. (13.4) when i = 0, and so on.

13.4.3 The Global State Graph

Choosing the exemplary values mentioned above, we may now visualize the
global states of this 1D/CD, the logistic/diffusion lattice, by the graph method.




.

13. Cellular Dynamata

———
——
. —

e
o ——

—
T

e ——
. —

—
e —
L —

-
——
——
—_—

—— =1

303

——T
. —

| T VO N O |

+0.001

ol 1111
-0.001 0

> C

FIGURE 13.5. Response diagram, gain fixed at 3.5.

E Fixing r = 3.5 at each node, we may reduce the response diagram shown
 in Fig. 13.4 to two dimensions, as shown in Fig. 13.5. The locus of attrac-
f tion comprises four nearly straight lines, slightly rising to the right, cor-
. responding to the four points of the periodic attractor. These are visited in
 the order: 4, C, B, D. In between are the two curves of the Period two
{ repellor, and the curve of the fixed repellor. All three curves are shown
} dashed. Attaching this 2D response diagram (visualized as a vertical plane)
g to each node in the 1D physical space (shown as a horizontal line) creates
£ the 3D space in which the graph of a global state, i — (x(i), c(i)), may be
 plotted.

i InFig. 13.6 we show the graph of a state of the exemplary CD, taken from
 Crutchfield and Kaneko, [3, Fig. 2 (top)]. The projection into the plane of
f (1,x) is shown in Fig. 13.6a. The initial state leading to this global attractor is
 the sinewave (shown dashed). The global attractor, in this case, is a periodic
 tfajectory of Period four. The periodic trajectory (superimposition of four
huccessive global states) is shown by the lighter solid curves. One of the four
Hestantaneous global states is shown as a heavier, solid curve. Note that
Although the coupling is weak, nodes in large regions of physical space are
ipulled far from their attractors by the combined influence of their nearest
Meighbors. In Fig. 13.6b is shown the projection of the heavy graph onto the
{l,c) plane. In Fig. 13.6¢c is shown the projection onto the (c, x) plane. Note
that this plane contains the reduced response diagram of the standard cell, as
®en previously in Fig. 13.5. The graph of the instantaneous state is a curve,
i the full 3D space of (i, c, x).




304 R.H. Abraham

1 ——

/ .

X

(b)

0 U iy LT W T A W IR o\

(c) —0.001 0 +0.001

FIGURE 13.6. (a) Graph projected on (i, x) plane. (b) Graph projected on (i, c) plane. 3
(c) Graph projected on (¢, x) plane. !



13.5 The Isochron Coloring Method
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- The graph method, for even slightly more complicated CDs, will require too
| many dimensions for direct visualization. Thus, we seek algorithms for pull-

ing back the essential information from the graph to some kind of a map
- in the physical space. In our current example taken from Crutchfield and
Kaneko [3], this will be a division of the physical space into interval regions.
These could be colored for graphical presentation. The algorithm we are
~ using currently in our research with 2D CDs is based on the projection of
global states into the response diagram of the standard cell, as shown in Fig.
13.6¢. It may be explained as follows.

13.5.1 Isochrons of a Periodic Attractor

Note that in the response plane, Fig. 13.5, the dashed curves (loci of the
repellors, which are virtual separators) separate the plane into four strips.
Each contains one of the four solid curves of the locus of attraction. These
represent its phases: 4, B, C, and D. Given an initial state of the biased logis-
tic scheme in one of these phases, say 4, the eventual state after many itera-
tions (a multiple of four) will be phase A. These strips, which are basins of
attraction of the four-fold iteration of the logistic map, are called isochrons of
the response diagram. Only periodic attractors have isochrons, which con-
stitute a decomposition of the basin of attraction of the periodic attractor into
disjoint pieces. Periodic trajectories of continuous dynamical systems have
isochrons also, but we will not discuss these here.

13.5.2 Coloring Strategies

A simple coloring strategy is used in Zeeman’s method, Fig. 13.3. There, the
lower sheet of the locus of attraction is colored black, the upper sheet, white.
Note that nodes of the physical space, which are far from their attractors, are
not colored by this rule. Thus, we would like to extend the rule outward from
the loci of attraction, into the entire 3D response diagram of the standard cell.
For control points inside the bifurcation set, the cusp curve in the horizontal
control plane, this is easy, We use the locus of separation (the intermediate
sheet of the cusp surface) to divide the wedge-shaped column into white
(upper) and black (lower) regions. For points outside the bifurcation set,
however, there is only one attractor, or sheet of the locus of attraction. We
may use gray for this entire region, which is neither black nor white.

In the case of the logistic/diffusion lattice, we may color the four isochrons
in different colors. Additional information may be encoded by varying the
hue or saturation of a color according to the distance of the point from the
attractor. This method is easily extended to the case of a CD with 2D physical
space. We color the isochrons of the response diagram of the standard cell.
Then, we map the physical space into the standard response diagram by the
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graph method, projected, and imagine the physical space moving around

the colored diagram as the simulation progresses. At each step, the colog
encountered by the moving image are pulled back to the physical spacy
creating an animated color movie within it, the isochron movie. This is a
stantially different movie than the one usually seen, in which the color i
cates the values of the state variable, x, which we call the state movie. Anothg
useful visualization is the control movie, in which the control space is colored ;,.
and these colors are pulled back to the physical space. A useful still pictug
view (for periodic global attractors) is the period view, in which each point g t
the physical lattice is colored according to the period of that node. This ma’
be obtained from the isochron movie, and is analogous to the Fourier trang §
form of a real function. 4

13.6 Conclusions

Here we have described three methods for obtaining animated color movies §
from a cellular dynamaton simulation; the familiar state movie method, and
two new ones: the isochron and control movie methods. Suitable for periodic 3
states primarily, the extension to some chaotic attractors having approximate 3
isochrons, such as the Rassler attractor, may prove useful. Other color movie
methods, based on entropy, Lyapunov exponents, spectral shape, symbolic
dynamics, and so on, may be more appropriate for chaotic CDs [13]. The }
research results on experimental dynamics of physically 2D CDs will require
video publications, such as the new aperiodical from Aerial Press, Dynamics 3§
Showcase: a Hypermedia Journal. i
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