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Basic Principles of Dynamical
Systems

Frederick D. Abraham, Ralph H. Abraham, and
Christopher D. Shaw

Introduction

There is a revolutionary new strategy of mathematical modeling of
systems called dynamical systems theory. Although its roots reach back
to Newton, Rayleigh, and Poincaré, the past two decades have witnessed
a revolution in its language, concepts, and techniques for dealing with
complex cooperative systems evolving through multiple modes of dy-
namical equilibrium (static, oscillatory, and chaotic). Hence, their ap-
plicability to biological and behavioral domains that have increasingly
in the same period come to be understood in a similar light of synergistic
cooperative systems. The mathematics provides models, simulation,
cognitive strategies, and intuitively clear geometric representations for
complex systems. It also serves as a unified philosophic view for under-
standing integrative, hierarchically organized, dissipative, irreversible,
and evolutionary dynamical systems. In short, it is a world view as well
as an elegantly simple modeling strategy.

The principle purpose of this chapter will be to present some of the
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basic concepts of mathematical dynamics, emphasizing the visual geo-
metric approach of Abraham and Shaw (1982-1988) and is taken from
Abraham, Abraham, and Shaw (1990). It progresses from elementary
static and periodic attractors, through coupled periodic attractors and
chaotic attractors, then to the concepts of stability and bifurcation, and
finally, briefly, to complex dynamics. Each will be illustrated by clas-
sical systems. A secondary purpose will be to illustrate some applica-
tions of dynamical theory to psychology, proceeding from the more
metaphorical, to simple, and then more complex dynamical models;
from more contrived application of classic models to the development
of more original models. The chapter is designed so that the reader may
opt to skip to a section on psychological applications after an introduc-
tion to the relevant basic mathematical concepts. Some of these corre-
spondences are as follows:

Basic Concepts Psychological Applications
Interacting biological populations Contingent operant behaviors
Damped oscillators Alternative psychological

states
Periodically driven self- Coupled circadian oscillators
sustaining oscillators
Sections, bifurcations, and Consciousness
complex systems
Bifurcations Circadian and neuropsycho-
biological

There will be reminders when such jumps are appropriate and warn-
ings if the jump may eventually result in excursions into some un-
familiar material, at which point one returns to the jumping-off point.

The chapter is intended both for those considering the use of this
approach for their own research and those interested in becoming more
casually fluent in dynamical theory. The emphasis on visual represen-
tation makes the technical ideas intuitively accessible and useable.
Calculus is not assumed but will be helpful to those wishing to go
deeper into the subject. The visual approach can be obtained more
completely from Abraham, Abraham, and Shaw (1990) and Abraham
and Shaw (1982-1988), and the mathematical-symbolic approach from
works cited there. Equations in the “Basic Concepts” section, except for
the very simplest and most obvious for the interacting biological popu-
lation model, were deferred to Appendix B for the mathematically curi-
ous. Definitions of basic terms from the text were collect in a Glossary
(Appendix A). We feel dynamical theory is not only important but also
a joy. We urge readers to proceed only as long as they share this feeling.
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Basic Concepts

Basic concepts considered here include not only concepts of state
spaces, trajectories, phase portraits, attractors, characteristic exponents,
information gain, stability, and many other features of static, oscillato-
1y, and chaotic dynamical systems but also concepts relating to organi-
zational changes in these systems, called bifurcations. Despite their
esoteric sound, they provide some interesting perspectives into a vari-
ety of psychological systems.

Definitions of Elementary Terms

These should illustrate the ease of becoming familiar with the central
concepts of this approach, and should, at the same time, hint at its
potential richness.

State Spaces

A system, loosely speaking, is a set of interacting factors. Most impor-
tant concepts in psychology, such as consciousness, learning, percep-
tion, maturity, sensation, meditation, communication, dopaminergic
neurotransmission, sex, feeding, nigrostriatal system, sleep, hypo-
thalamic—pituitary—gonadal hormone systems, attitude, and mental
health are systems that we try to model. The process of modeling such
systems is familiar enough to us. Some aspects are real (observable
variables), whereas others may be imaginary (hypothetical or interven-
ing variables), and we try to discover as many of these as possible and
characterize the relationships between them (MacCorquodale & Meehl,
1948). A system, then, is a set of such variables whose values change
over time.

Let’s take the concept of maturity, a hypothetical personality con-
struct, as an example of a system. Maturity is clearly a complex system
composed of many variables. Assertiveness and the ability to plan for
the future might be considered to be two of but many variables com-
prising the system of maturity. These may be hypothetical, but ulti-
mately a variety of attempts are made to operationalize them, that is,
measure observables behaviors assumed to represent them. For now,
let’s restrict our system of maturity to these two variables, assertiveness
and planning for the future. For any given individual each of these
variables change over time. The number of requests or demands made
on others by an individual and the number of submissions by that
individual to the requests or demands of others may vary from hour to
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hour, from day to day, week to week, year to year, and from one stage of
life to another. The same is true for the amount of time spent planning
for the future or the length of future being planned. Each of these
variables may be described as a time series, a conventional representa-
tion (Figure 1). You may note that at any given point of time, we can
characterize a set of measurements, one on each variable, which can be
considered a vector. For example, for the individual’s data shown in
Figure 1, at 16 years of age, the vector consists of A = 61 on the assumed
assertiveness variable measured on an interval scale of 0 to 100, and
P = 8 on the assumed planning variable also measured on an interval
scale of 0 to 100. Each such vector represents a state of the system. A
state of a system is thus the vector of values, one for each of the vari-
ables of the system at a given moment. The state, or vector, is repre-
sented as a point in the graph. Table 1 summarizes the vectors, the
observed states, the points from Figure 1.

An alternative way of graphing these values would be by using a
state space. This would be a graph where the two axes would be the

100

o 7
" [
o™\ [

30 \.\-\-\t.,./-/y‘/

20 )e/x/x/x,/x/’/\

10 e
P
T T

15 16 17 18 19 20 2‘1 22 23 24 25
AGE (in Years)

—-—
A
—
o]

ARBITRARY SCALE

Figure 1. Maturity system: time series of assertiveness (A) and planning ability (P} as a
function of age (from Abraham, Abraham, & Shaw, 1990, © Aerial).
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Table 1. Vectors of Values for Assertiveness
and Planning Ability for an Individual from 15 to
25 Years of Age (Taken from Figure 1)

Age Assertiveness Planning ability
15.0 80 6
15.5 70 7
16.0 61 8
16.5 53 9
17.0 46 10
17.5 40 11
18.0 36 12
18.5 34 13
19.0 39 14
19.5 31 16
20.0 30 18
20.5 31 20
21.0 33 24
21.5 35 35
22.0 38 38
22.5 41 48
23.0 47 60
23.5 53 75
24.0 57 85
24.5 59 88
25.0 60 90

state variables (the variables are also often referred to as system or state
variables as well as simply variables), assertiveness and planning abili-
ty. The state space would be all the possible, states, points, or pairs of
values (vectors) of assertiveness and planning ability. The state space
showing the same points as in Figure 1 and Table 1is shown in Figure 2.
In general, such a plane displaying a dynamical system may not neces-
sarily be filled (all pairs of values on the two variables might not be
possible). Such geometric models are not restricted to flat cartesian
coordinate systems but can be generalized to include curved spaces
(called manifolds, Figures 6b and 7b).

Trajectories and Phase Portraits

Time and change in a system may be tracked in two different ways. The
conventional form is the time series produced just shown (Figure 1).
The other is to omit time as a graphic axis and use the phase space
representation, keeping track of time by some labeling convention. For
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Figure 2. Maturity system: scatter plot of A vs. P for data of Table 1 and Figure 1 (from
Abraham, Abraham, & Shaw, 1990, © Aerial).

example, we could connect the points of Figure 2 in the order of their
occurrence, and the dots would represent not only the values in the
state space, but the distance between them would represent the equal
intervals of time between the observations (0.5 year) of the values of the
state variables (Figure 3). Such a curve connecting temporally suc-
cessive points in the state space is called a trajectory.

Time labeling of a trajectory may be performed with points, as
here, or tick marks, color coding, or other representations, or omitted if
rate of change is not considered of prime importance for the graph.
Arrows indicating the direction of time are usually included. Notice
that the equally temporally spaced points on the trajectory are further
apart when one or both of the variables is changing rapidly as at the
earlier and late middle parts of the trajectory, and closer together when
both variables are changing slowly as at the early middle and very end
of the trajectory.

The state space, filled with trajectories (only a few representative
ones are usually drawn), is called the phase portrait of the system. A
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Figure 3. Maturity system: trajectory interpolated onto the scatter plot of Figure 2 with
arrow showing time flow. (from Abraham, Abraham, & Shaw, 1990, © Aerial).

phase portrait for our system of maturity would be filled with trajecto-
ries representing different individuals from some population (Figure 4).

Vectorfields and Dynamical Systems

Dynamical systems are systems with special qualities. To describe
these properties, it is necessary to introduce some special kinds of
vectors. If we take any two points (vectors) on a trajectory, the dif-
ference between them is a new bound vector. Figure 5a shows such a
bound vector for the trajectory from Figure 3 between the points repre-
senting the ages 16 and 22.5 with the arrow showing the direction of
time. This bound vector has two values. One for the difference between
the assertiveness values, —20 = 41 — 61, and one for the difference in
planning, 40 = 48 — 8 (values can be verified from Table 1 as well)
showing a loss of 20 in assertiveness and gain of 40 in planning ability
over this 6.5 year span for this individual. As mentioned before, the
rate of change in each variable is reflected in the distance between



42 Frederick D. Abraham ef al.

100
90
80
70 1
607
50 A
40 A

ASSERTIVENESS

301
20 A1
10 1

0 T T T U ¥ T
0 10 20 30 40 S0 60 70 80 90 100

PLANNING ABILITY

Figure 4. Maturity system: phase portrait with the trajectory of Figure 3 shown along with
three of many others (not shown to keep the figure from turning black) (from Abraham,
Abraham, & Shaw, 1990, © Aerial).

points. This rate, or average velocity of the change of state may be
represented by a velocity vector, which is the bound vector divided by
the interval of time to yield the rate of change in each variable per unit
time. For this bound vector, that would be —20 assertiveness points/6.5
years or —3.08 points per year, and 40 planning points/6.5 years or 6.15
planning points per year. So now we have a new average velocity
vector representing rate of change of the state variables, assertiveness
and planning, which can be represented numerically, as just calculated,
or visually in phase space (see Figure 5b). The average velocity vector
then represents the average rate and direction of the change in the state
of the system between two points in time. Now suppose we make our
measurements continually in time or decide our trajectory may be rep-
Tesented by a continuous model. Further, suppose we allow the time for
the second point in time to get closer and closer to our first point in
time. As this time shrinks, the average velocity vector becomes a tan-
gent vector at the first point in time (Figure 5c). It is also called the
instantaneous velocity of the trajectory at that point in time, represent-
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Figure 5 a—d. Maturity system: vectors (from Abraham, Abraham, & Shaw, 1990 ©
Aerial).

ing the instantaneous rate and direction of change in the state of the
system at that point in time.

What does this instantaneous velocity vector tell us? Why have we
derived it from the trajectory under the pretense of having a continu-
ously instead of a discretly changing trajectory? What is the informa-
tion contained in the instantaneous velocity vector? Simply this. It tells
us the tendency of the system to change when in that state. It says in
what direction and how fast the system should change on all variables
simultaneously; how much assertiveness and planning ability are going
to change. It is the thing that generates the trajectory. It moves the
system to the next point on the trajectory where the next vector governs
its next move. This process of deriving this instantaneous velocity vec-
tor is known as differentiation in vector calculus (the use of calculus
will not be employed here; only the visual or geometric interpretations
of dynamical systems are used that are hopefully intuitively clear with-
out a knowledge of calculus). Several are shown on the same trajectory
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again (see Figure 5d) to emphasize that faster rates of change appear as
longer vectors, slower rates of change as shorter vectors, just as distance
between equally spaced time points on the trajectory did in our discus-
sion of trajectories (see Figure 3) and bound vectors. Another example
for a different, unspecified system shows a trajectory slowing (with
shorter vectors) as it evolves and approaches its asymptote (Figure 6a).
Asymptote here means a fixed state from which the system does not
change; here the velocity vector is zero. Another example of a trajectory
and some of its instantaneous velocity vectors for an unspecified sys-
tem with a curved state space shows the tangent vectors projecting off
the surface while the trajectory remains on it, with a roughly constant
rate of change (see Figure 6b).

The state space is filled with these instantaneous velocity vectors,
one at every point on every trajectory (assuming smooth trajectories). A
vectorfield is the collection of all these instantaneous velocity vectors.
Technically, a dynamical system is equivalent to this vectorfield. The
vectorfield summarizes all the possible changes that can occur in the
system. If you know the present state of the system, you know how it
will change next. If you have an individual in a state of A = 40 and P =
11 you know that these velocity vectors will soon move the individual
to A = 36 and P = 12 (Table 1, Figure 3). The term dynamical system
need not be restricted to allude to the instantaneous velocity vector-
field but may be used more loosely to refer to a system that might be
represented by such a vectorfield or to rules that represent sufficient
information to produce a vectorfield. These rules usually take the form
of descriptions of the rate of change of the variables; more specifically,
usually equations. For example, such rules might be that assertiveness
and planning always increase 5 points a year, or that assertiveness
increases 3 points a year if assertiveness exceeds 20 and planning ex-
ceeds 35 points a year and is increasing (these are not the rules that
generated the maturity system shown in these figures). A few of the
instantaneous velocity vectors for our maturity system are shown in
Figure 7 for points on the trajectories of Figure 4. Other examples of
vectorfields are shown for unspecified systems using a flat (Figure 6a)
and a curved manifold (Figure 6 and 7b’s arrows indicate the direction
of change in time, but tic marks on the curve representing the rate of
change have not been shown).

The phase portrait of a dynamical system is the state space filled
with trajectories. Drawing a few of these trajectories usually gives a
good idea of the portrait and often the tick marks representing equal
intervals of time, as in Figure 3, are considered adequate to represent
rate of change in the state of the system, without resorting to the sepa-
rate calculation or presentation of the vectorfield. Just as the in-
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Figure 6. (a) Trajectory generated by tangent vectors at every point along it; (b) trajectory
on a curved state space (manifold) with tangent vectors projecting off the surface (from
Abraham & Shaw, 198288, © Aerial).

stantaneous velocity vectors may be derived from taking limits to dif-
ferences on trajectories, so trajectories may be constructed by following
a path of succeeding velocity vectors. Technically, this involves taking
the limit of a summing process on the instantaneous velocity vectors, a
process called integration in calculus. Again, we will not bother with
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Figure 7. (a) Maturity system vector field: some instantaneous velocity vectors for trajec-
tories of Fig. 4 (from Abraham, Abraham, & Shaw, 1990, © Aerial); (b) vectorfield: un-
specified system assigns a tangent vector to every point of the manifold (from Abraham &
Shaw, 1982-88, © Aerial).
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the details of calculus; this point is only mentioned to emphasize that
because there are mathematical rules for obtaining phrase portraits and
vectorfields from each other, they contain essentially the same informa-
tion. Each gives a different perspective on this information. One, the
trajectory, gives the history of change of the system over time; the other,
the vectorfield, gives the rules for the tendancy of change for each state
in the system. Our use of the visual geometric approach is generally to
emphasize the accessibility of that information, that is, its usefulness
even to working scientists and psychologists without their having to
resort to the less accessible mathematical tools of vector calculus. The
integral/differential pair, the phase portrait and the vectorfield, con-
taining all the information of the model system, may thus also be called
a dynamical system. The vectorfield may be represented mathe-
matically, as just mentioned, by a set of equations (in calculus, called
first order, ordinary, autonomous, differential equations), which may
also be referred to as the dynamical system. For a practicing scientist,
presentations of real experimental data can directly produce an approx-
imation to a phase portrait (Figures 1-4). To summarize, a dynamical
system is a system that changes in time and may be characterized by
phase portraits (a collection of possible trajectories) and vectorfields (a
collection of instantaneous velocity vectors), which can be derived
from each other and contain essentially the same information. The
information may be the same as that conveyed in conventional time
series graphs and in sets of equations, but the value of this approach, is
to, hopefully, provide a quicker, visual, grasp of system change. Let’s
next take a look at some of those visual properties of phase portraits.

Attractors, Basins, Separatrices, Repellors, and Saddles

Experimental trajectories may present patterns if the systems have any
regularity to their behavior. The task of the scientist is to discover those
patterns; that of the modeler to discover reasonable models approx-
imating the same patterns. A simple taxonomy of some common pat-
terns can be given. Supposing our model of the maturity system as-
sumed or found that the vector (A = 60, P = 90) (the most right-hand
point in Figures 1-5; the last vector of Table 1) worked so well that any
individual reaching that state remained in it. Some individuals might
start at age 15 at these values and so would remain at this fixed state.
Their trajectories would be a single point with an instantaneous ve-
locity vector equal to zero (i.e., there is no tendency to change from that
state). Such a point with a zero instantaneous velocity vector is a spe-
cial kind of trajectory called a constant, critied] point, fixed point, or
rest point.

On the other hand, our model might assume fluctuations back and
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forth between different values. When you get too pushy, society pushes
back; too shy and you get pushed around too much; too much planning
yields too little fun; too little planning yields an empty wallet or some-
thing like that. Such individuals might cycle repetitively through the
same set of states (Figure 8a). A nonconstant trajectory that closes upon
itself is called a closed trajectory, or closed orbit. If the cycle time is
constant and its instantaneous velocity vectors at each point remain
identical each time through the cycle, then it may also be called a
periodic trajectory, cycle, or oscillation. Maybe assertiveness and plan-
ning are up at the beginning of each month, low at midmonth, and pick
up again toward the end of the month again as the paycheck runs out; a
monthly cycle. New Year’s resolutions suggest annual cycles.

Our maturity model might not be so exact as to create well-defined
rest points or cycles. A trajectory might inexactly fluctuate around
some constrained values for high-school years, around another set of
states for some college years, and then near some point during early
professional careers. Such trajectories that are neither fixed nor cyclic
but that fill up a constrained region of the state space are called
stochastic, strange, or chaotic.

Of course, most individuals will not start in these end trajectories
of a rest point, periodic trajectory, or chaotic region. They may start in
some distant state and gradually approach one of these trajectories as a
limit (Figure 4 shows many individuals ending up at the same state). If
many trajectories in the state space approach the special trajectories as
asymptotic limit sets, then those special trajectories are called limit
points, limit cycles, or chaotic limit sets. Such limit sets to which all
nearby trajectories tend are called attractors, fixed or static, periodic, or
chaotic (respectively). The end point of the trajectories shown in Figure

100 100
A. CLOSED, CYCLIC, OR B. PERIODIC OR

PERIODIC TRAJECTORY CYCLIC ATTRACTOR

0 50 100 0 50 100

Figure 8. Cyclic trajectory and attractor (from Abraham, Abraham, & Shaw, 1990, ©
Aerial).
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4 is a limit point. Trajectories approaching a limit cycle are also shown
(see Figure 8b).

Now let’s invent a new pretend experiment also based on the matu-
rity system. Suppose we ask professionals in mental health to conceive
an ideal state of adult maturity and then to draw trajectories represent-
ing how different individuals might develop as they approach that state
as a limit point (static attractor). This imaginary experiment is very
contrived and unlikely, invented for the purpose of illustrating a few
properties of phase portraits. We repeat the experiment three times, the
first as stated, with an ideal concept of maturity without specifying the
gender of the individuals. The second, specifying an ideal concept of
maturity for males, and the third, for females. So these trajectories are
the result of informal models of the maturity system carried in the
heads of the professionals. Suppose we got a complex phase portrait
with trajectories approaching or departing a few different points (Fig-
ure 9). Here trajectories starting at high values of assertiveness and
planning ability end up at a limit point high on both that we will say
represents the professional’s concept of male maturity. Those starting at
low values on both variables might end up at a limit point lower on
both variables representing the professional’s concept of female matu-
rity. Those trajectories representing individuals starting at values high
on one variable, low on the other, might tend to the intermediate limit
point, from which they tend to one of the two states representing matu-
rity, male or female. A region of the state space containing all trajecto-
ries that tend to a given attractor comprise its basin. Here, there is one
basis for the attractor representing the male state of maturity, one for the
female (Figure 9). A separatrix consists of points and trajectories that
are not in any basin, that is, do not tend toward any attractor. (Here they
are all those points between the two basins, and they lie on the trajecto-
ries tending to the third, intermediate limit point, the shaded area;
individuals arriving at this intermediate state may linger a while, but
then internal and social pressures send them one way or the other.) A
separatrix may form boundaries between basins (actual separatrix as
shown here), or they may lie within a single basin (virtual separatrix,
none shown). Points and periodic trajectories from which trajectories
only leave are repellors (none shown here). Limit sets that some trajec-
tories approach and others depart are saddles (the middle point of
Figure 9). The arriving trajectories make up the inset of the saddle (here
they are also the actual separatrices between the basins), whereas those
departing comprise its outset. Saddles may be points (as shown here),
cycles, or chaotic sets (examples to be shown later).

Now, where do you suppose the trajectories might be for the profes-
sional’s models for maturity when sex is left unspecified? Suppose they
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Figure 9. Mental health professionals, model of maturity system showing professional
prejudice (from Abraham, Abraham, & Shaw, 1990, © Aerial).

were identical to those for their male model as shown. Would such a
result represent their placing a higher value on male maturity than
female? Would that represent an incorporation of societal prejudices by
the mental health professions? Would that, in turn, have a feedback
effect not only on their therapeutic practice, but on their influence on
society, reinforcing its prejudices? This experiment has not been per-
formed, and these results are very contrived, and such simple separa-
tion of trajectories and limit sets is highly unlikely for a maturity sys-
tem. A similar experiment on just the limit points has been done and
has revealed such prejudicial attitudes among professional’s that un-
derscores the importance that the biases of psychologists play not only
in influencing the progress of science (the difficulty of creating truly
objective experimental designs), and clinical practice, but in influenc-
ing social and legal systems as well (Broverman et al., 1970).

Classic Examples
Compared to Freud, Jung “was more organic, expansive, and unfolding

to purposive ends”; in short, dynamic, accordlng to Hampden-Turner
(1981), who continues:
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The psyche’s structure is animated by the energy of the libido, a life force
which in high intensities energizes will, affect and performance and in
lower intensities energizes attitudes, interests and possibilities. Energy
shifts ceaselessly to and fro along the structural axes in dialectical patterns,
governed by the principle of enantiodromia, literally “the returning swing
of the pendulum.” The ego can intensify the energy flow towards one value
polarity, but consciously or unconsciously it must flow back-—tension—
relaxation, openess—closure, evaluation—decision. In dynamic balance the
psyche moves progressively (external adaptations) and regressively (inter-
nal adaptation). (p. 47)

The pendulum, historically, is one of the first systems to which
dynamics was applied because it was clear enough to allow Galileo and
‘Newton to discover the general principals of analyzing time and mo-
tion. Other historical, classic developments in dynamics also include
‘the analyses of the gradient system by Newton, the buckling column by
.Euler, musical instruments by Rayleigh, electronic oscillators by Van
der Pol, celestial mechanics by Poincaré, biological populations by
Lotka and Volterra, and many others.. We turn to some of then now, not
‘for their historical significance, which is great, but because they con-
tinue to provide the mathematical foundations of the subject as well as
to provide exemplary models for contemporary science.

.Oscillations and the Pendulum

Galileo not only rolled polished brass balls down parchment-lined
~wooden grooves, but he swung a nasty pendulum. Fortunately for us,
Newton considered a simple pendulum (Figure 10a). He showed that
the pendulum is a system that could be described by two state vari-
ables. One is its position, measured by the angle. The other is its ve-
locity, the rate of change in the position, measured in radians or-degrees
per unit time. The state space can thus be represented graphically by
two axes, one for position, the other for velocity.(Figure 10b). The state
of the pendulum at any given moment has a position and a velocity that
s the state of the system at that moment and is represented by a point
in the state space. Its motion over a short period- of time can be repre-
sented as a sequence of these states, which comprise a trajectory in the
state phase space (Figure 11).

Imagine the pendulum is ideal, frictionless, continually oscillating
back and forth between two extreme states. By ideal, we- mean simply
‘that it moves through the exact same sequence-of states on each cycle.
‘In other words, its trajectory repeats itself exactly on each successive
‘cycle. This is an undamped oscillation. If we start the pendulum swing-
ing with different forces and in different directions, each unique startup
generates a different cyclic trajectory. The phase portrait contains all
possible trajectories, but a practical sketch shows only a few of these
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Figure 10. (a} Simple pendulum, (b) state space showing the rest point for the pendulum
at rest. Circles represent angular position, straight lines represent velocity (from Abraham
& Shaw, 1982—-88, © Aerial).

(see Figure 11). If it is at rest, it stays that way; a critical point in the
center of the portrait. Increasingly greater initial displacements and
velocities are revealed as larger closed orbits (trajectories) on the por-
trait. As the initial force is made sufficiently great, the pendulum could
swing to exactly the top position possible, the top of a circle of its
motion above the pivot. It then could fall in either direction. The state
representing the top of the motion is represented by a saddle point on
the phase portrait; here that same point is shown twice emphasizing it
can be approached from the right or the left depending on the initial
condition. The portrait continues in both dimensions beyond the figure
boundaries; just the central portion is shown. Trajectories both ap-
proach and depart from the saddles. The upper trajectory between the
two saddles shows the pendulum approaching the top from the left.
From there, the lower trajectory shows it falling back to the left. The two
trajectories to the right of the right-hand saddle indicate the pendulum
approaching from the right (lower of the two trajectories), and falling to
the right (upper trajectory). Above and below those trajectories between
the saddles are trajectories representing circular motions of the pendu-
lum due to high initial velocities. Their velocities remain positive if the
motion is always counterclockwise and negative if it is clockwise, if you
choose that convention. The angle is always increasing or decreasing.
If the pendulum is real rather than ideal; there is friction in the
system, and it eventually comes to rest in the center. This constitutes a
damped oscillation. The angle and velocity decline. Or, more precisely,
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Figure 11. Simple conservative pendulum: phase portrait unrolled to show a few of the
trajectories (from Abraham & Shaw, 1982-88, © Aerial).

the phase portrait reveals that the trajectories spiral into a focal point
attractor (Figure 12).

We relabel the inner orbits of the ideal pendulum to depict some
aspects of Jung’s concept of enantiodromia (Figure 13). Many other
psychological concepts could be modeled by the pendulum, but for
many applications, we also find the buckling column suitable.

Damped Oscillations, Bifurcations, and Buckling Columns

Damped oscillations, like oscillations, are ubiquitous in psychological
systems. Damped oscillatory effects of messages on attitude are used in
the attitude models of Chapter 12. Damped oscillations were studied
exhaustively by Euler using the buckling column (1778; Stoker, 1950).

If an elastic column has a weight placed on it, and then it is slightly
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Figure 12. Dissipative pendulum: Phase portrait showing trajectories spiraling to a focal
point attractor (from Abraham & Shaw, 1982—88, © Aerial).

displaced at its midheight, it will oscillate or buckle or both, depending.
on the magnitude of the weight and strength of the column (Figure 14).
If the weight is below a critical value and the system is free of friction,
then it acts similar to a frictionless pendulum in swaying undamped
forever back and forth across the center of its normal upright position. If
there is friction, then it will come to rest in the upright position, just as
the pendulum with friction comes to rest. If the weight is greater and if
the system is again frictionless, its swaying may or not be confined to
one or the other side of vertical depending on the initial displacement.
With friction, its swaying eventually becomes confined to one side, and
then it comes to rest bent to that side. Thus the term buckling. If the
weight is even greater, then the column may buckle immediately to one
side without oscillating or even being pushed.
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JUNG’S ENANTIODROMIA
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Figure 13. Pendulum model of Enantiodromia (from Abraham, Abraham, & Shaw, 1990,
© Aerial).

The phase portrait is obtained by depicting velocity, v, as a func-
tion of the horizontal displacement, x, of any arbitrary point on the
column, say its midpoint (Figure 15). In the frictionless system (Figure
15a), the trajectories, like the sustained oscillations they represent, con-
tinue forever. If the weight is sufficiently small, every oscillation
crosses the center back and forth between two extremes. Each extreme
is equidistant from the center, and the motion pauses at zero velocity
momentarily at each extreme before.changing direction for the return
motion. With the addition of friction, this system with the light weight
loses amplitude with each cycle, eventually coming to rest in the cen-
ter, thus exhibiting damped oscillations as with the pendulum with
friction (Figure 15b). With or without friction, each trajectory uniquely
depends on the initial position and velocity imparted to the column.

What happens if the weight is increased past a critical value?
Again, it depends upon the initial displacement and velocity imposed
upon the column. If the initial velocity is small enough, the oscillations
are confined to one side (Figure 15¢). The velocity is again momentarily
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Figure 14. Euler’s buckling column (from Abraham & Shaw, 1982—88, © Aerial).

zero at the extremes of the swaying, though both extremes may be on
the same side of the center upright position. If there is no friction, the
oscillations are undamped. If there is friction, the oscillations are
damped, and the column comes to rest bent to one side. If the initial
velocity is sufficiently great, then the oscillations cross the center, stop-
ping momentarily at the displacement extremes and also slowing
slightly as it crosses the center. There are two trajectories that show the
motion of the column approaching the center and stopping there mo-
mentarily. From there it could continue its motion either to the right or
the left, independently of the direction of approach. That point is a
saddle, and the trajectories approaching it will occur if the initial con-
dition imparted to the column is a combination of displacement and
velocity existing on either of those trajectories. Again there is the case
without friction, and the case with friction. Without friction, whether
confined to one side or not, the osciallations are undamped, the attrac-
tors are cyclic, closed orbits. With friction, the trajectories spiral to
fixed point attractors on one side or the other representing where the
column comes to rest in a bent shape (Figure 15d). In this system with
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friction, there are two basins spiraling around each other, each repre-
‘senting spiral trajectories going to one of the two focal point attractors.
The trajectories approaching the saddle point are separatrices between
the two basins. The rate of spiraling and the location of the fixed point
attractors is determined by the characteristics of the column and the
magnitude of the weight; if the column is constant, then the phase
- portrait changes with the weight, the principal force parameter of the
system.
Two of the most important properties of dynamical systems are
- demonstrated by the phase portraits of the buckling column. The first
property is the importance of the initial conditions (the initial displace-
ment and velocity of the column. This is most dramatic with the system
with friction and the larger weights where the phase portrait shows the
two spiraling basins. Initial displacements that are quite similar may
initiate trajectories that are in different basins and thus end up at differ-
ent attractors. This may be somewhat counterintuitive. For example, an
initial displacement to the right with a particular velocity to the right
may result in the column bent to the right; increasing the velocity to the
- right may result in the column ending up on the left. Increasing the
velocity even more to the right may again result in its ending up on
the right. All three of these cases are for the same initial displacement.

The second property is the importance of a critical threshold value
of some control parameter of the system. Changes in the value of the
control parameter results in changes in the phase portrait. These may
be somewhat monotonic or linear for some range of the parameter, but
passing the critical value may create a major change in the essential
nature of the phase portrait. The change is called a bifurcation. The
magnitude of the weight changes the phase portrait. Increasing the
weight on the buckling column with friction changes the portrait from
having the single focal point attractor of the system coming to rest at
center (Figure 15b) to the portrait with two focal point attractors for the
system coming to rest to the right or the left (Figure 15d).

Another common feature of visual dynamical models illustrated by
the buckling column and the pendulum is that the state space often
employs rate of change, the velocity, as a state variable, a dimension of
the state space. And, as here, this rate of change or velocity is the rate of
change of another state variable, in this instance, the position of the
column or pendulum. The equations comprising the dynamical model
may also be coupled by the sharing of other terms as well. The equa-
tions for the buckling column are in Appendix B 1. For didactic pur-
poses, we have explored the buckling column in diverse areas of psy-
chology. Tompkins’s ideological theory (1963; this chapter, pp. 118—
123), some of Jung’s concepts of the psyche (Abraham, 1989; Abraham,
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Figure 15. (a) Conservative buckling column: Phase portrait with the weight lighter than
the critical value for buckling; (b) dissipative buckling column: Phase portrait showing
trajectories spiraling to a focal point attractor; (c) conservative buckling column: Phase
portrait with the heavier weight inducing buckled oscillations; (d) dissipative buckling
column: Phase portrait with the heavier weight showing basins for two focal point attrac-
tors (from Abraham & Shaw, 1982—88, © Aerial).

Abraham, & Shaw, 1990), a psychoanalytic model of grief and depres-
sion with mood and self-image as state variables and dependency as a
control parameter, and a cognitive model of attribution processes in
motivation (Abraham, Abraham, & Shaw, 1990) illustrate but a few of
the potential applications to Psychology.

Percussional musical instruments have also been modeled as
damped oscillators (Rayleigh, 1877). Their consideration started the
theory of nonlinear oscillators as their internal restorative and fric-
tional forces were considered nonlinear functions of the velocity or
displacement of the vibrational component of the musical instrument.
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Figure 15. (continued)

Interacting Biological Populations

In behavioral psychology, competing responses and competing motives
are often involved. In cognitive psychology, competing ideas are often
considered. Some of these systems have been studied with variations of
a dynamical model of competing biological species, one of the first in
the life sciences.

The Lotka—Volterra model (1924, 1931) of prey—predator popula-
tions has generated a class of dynamical models in which the rate of
change of the two populations is a function of both population densi-
ties. Figure 16 shows some of the vectors of the vectorfield. The state
space for this prey—predator system has two dimensions; each dimen-
sion represents measurement of the population density, that is, the
number of each species of fish for the part of the ocean or aquarium that
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Figure 15. (continued)

might be considered a relatively closed environment. The arrows are
velocity vectors representing the tendency of the system to change in
each of the four main quadrants of this space. When both populations
are relatively large, the big fish are well fed and tend to multiply,
whereas the population of small fry tends to decline (Figure 1, in-
stantaneous velocity vector C). Next, with many big fish and few small
fry, both populations tend to decline as the fry population is too small
to support the population of big fish (arrow D). When both populations
are small, the population of big fish continue to tend to decline to a
point where they fail to curb the population of small fry that now tends
to increase (arrow A). When the small-fry population has recovered
sufficiently, then they can support an increasing population of the big
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Figure 16. The vectorfield of the Lotka—Volterra model for two interacting populations of
prey and predators (from Abraham & Shaw, 198288, © Aerial).
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fish (arrow B). Thus the size of the predator population at any given
moment tends to decrease at a rate proportional to its size and tends to
increase at a rate proportional to the product of both population sizes.
The prey population, conversely, tends to increase at a rate propor-
tional to its own size and tends to decrease at a rate proportional to the
product of the size of both populations (examples of the law of mass
action, where the rate of change of the size of two interacting popula-
tions is proportional to the product of the size of the two populations).
These assumptions can gerate the vectorfield represented by Figure 16.
These assumptions comprise a dynamical system expressible as two
coupled differential equations (a differential equation simply means an
equation stating what governs the rate of change of a variable; coupling
two or more variables means that the rate of change of at least one of the
variables depends, among other things, on the other variable):

x' = ax — bxy, which is the rate of change of the prey population, x,
and

y’ = cxy — dy, which is the rate of change of the predator popula-
tion, y, and where q, b, c, and d are positive constants.

The vectorfield, the verbal assumptions, and the differential equa-
tions have all been equivalent descriptions of the tendency of the sys-
tem to change. What are the resulting changes in the populations, the
trajectories generated by these tendencies? The phase portrait of this
system (Figure 17a) is a nest of closed trajectories around a central rest
point. The populations follow one and only one of these possible trajec-
tories, depending on their initial sizes, which obviously comprise a
point on that trajectory. That is, given an initial size of each population,
the changes in their sizes keep cycling back through this point. This
idealized model assumes that no factors other than the initial sizes and
the tendancy to change that depends only upon population sizes influ-
ence the behavior of the system. Such a system is called a center. The
rest point in the middle exists only when it represents the initial popu-
lation sizes that then do not change.

When other factors are allowed, then many other types of portraits
may be generated. For example, all trajectories could spiral in to a
point, a focal attractor, illustrating the effect of ecological damping or
friction, such as toxic wastes influencing reproductive rates or preda-
tion and escape behavioral capabilities (Figure 17b). In another exam-
ple, all trajectories could tend to one of the closed periodic trajectories,
a limit cycle (Figure 17c). This model is more realistic for a reasonably
local or closed system. Other possibilities include point or cyclic re-
pellors, perhaps due to improved fertility factors or alternative food
supplies for both species. Even more complex systems could involve
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Figure 17. Phase portraits for the prey—predator model (a} basic Lotka—Volterra model: a
center (from Abraham, Abraham, & Shaw, 1990, © Aerial); (b) ecological friction: focal
point attractor; (c) relatively closed system: periodic attractor (from Abraham & Shaw,

1982, © Aerial).

multiple attractors and basins (see Abraham & Shaw, 1982; Holling,

1976; May, 1973; Rosen, 1970).

The law of mass action is similar to that found in dynamical chem-
ical systems (Decroly & Goldbeter, 1982). It is not the same as Lashley’s
law of mass action that states that learning deficits are proportional to
the amount of cortical damage (Lashley, 1929). But it is interesting to
see the possibility of joining these two laws of mass action. Lashley’s
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law on the effects of damage to the cortex on learning does not repre-
sent a dynamical system because it does not describe change over time.
But when one considers recovery of behavioral function following neu-
ral damage, then the system could be a dynamical one. The two laws of
mass action then meet only in the special situation where there is
recovery of function of two competing learned responses. In an investi-
gation of recovery of properties of electroencephalographic cospectra
after hypothalamic damage, some features of competition between
power and coherence suggested a competition between local and dis-
tant generation of some frequency components of the EEG. These were
revealed in a canonical phase portrait from a discriminant analysis
(Abraham et al., 1973).

Historically, the prey—predator model is the most recent of our
classical examples. It is especially relevant because it was developed
for a system that involves the behavior of organisms and is thus psycho-
logical as well as biological. We apologize to the gentle reader for start-
ing with an example that involves such violent behavior. The cooper-
ative schooling behavior of fish or the cooperative breeding behavior of
birds would have been gentler and most fascinating. The species com-
petition model was used for its historical and didactic value. One of the
fortés of dynamical systems theory is to explain complex cooperative
systems as we shall see later. Even for the nature of evolution, Kro-
potkin emphasized cooperation. And, of course, competition is but a
special case of negative cooperation. Because predatory and escape
behavior involves evolution (behavioral change between generations)
and learning (behavioral changes within a life span), it is not surprising
that such models have been used to model evolution and learning. An
example of such a learning model is given in the section called “con-
tingent operant behavior,” and readers, at their option, are invited to
explore it now (p. 123). There is also a family model of cooperative/
competitive dynamics (Elkaim et al., 1987). We also fabricated a small
neural net based on the prey—predator model (Abraham, Abraham, &
Shaw, 1990). Dynamical models of biological, psychological, and cul-
tural evolutions are especially appealing because they can model salt-
atory as well as continuous change.

Sustained Oscillators

Oscillatory behaviors abound in biological and psychological systems,
constrained by atomic, molecular, neural, and energy properties at one
end, and by cyclic properties of the environment at the other. It is a
tenent of the application of dynamical systems theory to dissipative
cooperative biological systems to expect that there will be mutual and
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multiple interactions between variables that exist across many magni-
tudes of scale, from subatomic, molecular, biologic, behavioral, to en-
vironmental and even cosmic.

Lord Rayleigh (1877) used the damped oscillator to describe per-
cussive musical instruments, as mentioned earlier. He then proceeded
to generalize the analysis to sustained instruments where wind or bow
makes a springlike object (reeds, lips, or strings) vibrate. As with the
pendulum, buckling column, and other oscillators, the dimensions of
the state space represent the displacement and velocity of the vibrating
object, which also has internal friction (damping, resistive, or dis-
sipative forces) and restoring forces opposing or assisting the externally
applied force sustaining the oscillation. For the basic model, the restor-
ing force is a negative linear function of the displacement, and the
friction is a cubic function of the velocity. For small motions near the
origin, the friction is a positive function of velocity assisting the motion
(sometimes called negative friction; see the characteristic function in
the insert, Figure 18a), and the resulting phase portrait has a point
repellor at the origin from which trajectories spiral outward to a limit
cycle. For larger motions, the friction is normal (a negative function of
velocity resisting the motion), damping the trajectories in toward the
limit cycle. A change of sign of the friction force creates a sustained
oscillation.

The electronic oscillators invented by Helmholtz (and later the
vacuum tube oscillators studied by Van der Pol) exhibited similar prop-
erties. The radio transmitter consisting of a power supply, triode, a tank
circuit (a variable capacitor in parallel with an inductive coil and load
resisters), and a negative feedback coil from the plate’s tank circuit to
the grid of the tube. The observed variables are average (rms) voltage
and amperage. The phase portrait is very similar to the sustained musi-
cal instrument, having a point repellor at the origin and a periodic
attractor around the origin (Figure 18b). A variant of this model yields a
similar phase portrait with a periodic attractor that is a somewhat more
flattened parallelogram, a portrait called a relaxation oscillator (Figure
18c). The speed along the attractor is relatively slow on the vertical
segments, where the current is relatively constant and at its most ex-
treme values, and relatively fast on the longer horizontal segments
where voltage is constant at its extremes and the current is undergoing
large and rapid change.

Van der Pol and Van der Mark (1928) employed this relaxation
oscillator to model the heartbeat. The significance of this approach, the
simulation of the heartbeat by the electronic relaxation oscillator, goes
beyond providing an example of a dynamical system of great generality,
that is, as acting as a model for the construction of similar models in
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Figure 18. Self-sustained oscillators: phase portraits. (a) general model as for a reed
woodwind instrument: limit cycle with a central repellor (reed displacement, X; reed
velocity, V. Left insert: force is a negative linear function of reed displacement. Right
insert: force is a cubic function of reed velocity}; (b) Van der Pol’s triode vacuum tube
radio transmitter; and (c) relaxation oscillator (from Abraham & Shaw, 1982, © Aerial.

many fields of scientific investigation, a usefulness that certainly is
vast and important in its own right. But, further, it ushered in the
electronic era of experimental dynamics. Mathematical derivations of
the models for musical instruments or electronic oscillators is arduous,
whereas, on the other hand, using electronic, oscilloscopic, or comput-
erized simulations is much easier and faster. Modern experimental dy-
namics is less concerned with the logico—~deductive axiomatic the-
orem-proving approaches than with more direct comparison of
theoretical phase portraits derived from the coupled differential equa-
tions representing the basic variables and parameters of the system, to
empirically produced phase portraits derived from experimental data.

As with most modeling communities, this is a two-way or feedback
process, sometimes with greater emphasis on the empirically derived
portraits suggesting the conceptual mathematics by similarity to other
better-known dynamical systems and sometimes with greater emphasis
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on the hypothetical conceptual system suggesting the empirical inves-
tigation needed to reveal or confirm the phase portrait. This reciprocal
interaction between modeling and observation is a well-known funda-
mental aspect of science.

To emphasize this flexible and empirical nature, we have demon-
strated the sustained oscillator as a dynamical system by using the
visual approach showing the phase portraits.

Forced Coupled Oscillators

Rayleigh went on to establish yet another new, extremely significant
branch of dynamics, forced vibrations, involving attractors in three
dimensions. We consider two types. In both, there is a periodic driving
force or device, and a driven device. In one type, the driven device is a
damped oscillator tending to rest. In the other, it is a self-sustained
oscillator. In psychological systems, most oscillators, from neurons, to
neuroendocrines, to sexual, appetitive, sleep, and personality changes,
are coupled to related biological and environmental oscillators.

Periodically Driven Damped Oscillators. The classical example is
the effect of a mechanical vibration on a pendulum or a spring (figure
19) studied by Duffing (1918). A biological example would be the effect
of climatic seasons on ecologically interacting populations such as in
the prey—predator model.

Forced Linear Spring and the Response Diagram. Duffing’s model
can be approximated by a motor driving a spring attached to a sliding
weight (Figure 19b). This figure shows a strobe light illuminating the
driven oscillator and triggered at a fixed phase of the driving oscillator
(shown for phase zero; the motor arm at full right). If not driven, the
weight would behave like the damped pendulum or lightweight buck-
ling column coming to rest at center. Its phase portrait would be a spiral
attractor at the origin in a planar state space of velocity as a function of
displacement of the weight (spiral as in Figure 17b and dimensions as
Figure 18b). The state space for the driving motor is not a plane, but a
ring (forgetting starting up transients, the limit cycle is the entire state
space) consisting of the phases, from 0 to 2m. The frequency and ampli-
tude are considered constant.

We may combine these into a three-dimensional state space (Figure
20a), which we show, for clarity, in the isochronous harmonic case (one
cycle of the weight is completed during one cycle of the motor), with
vertical planes representing the weight'’s state space, and the horizontal
ring representing the motor’s state space, shown being bent from a
straight time line to the ring more representative of its cyclic nature.
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Figure 19. Forced damped oscillators. (a) devices used by Rayleigh, Duffing, and Ludeke
(the driving oscillator is only approximately sustained; the drive oscillator is damped).
(b) model equivalent to Duffing’s (from Abraham & Shaw, 1982-88, © Aerial).

The cylinder doesn’t exist, it is not an attractor, that is, not an invariant
manifold (collection of trajectories) or phase portrait, but merely a visu-
al aid to help show the location of the trajectory for the isochronous
harmonic (the undulating solid and dotted line) that is the only trajec-
tory on it.

A trajectory can be visualized spiraling in toward this isochronous
harmonic periodic attractor, shown as it passes through the phase zero
plane (Figure 20b). The strobe plane for phase zero can be shown with
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Figure 20. Ring model for forced damped oscillator {linear spring). (a) driving cycle bent
into ring, with isochronous harmonic attractor; (b) trajectory approaching the attractor;
strobe plane at phase zero; (c) Strobe (Poincaré) section, phase zero, showing several
trajectories approaching the attractor; and (d) response diagram: response amplitude as a
function of the driving frequency (from Abraham & Shaw, 1982-88, © Aerial).
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several trajectories approaching the attractor’s point of intersection in
this plane (Figure 20c & d). If the motor is slow, the trajectories for the
motor and the weight are in phase; both reach phase zero at the same
time, the attractor’s location in the strobe plane at phase zero of the ring
for the motor (Figure 20a), representing maximum displacement and
zero velocity of the weight in the representations.

Increasing the driving frequency closer to the natural frequency of
the spring weight still produces an attractive limit cycle of the iso-
chronous harmonic, but the phase has slipped. In this case, the max-
imum amplitude of the weight is also greater but does not coincide
with phase 0 of the driver, so the imaginary torus (Figure 20a) is larger
in diameter. This amplitude is greatest when the driving frequency is
the same as the free frequency of the driven weight (resonance; w, in
Figure 20d). The phase of the weight in this case is 7/2 (a quarter cycle)
behind the driving motor. As the driving frequency is increased even
more, the maximum amplitude gets smaller (Figure 20d), and the phase
lag increases even more. This has been for the case of the linear spring
where the restoring force is a negative linear function of the displace-
ment. Now let’s look at replacing the linear spring with a hard spring
where the force is greater than a linear increase as displacement (ampli-
tude) of the driving motor is increased.

Forced Hard Springs and the Cusp Catastrophe. The restoring
force of the hard spring is a cubic inverse function of the displace-
ment amplitude (Figure 21a). One consequence is that a clarinet with
such a reed would blow flat on the softer Mozart, sharp on the louder
Clarinet Polka (dotted line, Figure 22a). Another consequence is a hys-
teresis effect on the amplitude—frequency response diagram when the
forcing frequency is systematically raised and lowered (Figure 21b). In
the region between the large jumps up or down, there are two ampli-
tudes for each frequency, depending on whether the frequency is
being increased or decreased. Thus, in the region of the phase portrait
of the ring model corresponding to the effects of that range of frequen-
cies, there will be two periodic attractors representing isochronous
harmonics (Figure 21c). Because there are two attractors, some trajec-
tories go to one, some to the other. And thus there are two basins,
with a third limit cycle (a saddle) between them (shown in Poincaré
strobe section in Figure 21d, three dimensionally in Figure 21e). The
inset of this saddle cycle comprises the separatrix of the two basins. If
the amplitude of the forcing oscillator is varied, a family of response
curves, with increasing maximum amplitudes of increasing frequency
are generated (remember the clarinet with the hard reed we just men-
tioned, and Figure 22a). This response diagram can be shown in three
dimensions with the hysteresis loop (Figure 22b). Such curves, where
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there are jumps from one value to another, are called folds (2D as in
Figure 21b) and cusps (3D as in Figure 22b) in catastrophe theory.

The ratio of the driven frequency to the driving frequency, the
rotation number, for the isochronous harmonic attractor is 1. This ratio
need not be 1. If it is rational, and an integer greater than 1, ultrahar-

“ monics are generated in the driven oscillator, and the attractor rotates
an integer number of times in the velocity-displacement plane during a
single phase cycle of the driving oscillator (Figure 22c). If the ratio is
rational and smaller than 1, subharmonics are generated; for example,
it takes several cycles of the driver to each cycle (or cycles) of the
driven oscillator (Figure 22d). In both cases, the attractors are limit
cycles passing through the same points in any given phase plane. If the
ratio is irrational, the attractor is a solenoid, that is, wraps densely
around an imaginary torus, progressing around this torus, never going
through the same point more than once (Figure 22f). Irrational and
exotic rational ratios are rare, occurring with small amplitudes, ex-
emplified by the timbre they give to various musical instruments.

' Pythagoras (ca. 550 B.c.) discovered the world of perfect ratios and
harmonies with his monochords using implication and deimplication
from but the first four ultraharmonics (and an inversion on the interval
of the fifth) as the basis for the generation of most of the scale (Zarlino,
in the sixteenth century, extended this to the fifth harmonic and gener-
ated the remaining note, the seventh degree of the scale, b of the c
scale). For example, the 3 : 2 ratio (Figure 22e; from classic 12 and 8 1b
and the 9 and 6 Ib (ocades?) hammers Pythagoras is said to have heard
at the blacksmiths) yields a 12th above the fundamental (third harmon-
ic by implication), and an octave below that (half that frequency by
deimplication), which is the 5th (g on the c scale) (Apel, 1972). The
Beaker people (ca. 4500 B.c., Stonehenge), the Chinese, and the Babylo-
nians, and possibly even the Cro-Magnons, also knew of the harmonic
foundations of scales.

Periodically Driven Self-Sustaining Oscillators. Entrainment and
Braids. Here we consider forcing a periodically attractive system rather
than a system with a point attractor. If the two self-sustained oscillators
are uncoupled, their state space may be taken to be a toroidal surface.
The cross-section of this torus is a circle representing the phases of one
of the oscillators (ignoring startup transients). The cycle running
lengthwise around the torus represents the phases of the other os-
cillator (Figure 23a). Note that this state space (2D) differs from that of
the ring model (3D) for the forced damped oscillator. Here, both cycles
represent phases, and the torus represents the state space, not just a
convenient visualization for the limit cycle. When the oscillators are
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Figure 21. Forced hard spring (a) force as an inverse cubic function of displacement; (b)
response diagram: amplitude of the attractor as the driving frequency is changed, show-
ing the hysteresis loop of Duffing (double fold catastrophe); (c) large and small attractors
at an intrahysteresis frequency; (d) strobe plane showing the basins for each of the
attractors and the saddle cycle and separatrix; and (e} the completed ring model (from

Abraham & Shaw, 1982-88, © Aerial).

coupled, they normally become entrained. This could be considered as
the phase portrait being perturbed by the addition of a small (unspec-
ified) vectorfield to the state space. Peixoto’s (1961) classical theorem
bringing together differential topology and classical dynamics de-
scribes a generic situation in which a finite, even number of closed
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Figure 21. (continued)

trajectories all wind around the torus the same number of times (two
are shown in Figure 23b). Every other one is an attractor; the alternate
ones are repellors. Each clock has to decide which way to go to fall in
line with the other. This is frequency entrainment (not necessarily
phase entrainment). This braid is structurally stable; further small per-
turbations of the system make no significant change in the phase por-
trait. Huyghens’s seventeenth century observation of frequency and
phase entrainment of the pendula of clocks on a wall provides an
example of coupling self-sustained oscillators with mutual or re-
ciprocal influence.

Returning to the more asymmetrical case having a dominant en-
forcer (such as a motor) coupled weakly (as by a light spring) to a
submissive enforcee (maybe some type of mechanical clockwork), it is
useful to enlarge the 2D torus model of the state space to a 3D ring
model (Figure 24a). First shown for the uncoupled situation (Figure
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Figure 22. Forced hard spring. (a) response diagram: response curves for different forcing
amplitudes; (b) cusp catastrophe: the forcing amplitude is given its own axis yielding a
3D response diagram; (c) third ultraharmonic: winding ratio is 3:1; (d) third subhar-
monic: winding ratio is 1: 3; (e) winding ratio is 3 : 2. Rotation number and harmonic ratio
are synonyms; and (f) toroidal winding never repeats; the winding ratio is irrational (from
Abraham & Shaw, 198288, © Aerial).

24b), the 2D phase portrait for the driven clockwork is now filled with
trajectories instead of consisting of the 1D single-limit cycle alone. The
inner part of the basin contains a repellor in the center and trajectories
spiraling outward to the limit cycle. The outer part of the basin con-
tains trajectories spiraling inward to the limit cycle. The state space for
the driving motor is the 1D horizontal ring representing the cycle of
phases again (longitudinal axis of the torus).

In the Poincaré section or strobe plane, we would see a trajectory
(discrete or strobed) approaching a point (which could be considered
the section of the limit cycle) as a series of points as the trajectory
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Figure 23. Forced self-sustained oscillators: 2D torus model: (a} the horizontal ring repre-
sents the driving oscillator; the vertical ring represents the driven oscillator; and (b) the
coupled system considered as perturbation of uncoupled system; alternate closed trajec-
tories are cyclic attractors and repellors; there are no other limit sets; this kind of phase
portrait is called a braid; and the axes at the right are the phases of the two clocks {from
Abraham and Shaw, 1982—88, © Aerial).

successively crossed the plane while spiraling in or out toward the
limit cycle. This is shown for the weakly coupled, in-phase, iso-
chronous case in the three-dimensional model (Figure 25a). If we set
the clock with the motor out-of-phase, at clock phase m, trajectories will
drift forward or backward into phase, on the torus, toward the in-phase
limit cycle just described. Other nearby trajectories from both the inner
and outer regions spirally approach this out-of-phase limit cycle. So
this is a saddle-type limit cycle, with nearby trajectories first approach-
ing the periodic saddle, before their departure (Figure 25b) along the
attractive torus to the entrained in-phase cycle. The torus is shown
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Figure 24. Forced self-sustained oscillators: 3D ring model. (a) the 1D vertical ring of the
driven oscillator is replaced by a 2D V vs. X plane; and (b) oscillators before being
coupled; the torus is an invariant manifold; it is attractive, but not an attractor; every
trajectory starting on it stays there; others approach it {from Abraham & Shaw, 1982-88).
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Figure 25. Forced self-sustained oscillators: 3D ring model (continued). (a) oscillators
coupled showing isochronous trajectory; in-phase case; the periodic trajectory is an
attractor; and (b) periodic out-of-phase saddle attracts amplitudes but repels phases as
ribbon arrows show (from Abraham & Shaw, 1982-88, © Aerial).

again not as an invariant manifold but just as a construction to assist
visualization of the phase portrait.

Somewhere in between the two limit cycles, the in-phase periodic
attractor and the out-of-phase periodic saddle, there will be a central
repellor, a periodic trajectory winding around its own noninvariant
locating torus (Figure 26). Its outset is the central portion of the basin of
the periodic attractor. So where is the invariant manifold for the attrac-
tive limit cycles of this dynamical system? It is the torus described by
the outset of the periodic saddle as the saddle and periodic attractor
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Figure 25. (continued)

wind (braid) around each other on that torus (Figure 27). The insert
shows this torus in cross-section as a dotted circle and as the shaded
torus in the main figure. It is therefore established that this phase por-
trait has at least three isochronous periodic trajectories: the braided
saddle and attractor and the central repellor. This compound oscillator
has been presented so far for equal or nearly equal frequencies in the
two oscillators.

The Response Diagram for Frequency Changes. We may vary the
frequency of the driving oscillator above and below the isosynchronous
frequency and plot the maximum amplitudes of the three periodic tra-
jectories as a function of the driving frequency (Figure 28). This may be
done with coupling springs of different strengths as a second control
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Figure 26. Forced self-sustained oscillators: 3D ring model (continued): coupled os-
cillators showing isochronous trajectory; out-of-phase case; this periodic trajectory is a
repellor shown winding around its locating torus; its outset (ribbon arrows) comprises
the central portion of the basin of the periodic attractor; this central repellor lies located
somewhere in between the two limit cycles, the in-phase periodic attractor, and the out-
of-phase periodic saddle (from Abraham & Shaw, 198288, © Aerial).

parameter. Consider first the results for the weakest spring represented
by the innermost circle and lowest dotted line near the bottom of the
figure. The solid line of the top of the circle shows the maximum
amplitude of the periodic attractor that diminished as the driving fre-
quency deviates more from the isochronous frequency. The dotted line
of the bottom of that same circle shows the simultaneous variation of
the maximum amplitude of the periodic saddle that is increasing as the
driving frequency deviates more from the isochronous frequency.
When the two amplitudes become equal, for that and greater deviations
of frequency, they cease to exist! This is the periodic annihilation ca-
tastrophe, and this response diagram shows an example of a cata-
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Figure 27. Completed phase portrait of forced self-sustained oscillators. Composite of
braided periodic attractor and saddle on invariant torus with central repellor; solid cir-
cles in strobe plane are on locating tori; dotted circle represents invariant torus (from
Abraham & Shaw, 1982-88, © Aerial).

strophic bifurcation. The bottom dotted line represents the diminishing
amplitude of the period repellor that does not annihilate at these fre-
quencies. For the strongest spring (the Q-like response diagram), the
saddle may cancel either the attractor or the repellor; for smaller devia-
tions in frequency, the saddle and the repellor disappear, but the peri-
odic attractor remains; when the deviations are great, the attractor and
saddle disappear.

Bifurcation is one of the most important topics in the theory of
dynamical systems and the one that makes it so relevant to complex



" Basic Principles of Dynamical Systems 81

IAl

LY \\ Semmm” ,/ II
A N 7
N N ’ /
\\ ~o e /
h? S " /s
\‘ 7
~, U
\‘ V4
\
P N
» ~

-
-

Figure 28. Response diagram of the Van der Pol system: frequency response diagrams for
three different strength springs (from Abraham & Shaw, 198288, © Aerial).

cooperative systems in biology and psychology. Phase portraits that
describe the behavior of a system for a given set of parametric values is
valuable enough, but the ability of the dynamical system to generate
pictures of how the attractors undergo sudden reorganization through
bifurcations, as control parameters make small transitions across crit-
ical threshold values, gives visual dynamics its great usefulness as a
scientific modeling strategy. A dynamical scheme is the dynamical
system as a function of a control parameter. The response diagram is
the picture of the scheme, just as the phase portrait is the picture of the
dynamical system. The response diagram is the primary map in the
applications of nonlinear dynamics. The topics of chaos and global
behavior further extend this analysis from the classical systems consid-
ered so far, into the modern era of applications to biological and psy-
chological systems.

Before proceeding to these topics, we’ll conclude with final clas-
sical examples of the Van der Pol model for the case of the forced
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electrical oscillators. This model has a periodic attractor, a periodic
repellor, and a periodic saddle. It has a periodic attractor even if the
coupling strength between the oscillators is zero. If either the capaci-
tance or inductance in the circuit is negative, the periodic attractor
shrinks to a point in a classical bifurcation. With capacitance, induc-
tance, and the coupling strength all positive, many important bifurca-
tions have been observed. The equations are shown in Appendix B3.

It may now prove interesting to explore the sleep system involving
forced circadian oscillators (p. 127).

Characteristics of Limit Points and Cycles

Liapounov’s characteristic exponents and Poincaré’s characteristic
multipliers characterize some important geometric properties of limit
sets and the behavior of their nearby trajectories. These and the related
concept of the hyperbolic nature of limit sets are important for the
understanding of generic and stable features of limit sets features that
relate to their general rather than their idiosyncratic interest.

Index, Characteristic Exponents, Hyperbolic Limit Point,
and the Spectrum

The index of a critical point of a dynamical system is the dimension of
its outset. A characteristic exponent (CE) of a critical point of a dynam-
ical system is a complex number that measures the rate and character of
approach and departure of nearby trajectories with respect to the crit-
ical point. It measures the strength of attraction or repulsion in a given
direction and the rate of spiraling. (A complex number N takes the form
N = a + bi where a is the real part and bi is the imaginary part. They are
often plotted on the complex plane with the vertical axis being the
imaginary axis and the horizontal being the real. In trigonometry
the vertical component of an angle is the sin and the horizontal is the
cosine, so a complex number is strongly related to trigonometry as
N = cos ¢ + i sin ¢, and thus their usefulness for describing cyclic
activity. Algorithms of linear algebra are required to assess CEs.) In
general, the number of CEs of a critical point will be the same as the
dimension of the state space.

A limit point is hyperbolic if none of its CEs has a zero real compo-
nent. Otherwise it is nonhyperbolic. The set of CEs pictured in the
complex plane comprises the spectrum of the critical point. The phase
portraits of some exemplary attractive, repulsive, and saddle-type hy-
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Figure 29. Characteristic exponents for hyperbolic limit points in 1D phase portraits. 1st
row: strong repulsion; 2nd row: weak repulsion; 3rd row: weak attraction; and 4th row:
strong attraction (from Abraham & Shaw, 1982-88, © Aerial).

perbolic limit points (with index and CEs) are shown for the one-, two-,
and three-dimensional cases (Figures 29, 30, 31).

The index for the one-dimensional case is 1 for repellors and 0 for
attractors. In this context there is only one CE for a critical point, a real
number. The graphs of the vectors as a function of displacement are
shown also. Note the positive slope in the case of repellors and the
negative slope in the case of attractors (Figure 29). The CE is this slope.
The CEs are greater for higher rates of repulsion and attraction.

The indexes for the two-dimensional case again follow the dimen-
sionality of the outset, for example, unity in the case of the saddle
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Figure 30. Characteristic exponents for hyperbolic limit points in 2D phase portraits
(from Abraham & Shaw, 1982-88, © Aerial).

(Figure 30). The CEs are in the right half-plane for the repellors, the
negative half-plane for the attractors, and there is one of each for the
saddle (positive for the outset; negative for the inset). For the nodal
points, the CEs are real numbers, but for the spiral limit sets, they are
conjugate complex numbers (symmetrical about the horizontal real
axis). The size of the real component indicates the strength of attraction
(left, negative) or repulsion (right, positive), whereas the imaginary
component indicates the rate of spiraling. The three-dimensional case
can be seen to be composites of these one- and two-dimensional condi-
tions with three CEs (Figure 31).
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Figure 31. Characteristic exponents for elementary hyperbolic limit points in 3D phase
portraits. Part 1. attractors of indices 0 and 1; and part 2. attractors of indices 2 and 3
(from Abraham & Shaw, 1982—88, © Aerial).

Poincaré Sections, Index, Characteristic Multipliers,
and Hyperbolic Limit Cycles’

The characteristic multiplier (CM) of a limit cycle is an extension of the
idea of the characteristic exponent (CE) for a critical point. It is a mea-
sure of the rate at which: a trajectory approaches or departs the limit
cycle. Remember that the trajectories approaching or departing a limit
cycle (e.g., Figure 18) can be strobed in a hyperplane perpendicular to
the trajectory (Figure 20—-26), called the strobe plane, or Poincaré sec-
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Figure 31. (continued)

tion (Rayleigh attributes such strobing originally to Plateau, 1836). For
those examples, the state space was three dimensional; the strobe plane
was two dimensional. For now, consider the state space two dimension-
al and the strobe plane one dimensional. In this context there is one
CM, a real number. If you were to plot the closeness of the trajectory to
the limit cycle as a function of the closeness on the previous pass of the
trajectory through the section, then the characteristic multiplier (CM)
would be the slope of this function at the limit cycle (Figure 32).
CMs can be classified (Figure 33). The CM is between =1 if the
limit cycle were attractive; greater than +1 or less than —1 if it were
repulsive. It is positive when the trajectory remains on one side of the
attractor in the Poincaré section; negative if it alternates between op-
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Figure 32. The first return map: start at a point x in the strobe section S above P and
follow its trajectory as for the Van der Pol system; this trajectory follows around near the
limit cycle; eventually, it passes through the section S again at R(x), the first return, closer
to P as the limit cycle is attractive (from Abraham & Shaw, 198288, © Aerial}.

posite sides of the attractor in the Poincaré section as if on a Mobius
strip. If the CM is equal to +1, then the limit cycle is nonhyperbolic, a
center where all trajectories are closed orbits cycling on themselves
such as with the frictionless pendulum, buckling column, and com-
petitive species (Figures 11, 15a, 17a). The CM cannot be 0 or infinite.
The index is the dimension of the outset, seen within the strobe plane.
Here, it is 1 for repellor and 0 for an attractive cycle.

3-D Limit Cycles

In general, there is one less dimension for the Poincaré section than the
state space, and one CM for each dimension of the Poincaré section. So
for the three-dimensional case, such as Duffing’s model that included
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Figure 33. Characteristic multipliers for limit cycles in 2D state spaces (from Abraham &

Shaw, 1982-88, © Aerial).

repellant, attractive, and saddle-type limit cycles (Figure 27) there is a
two-dimensional strobe plane and two CMs. For the saddle-type limit
cycle (or periodic saddle), one CM, greater than 1 (or less than —1)
represents the outset (Figure 34, middle row), and other CM, between
—1 and +1, represents the inset. The CMs are represented on the com-
plex CM plane on which the unit circle is shown. CMs inside the circle
represent attractors; those outside represent repellors. The nodal limit
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Figure 34. Characteristic multipliers for elementary limit cycles in 3d state space (from
Abraham & Shaw, 1982—-88, © Aerial).

cycles (Figure 34 middle three rows) have real CMs (on the horizontal
axis); the spiral limit cycles (top and bottom rows) have complex
components.

You may have noted a relationship between the CE plane of the 3-D
point limit sets and the CM plane of the 3-D periodic limit sets. The CM
plane is polar, with the magnitude of the CM representing the strength
of attraction or repulsion, and the angle characterizing the degree of
spiraling. The CM plane corresponds to the exponential of the CE plane
(Figure 35).
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Step 1. Map the horizontal axis of the CE plane onto the positive half
of the horizontal axis of the CM plane, using the natural exponential
function. Note that zero is mapped to one.
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Step 2. Wrap the vertical real axis of the CE plane around the unit circle
of the gM plane. Linear measure becomes angular measure on the
unit circle.

Figure 35. Correspondence of the characteristic multiplier plane to the characteristic
exponent plane (from Abraham & Shaw, 1982-88, © Aerial).
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Step 3. Horizontal lines in the CE plane are mapped into rays in the
CM plane, radiating from the origin. Vertical lines in the CE plane are
wrapped around concentric circles in the CM plane. No point in the
CE plane goes to the origin of the CM plane.

repu (sive

repu/si ve

Note .The attractive and repulsive regions of the CE plane are mapped
onto corresponding regions of the CM plane.

Figure 35. (continued)
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Chaotic Attractors

Periodic attractors, like musical instruments, may have harmonics.
Their power spectra are discrete, with positive values at frequencies
that are integral multiples of the fundamental frequency, corresponding
to shorter periods. Real dynamical systems are more likely not to be so
perfect. The attractors may be noisy, involving orbits confined to re-
gions in the state space that are not exact points or cycles but that
nevertheless have definite periodicities and geometric structure. Their
power spectra may be continuous, for example, 1/F noise or white
noise. The discovery of chaotic attractors gave impetus to the move
away from linear univariate experimental designs, within which one is
destined to throw away most of the variability encountered in experi-
mental measurement as random noise and to explore the use of dynam-
ical systems as a way of reducing many-variate systems to elegant
fewer-variate models that would represent the structure inherent in
such variability. Thus we turn now to seeing how some historical cha-
otic attractors characterized such complexity.

Some Classic Examples

Homoclinic Tangles: Poincaré’s Solenoid. These are chaotic limit
sets of saddle type and are not always attractors. Although they are too
complex to depict adequately in this brief presentation, a couple of
their features help to introduce this topic. This solenoid could be con-
sidered to be like an infinite coil of wire (Figure 36a). The cutaway
shows its Poincaré section as intersecting planes of insets and outsets,
which are thickened curves with an infinite number of pieces. The
intersections of inset planes and outset planes form trajectories of sad-
dle type.

If you consider a pair of these trajectories and their inset and outset
planes (Figure 36b that shows these planes as twisting strips), note that
the inset of one intersects with the outset of the other, creating two new
saddles and departing trajectories that return to the point of departure.
Thus the term homoclinic. Poincaré despaired this complication. An
infinite set of these saddle-type trajectories, some closing upon them-
selves around the solenoid and some never closing, comprise the com-
plicated chaotic limit set of saddle type known as Poincaré’s solenoid.
It serves not only as an introduction to chaotic attractors but because it
occurs in the forced Van der Pol system that is commonly used as a
model for many forced coupled oscillators in nature (e.g., circadian), it
is thus very relevant for psychological and biological modeling.
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Figure 36. Poincaré’s solenoid. (a) Poincaré section of Poincaré’s solenoid; and (b) homo-
clinic saddle intersection of inset and outset planes; the saddle cycle completes two
revolutions before closing; likewise the inset and outset planes, each of which twists like
a Mobiiis strip (from Abraham & Shaw, 1982—88, © Aerial).
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BirkhofP’s Bagel. This was discovered studying the classic forced
Van der Pol oscillator (Birkhoff, 1932; Cartwright & Littlewood, 1945;
Charpentier, 1939, 1946; Holmes, 1977; Levinson, 1944; Shaw, 1980). A
driving oscillator operates at a high frequency relative to the driven
oscillator (e.g., 2:1). In the Poincaré strobe section, it will take many
passes of the trajectory through the plane to characterize this strobe
section of the attractor that appears like a continuous closed curve of
Birkhoff instead of the single point of an isochronous system or a few
points of an harmonic (Figure 37).

The most interesting feature of this curve is that you can’t predict
exactly the long-run future of a trajectory from knowing about a trajec-
tory starting from a nearby initial point. Errors are amplified. This
apparently random nature, along with the relative complexity of the
attractor, has given rise to descriptive terms such as strange and chaot-
ic. Changing the strobing phase completes the ring model, and the bagel
emerges. As the phase around the bagel progresses, beaks appear, elon-
gate, and become pleats pressed flat against the surface. The bagel
consists of an infinite number of pleats pressed flat against the thick-
ened toroid, giving rise to its fractal microstructure, characteristic
of known chaotic attractors, and associated with its unpredictable
behavior.

‘(5)_| | & G}

®y ® 0

n

10 ® ©)

Figure 37. Birkhoff's bagel: Poincaré sections at different phases of the driving oscillator
{from Abraham & Shaw, 1982-88, © Aerial).
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Figure 38. Lorenz’s mask (from Abraham & Shaw, 198288, © Aerial).

 Lorenz’s Mask. Lorenz attempted to model air currents in the at-
mosphere, as represented by a sea of Bénard cells packed in a hex-
‘agonal lattice, using a dynamical system derived from fluid dynamics.
‘Using computer simulation, he found an interesting attractive object
{Figure 38) in this 3D system. The object is strictly determined, but its
‘trajectories are highly erratic, orbiting one hole for a while, then jump-
ing to the other. Its chaotic behavior dismayed Lorenz who had hoped
‘to use it to predict the weather.

Rossler’s Band. Inspired by Lorenz, Rossler created a simpler sys-
tem in 3D. The successive crossings of a trajectory through the strobe
‘plane seem to fuse in the Poincaré section as an arc. Changing the phase
‘of the strobe plane to view progressively around the ring model reveals
Réssler’s band (Figure 39a). Like the bagel and the mask, it, too, has a
thickened surface, a fractal microstructure, and limited predictability
.of the attracted trajectory. These attractors have highly diverse applica-
tions, and many others may yet be found. Unpredictability means that
small differences between trajectories at one point in time may be am-
‘plified to very large differences significantly later, as we now describe.

Characteristics of Chaos

Unpredictability and Sensitivity to Initial Conditions. A the-
oretical system, such as the Duffing oscillator or the Rossler band, is
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Figure 39. Rossler’s attractors: (a) Rossler’s band: an area of trajectories in a strobe plane,
x, has expanded after the first return of those trajectories to area R(x); they continue to
expand; and (b) Rossler’s funnel (from Abraham & Shaw, 1982-88, © Aerial).

strictly deterministic. If you know its position in the state space pre-
cisely at any given time, you can predict exactly its position at any
other time. However, running simulations on mechanical or electronic
devices or measuring properties of real systems in nature involves
problems of resolution and uncertainty. Thus the exact position at any
given moment can never be known exactly. Furthermore, the di-
vergence property of chaotic attractors ensures that a small difference at
any given moment in the position of two trajectories will be amplified
by exponential growth and will become a large difference at a later
time. This is called sensitive dependence on initial conditions (Ruelle,
1980).
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If you are told only which half of the state space the system is
currently in, you have precious little information (1 bit in information
theory, which measures in base 2 logarithms). But if you are told exactly
the point the system occupies, you have infinite (all the) information
about its current condition. In experimental practice, you normally
know that the system is within a small region, such as the small area in
a strobe plane (x shown in Figure 39). That region contains many trajec-
tories, and if they are followed approximately one cycle, when they
next pass through the strobe plane, they describe a larger region (R(x) in
Figure 39). Thus there is a loss of information about the future. Pro-
ceeding iteratively, there is continued information loss; continued
spreading of the recurrence map, R. This is the meaning of unpredict-
ability in the context of chaotic attractors: Any small error in the mea-
surement of the current state eventually leads to ignorance of the posi-
tion of the trajectory within the attractor in the future. You know it’s in
the attractive region and can characterize its motion, but you can’t
predict exactly where it will be at any given moment.

Divergence and Information Gain (Shaw, 1984). Similarly, the di-
vergence of trajectories leaving a repellor implies a loss of information
at a later time compared to measurement at an earlier time. A new
measurement at the later time would then imply a gain of information
because if we now extrapolate backwards in time from the new mea-
surement, we get convergence or contraction, a smaller area than
yielded by the initial measurement made at that time, using the same
measuring instruments. We gain information about the initial state.
Thus diverging flows provide increasing information about initial
states in the past. Information is gained about the past.

Conversely, near a point attractor, the flow of trajectories converge.
Here earlier distinct points eventually become indistinct experimen-
tally, and extrapolation backwards tells us nothing about initial states.
Thus converging flows provide decreasing information about past ini-
tial states. Information is lost about the past.

Expansion, Compression, and Characteristic Exponents. Near cha-
otic attractors, divergence and convergence (expansion and compres-
sion), occur simultaneously. How can this apparent paradox of simul-
taneous compression to the attractor and expansion along the attractor
be the case? How can there be continued expansion within a bounded
region? Remember the periodic saddle in 3D (Figures 21, 34, and 36). It
attracts in some directions (near trajectories approach) and repels in
others (near trajectories depart). Also remember that the chaotic attrac-
tors consist of thick surfaces (from an infinite number of surfaces
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packed closely together). Each trajectory is saddlelike, with the attrac-
tive direction crossing the thick surfaces, and with the repelling direc-
tion tangent to the surface. Thus there is convergence toward the attrac-
tor and divergence along it, saddlelike. If you try following separate
trajectories around the Rossler band, for example, you can follow this
divergence for a while (Figure 39), but, of course, they stay in the
bounded attractor, as repeated folding prevents global expansion. The
outsets of the repelling trajectory remain within the attractor itself. This
leads us to a closer examination of the microstructure of this thick
surface.

Fractal Microstructure. To view the microstructure, a Poincaré sec-
tion is made, revealing repetitive folding of a surface into infinitely
many layers of the thick surface of the attractor (Figure 40a). But it’s not
quite the multiple U-folding of a line either. To get a better view, cut the
Poincaré section with another plane perpendicular to it (Figure 40b),
the Lorenz section, and examine the trajectories at the line of intersec-
tion (Figure 40c).

The number of dots representing the trajectories crossing is infinite
but reveal a definite pattern. This pattern is not known exactly but
appears to be as if created by a Cantor process, which could be imag-
ined as the successive decimation of a line, as by iteratively removing
middle thirds or middle fifths (Figure 40d). The remaining segments
are examples of a Cantor set. Expanding these dots into the layered
planes represents the thick surfaces of the attractors, and the Cantor
nature of the layering, which is called the fractal microstructure of the
thick surface. There are many useful measures of the complexity of this
fractal microstructure, such as the fractal dimension. The study of the
relationship between these measures of fractal dimension and the CEs
measuring divergence of trajectories along the attractor is an active area
of investigation. But this is where the diverging trajectories go, that is,
into the infinite complexity of the microstructure within the thick sur-
face of the attractor.

Noisy Power Spectra. Chaotic attractors yield noisy power spectra
with varying degrees of periodicity evident depending on the attractor.
The spectrum contains less information than the phase portrait or the
time series. Nonetheless, it may provide clues to assist in identifying
appropriate dynamical models. A summary of exemplary attractors,
their phase portraits, time series, and power spectra are shown in Fig-
ure 41).
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Global Features

Global generic features of dynamical systems are important as they
relate to the stability of the system. We discuss but a few of them here.

Generic Local Properties

Typical, garden-variety, dynamical systems possess generic properties.
For example, here are a couple of these generic properties: A dynamical
system has property G1 if all of its critical points are hyperbolic. (Recall
Figures 29-31 for definition and examples). These are points that have
no CEs on the imaginary axis. Several types of elementary critical
points can coexist in a given system (Figure 42a). A dynamical system
has property G2 if all of its limit cycles are elementary (hyperbolic).
These are cycles that have no CMs on the unit circle. (see Figures 33
and 34 for definition and examples.) A braid with several limit cycles
on the 2D torus is an example (Figure 42b).

Transversality and Tangles

Transversality is a property of a saddle connection existing at the inter-
section of the outset of a saddle (donor) and the inset of a saddle
(receptor). The trajectory comprising this connection may be hetero-
clinic (the donor and receptor are different) or homoclinic (from a saddle
to itself). Transversality means that the intersection must be between
two planes that cross each other as cleanly as possible (e.g., the intersec-
tion may not be tangential). In the heteroclinic case in 3D, these condi-
tions can be met only from saddle points of index 2 to saddle points of
index 1 or to saddle cycles, or from saddle cycles to saddle points of
index 1 or saddle cycles. These are the four heteroclinic generic saddle
connections in 3D (Figure 43). In the homoclinic case, the only generic
(transverse) connection is with a saddle cycle. Homoclinic connections
are very important features of a phase portrait. No transverse connec-
tions are possible in 2D. Heteroclinic intersections are always quite
complex and are often referred to as tangles. Some chaotic attractors
may be dissected into tangled outsets. For example, the Lorenz mask is
a chaotic attractor in 3D with three saddle points: two donors of index 2
with spiral outsets and a receptor of index 1 with a nodal inset.
Consideration of heteroclinic intersections leads to a third generic
property, G3, which requires that all such connections be transverse.
Note that in 2D, G3 can be satisfied only if there are no saddle-to-saddle
connections. (The model of the frictionless buckling column had ho-
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Figure 40. (continued)

moclinic trajectories violating property G3, whereas the model of the
dissipative buckling column satisfied property G3, see Figures 15c and
15d). In 3D, G3 is satisfied only in the four heteroclinic cases (Figure
43) and the one homoclinic case. Note that the connections of the
generic saddle cycles, like the generic saddle points, are hyperbolic.

Structural Stability and Peixoto’s Theorem

Topological equivalence of two phase portraits means there is a home-
- omorphism (continuous “rubber sheet” deformation) of the state space

Figure 40. Fractal microstructure: (a) Poincaré sections of Rossler’s attractor showing the
apparent folding and layering of the thick attractive surface; (b) Lorenz section cutting
through the Poincaré section; (c) Lorenz section rotated showing dots as cross-sections of
trajectories within a layer of Réssler’s band; the number of dots is infinite but follows a
cantor or fractal process of iterative decimation of filling (infra); and (d) Cantor’s process
of iterative decimation, removing the middle third of the line segments progressing
downward (rules other than that of the middle third process may be used) (from Abraham
& Shaw, 1982-88, © Aerial).
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Figure 41. Summary (from Abraham & Shaw, 1982-88, © Aerial).

that maps one of the portraits to the other, preserving the arrow of time
on each trajectory. A deformation of a dynamical system is simply the
adding of a weak vector field (a delta perturbation) to the original one;
if the result is topologically equivalent within a specified deviation,
epsilon, then there is epsilon equivalence.

A dynamical system (vectorfield) has the property S of structural
stability if all delta perturbations of it have epsilon-equivalent phase
portraits. That is, the addition of some other vectorfield does not affect
the system in any significant way (Figure 44a). Dynamical systems in
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Figure 43. Heteroclinic saddle connection in 3D; possible donors include hyperbolic
saddle points and cycles; of the nine possibilities, the four in the lower right are the
generic ones (from Abraham & Shaw, 1982—88, © Aerial).

2D are structurally stable because they possess generic properties (G1-3
and some others), as stated by a famous theorem of Piexoto (1961).
Systems violating these properties are unstable, and the addition of a
small perturbation changes the system significantly. For example, a
center is notoriously unstable. Only very weak friction or drag is re-
quired to change the models of the buckling column, the fish popula-
tions, or the rings of Venus (Figures 15, 17, 44b).

Bifurcations

As we have seen, a dynamical system is a vectorfield representation of
the habitual tendencies of some variables to change. It may be repre-
sented visually or by differential equations. In either case, its phase
portrait may be constructed by laborious integration. Such systems
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Figure 44. Structural stability: (a) a center may be perturbed into either a point repellor or
a point attractor, depending on the inclination of the perturbation; (b) generic properties
ensure structural stability (from Abraham & Shaw, 1982-88, © Aerial).

usually contain some parameters, and the phase portrait maintains a
particular structure as long as the parameters remain fixed. Some of
these parameters may be subject to control in an experimental situation
and hence are called control parameters. A dynamical system with
control parameters is called a dynamical scheme. Often the phase por-
trait changes in an insignificant fashion with changes in the control
parameter over some small range of their values, but major changes
may suddenly occur. The phase portraits become topologically noncon-
jugate, nonequivalent. These significant changes are called bifurca-
tions. The configurations of the attractors as a function of the control
parameters are summarized in a response diagram. The response dia-
gram is the important map of a dynamical scheme, just as the phase
portrait is the useful map of a single dynamical system. Generally, a
response diagram may be built by piecing together maps of atomic
events (generic bifurcations) provided by mathematical theory. Mathe-
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A

Figure 45. Response diagrams of creation and annihilation: (a) creation of a static attrac-
tor, its basin, and a cyclic saddle which is a separatrix between the two basins (going from
left to right on the horizontal control parameter), or their annihilation (going from right to
left); and (b) creation of a periodic attractor and repellor outside of original cyclic attrac-
tor within a repellor (left to right along control parameter; annihilation going from right to
left; the cyclic repellors are actual separatrices; the central point repellor is a virtual
separatrix) (from Abraham & Shaw, 1987, © Plenum Press).

maticians are now trying to classify the generic bifurcations that may
occur in response diagrams. Here are some known generic bifurcations
with one control parameter. There are three types: catastrophic, subtle,
and explosive.

Catastrophic Bifurcations

Catastrophic bifurcations occur when a limit set appears or disappears,
out of or into the blue, so to speak. There are three types, depending on
the type of attractor created: static, periodic, and chaotic.
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Figure 45. (continued)

Creation and Annihilation of a Static Attractor. This form of cre-
ation applies to the appearance of a new static attractor within a basin
as a control parameter changes. It might occur within the basin of a
point attractor. (Figure 45a). As the control parameter changes, the
locus of these points and their trajectories may change a bit, and then
suddenly, a second attractive point with its own basin and separatrix
appears. The moment of occurrence is called the bifurcation point in
the control space. The event may be called static creation or the fold
catastrophe. When the control parameter is changed in the reverse
direction, there is a corresponding disappearance of the attractive point
that is called annihilation. In this event, the attractive point drifts
toward the saddle point in its separatrix, collides, and vanishes into the
blue along with its separatrix and basin!

Creation and Annihilation of a Periodic Attractor. Analogously,
there could initially be a periodic attractor within a basin bounded by a
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periodic separatrix on the outside and a repelling point (virtual sepa-
ratrix) on the inside. As a control parameter changes, there is the cata-
strophic appearance of a second periodic attractor outside the first one,
and there is a periodic separatrix between them occurring at the bifur-
cation point (Figure 45b). This is but one possibility for the creation of
an oscillation. Running the control parameter in reverse annihilates the
second attractor, separatrix, and basin.

Creation and Annihilation of a Chaotic Attractor. This is the cata-
strophic appearance of a chaotic attractor. For example, there might be
two Réssler bands in 4D, an attractor and a saddle. The inset of the
chaotic saddle bounds the basin of the chaotic attractor, a fractal sepa-
ratrix. Changing the control parameter can result in annihilation, as the
attractor drifts toward the saddle and collides.

Subtle Bifurcations

With subtle bifurcations, an existing attractor changes rather than ap-
pearing out of or disappearing into the blue. The type of the attractor
may change or stay the same (see Table 2 and Thompson & Stewart,
1986).

Excitation of an Oscillation. A point attractor in 2D destabilizes, as
its CE is crossing the imaginary axis. At the bifurcation point, a tiny
periodic attractor is born that grows in amplitude a the control param-
eter continues to change. (Figure 46). It is also called a Poincaré-
Andronov-Hopf bifurcation, or, more commonly, a Hopf bifurcation.

There is a possible application in learned behavior under interval
schedules where the control parameter might be the variability of the
reinforcement—reinforcement interval (going from random to fixed). If
the appearance of scalloping in the cumulative response recording
(change in the interresponse times from fairly equal to systematically

Table 2. Type of Subtle Bifurcation (Attractor Type
Following Bifurcation Event)

Type prior

to change Static Periodic Chaotic
Static Hopf Ueda

Periodic Reverse Hopf Octave jump Excitation of chaos

Neimark
Chaotic Reverse Ueda Relaxation of chaos
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Figure 46. Poincaré—Andronov—-Hopf bifurcation: the point attractor on the left bifurcates
to a periodic attractor located on the parabolically expanding cone on the right; the cyclic
repellor remains outside the attractor as an actual separatrix; the point repellor appears at
the bifurcation and is a virtual separatrix (from Abraham & Shaw, 1987, © Plenum Press).

decreasing as the reinforcement time approaches) were rather sudden
or at least well-behaved, it could represent a change from a static to
periodic condition.

Excitation of Braids. Excitation of a torus occurs when a periodic
attractor in a 3D basin destabilizes, through a transit of its CMs through
the unit circle. A thin, attractive torus is emitted by the limit cycle,
which becomes a central repellor within the new torus. The amplitude
of the torus increases parabolically as the control parameter continues
to change. On the attractive torus is a braid of periodic attractors. These
fluctuate among many different, topologically inequivalent types of
braids (Figure 23b) immediately after the creation of the torus. This
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multiple bifurcation event, sometimes called a Neimark bifurcation,
includes a Cantor set of bifurcation points in the control space. Such
bifurcation events are also called thick bifurcations. This bifurcation
could provide a model for the genesis of Saturn’s braided rings.

Octave Jumps. The octave jump is another example of a subtle
periodic catastrophe (Figure 47). Changing embouchure tension on a
brass mouthpiece, larynx tension in yodeling, or exhalation strength on
a flute mouthpiece are common examples in music. Period doubling
and subharmonics have appeared in frequency-driven visual evoked
potentials (Makeig & Galambos, 1982) and EEG frequencies as well.
Many common behavioral cycles involve frequency and period
doubling. ‘

Excitation of Chaos. This is a class of bifurcations in which a
simple point or periodic attractor becomes a chaotic one, or one kind of
chaotic attractor becomes another. Remember, this is how Rob Shaw, in
analog simulation, first showed the Birkhoff Bagel while playing with
the ring model for the Van der Pol forced oscillator creating the pleats
that folded onto the torus (Figure 37). Before the bifurcation, there is a
braid of periodic attractors on the torus, and afterwards they become
lost amid the thick toroidal chaotic attractor. Another example is that of
octave cascades (periodic excitations). Successive period doubling and
subharmonics are eventually followed by the onset of chaos, a situa-
tions that seems to have been observed in the stimulation of cardiac
cells (Guevara, Glass, & Shrier, 1981) and dopamine neurotransmission
(King, Barchas, & Huberman, 1984). Many other scenarios for the subtle
excitation of chaos have been established.

Figure 47. The octave jump: a single periodic attractor on the Mobiiis strip with rotation
number 1 bifurcates to a two cyclic attractor with rotation number 2 and with a cyclic
repelling separatrix between its lobes (from Abraham & Shaw, 1982-88, © Aerial).
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Figure 48. Explosive bifurcation: the outset of the saddle point forms a virtual separatrix
in the basin of the point attractor below it; the saddle and attractor converge at the
bifurcation point as the control moves to the right, with the point attractor taking over the

- loop of the separatrix as a cyclic attractor; a point repellor in the center is also a virtual
separatrix (from Abraham & Shaw, 1982-88, © Aerial).

Explosive Bifurcations

These occur with a sudden change in magnitude, such as a small attrac-
tor suddenly becoming large. A prototypical example is a point attrac-
tor that explodes into a periodic attractor (Figure 48).

Hysteresis

Hysteresis occurs in a response diagram with multiple bifurcations of
the catastrophe type. The original example, due to Duffing, has two
folds. Moving the control parameter back and forth creates a “hys-
teresis loop” in the response trajectory (Figure 49). Examples of hys-
teresis are encountered in classical psychophysical measurement, es-
pecially with the method of limits. Hysteresis commonly occurs with
catastrophic bifurcations, rarely with subtle or explosive bifurcations.

‘Bifurcations with Two Control Parameters

The cusp catastrophe is the best known example (Figure 22b) of bifur-
. cations with two control parameters. The bifurcation diagram for the
static cusp catastrophe (Figure 50) shows a one-dimensional portrait
(vertical line) with two point attractors and a point repellor in between
' them, if both control parameters are in the area of the cusp and but one
attractor is elsewhere. Hysteresis occurs. There is an analogous peri-
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Figure 49. Hysteresis loop: as the knob starts on the left, the focal point attractor is high
but jumps down as it gets to the bifurcation point; moving the control knob from right to
left, the attractor jumps back up, but at a new bifurcation point to the left of the one for the
right-going series (from Abraham & Shaw, 1987, © Plenum Press).

Figure 50. Static cusp catastrophe: the state space is 1D (vertical); the horizontal control
plane is 2D; the resulting response diagram is thus 3D; within the cusp there are two
point attractors separated by a point repellor; outside the cusp there is only one attractor;
a frontal plane within the cusp displays the hysteresis loop of the double fold (from
Abraham & Shaw, 1987, © Plenum Press). .
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odic cusp catastrophe in which a periodic attractor bifurcates into two
periodic attractors and a saddle cycle whose inset is a separatrix for the
basins of the two attractors (as in Figure 34). There is an 8D multicusp
model with nice visual reduction of dimensionality for personality and
affect (Callahan & Sashin, 1987). Many more generic bifurcation events
are known, whereas many remain to be discovered. This should prove
especially fertile territory for psychology and psychobiology.

Complex Dynamical Systems and Self-Organization

The extent to which dynamical systems theory may be applied to
model complex natural systems remains to be seen, but there are some
obvious possibilities. In general systems theory, it is common to ana-
lyze a complex system by breaking it down into a hierarchical network
of simpler interacting systems involving various possibilities of cou-
pling and feedback (Figure 51, 52). If each component system is mod-
eled by a dynamical system with its own control parameters and re-
sponse diagrams and these are coupled by mappings from states at one
node to controls at another, the result would be a complex dynamical
system. If a system influences its own control parameters, that is. self-
iregulation or self-control or self-organization. Feedback loops of great-
{er length or complexity could occur in such networks. A system with a
‘Hopf bifurcation under the influence of a periodic control parameter,
‘whether under external control or self-regulated, would exhibit a pat-
tern of periods of static equilibrium alternating with exponentially in-
;‘creasing oscillations, a pattern commonly found in living organisms.
{Parabolically bursting neurons, regular spindling in EEG, activity and
‘behavior cycles, are common examples. The involvement of subtle and
.catastrophic periodic bifurcations likewise seems to abound from bio-
chemical, to physiological, to psychological levels, along with less
‘well-understood examples of bifurcation sequences including static,
period, and chaotic attractors.

Applications and Strategies in Psychobiology

‘The application of dynamical theory ranges from the loosest meta-
phorical level, through the application of previously developed models
to new empirical domains, to the development of entirely new models.
The interactive process between theory and experiment when dynam-
ical systems are under investigation suggests supplementation of typ-
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Figure 51. Complex dynamical systems: networks. (a) serial coupling diagrams (horizon-
tal lines are control spaces; vertical lines are state spaces; simplified version at right); and
{b) parallel coupling diagrams (a third control simultaneously influences both systems)
(from Abraham & Shaw, 1987, © Plenum Press).

ical research strategies in psychology and social science or the innova-
tion of new strategies to reveal dynamical systems and schemes, state
spaces and bifurcations, as they evolve over time. Much of the re-
mainder of these volumes are dedicated to this effort (see especially
chapters by the Millers, Levine, and Tetrick); only the briefest introduc-
tion is included here to illustrate the dynamical approach and to offer
some very simplified examples.

Consciousness and Transcendence
We hesitate to enter into the rich and personal domain of consciousness

with a mathematical metaphor, and, in fact, the domain is much too
rich to explore here. There are two aspects of this metaphor, both
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Figure 52. Self-regulation (alias self-control and self-organization): (a) dynamical system
whose control parameter depends on the state of the system (from Abraham, Abraham, &
Shaw, 1990, © Aerial); and (b) networks of complex dynamical systems with self-organi-
zational feedback (from Abraham & Shaw, 1987, © Plenum Press).

important, but one much more profound. The first is to note analogies
between the nature of consciousness and features of dynamical sys-
" tems. Examples abound. William James, a contemporary of Poincaré,
used examples of nonlinear physical systems to argue for saltatory
steps (bifurcations) in the evolution of consciousness and for the emer-
gence of conscious phenomenon from their neurophysiological sub-
strates (1890). He considered consciousness as personal, continuous,
constantly changing and never recurring exactly, able to identify ob-
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jects separate from itself, and choosing from among its parts. There is
the hint of basins, attractors, even chaotic attractors, and bifurcations.

Consciousness . . . flows. A “river” or “stream” is the metaphor by which it
is most naturally described. ... Let us call it the stream of thought, of
consciousness, or of subjective life (1890, p. 237).

In a remarkable passage describing this stream as something of a cross
between a Lévy flight (clusters of short flights punctuated by long ones)
and a relaxation oscillator (the faster and slower portions being rele-
vant here), consisting of

resting places the “substantive parts” and the places of flight the “transitive
parts,” . . . Now it is very difficult, introspectively, to see the transitive parts
for what they really are. If they are but flights to a conclusion, stopping them
to look at them before the conclusion is reached is really annihilating them.
Whilst if we wait till the conclusion is reached, it so exceeds them in vigor
and stability that it quite eclipses and swallows them up in its glare. Let
anyone try to cut a thought across in the middle and get a look at its section,
and he will see how difficult the introspective observation of the transitive
tracts is. (1890, pp. 243-244)

Despite his justifiable skepticism, we could call such a cut a James’s
section. In the 1930s, holistic psychology did formally discovery dy-
namical systems in the field theories of Lewin (1935) and Brown
(1936). In field theory, goals of the organism were considered as point
attractors, a point of view that ignored a great deal of mental subject
matter by restricting spaces to that of goals and organisms moving with
respect to those goals. It also got into knotty debates over teleogy. One
of the great advantages of dynamical theory is to free biological model-
ing from the hegemony of Bernard’s homeostatic point of view. There is
a place for it, of course, but systems can grow, evolve, play, and love to
gain information. Dynamical theory can handle both. Rossler (1986) has
emphasized this advantage:

Autonomous optimizers are dynamical systems that pursue goals in time
and space, can be coupled, and are subject to interactional bifurcations.
They are intelligent mathematically, can be implemented on simple, modu-
lar, parallel-processing hardware, are potentially immortal, and are bi-
cameral like Zeus and Koko (Fraiberg-Lennenberg autism). A symmetry-
breaking interactional bifurcation generating Mead symmetry (and con-
sciousness in the sense of J. Jaynes, 1976) is a possibility worth exploring:

Among the many things he is saying is a reminder that the control
spaces in modeling the mind could include optimizers. Pickenhain has
recently (1984, 1988) recalled how Bernstein (1929) and Anokhin
(1978) used feedback network goal optimizers in their modeling of
motor control. Abraham has proposed dynamic schema for mind and
memory that feature hierarchical coupling of resonant brain oscillators
(macrons) independent of specific cellular neural networks (1985).
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Abraham et al.’s (1973) speculations on the interactions of wave and
unit events in the brain suggest a possible mechanism for such reso-
nances (the evolution of EEG cospectra and coherence spectra are also
given in a canonical state space following a major perturbation in brain
function). Adey (1975) has pursued a similar concept of the effect of
waves on units for many years, more recently extending the inquiry to
molecular and ionic levels with nonlinear and Davydov soliton model-
ing (Lawrence & Adey, 1982).

The second, and more profound, aspect of the dynamlcal mind
metaphor relates to self-awareness, self-control, and self-transcendence.
These are stated so eloquently in the Bhagavad-Gita (Chapter II):

The Veda'’s concern is with the three modes of nature. Become free of these
three modes, O Arjuna, free from dualities, firmly fixed in purity, free from
anxiety for possessions or safety, and he possessed of the Self. (Verse 45) But
one who is self-disciplined, who moves with self-control among the objects
of sense which are freed from attachment and aversion, attains grace (the joy
and wholeness of pure consciousness). (Verse 64} One who has not estab-
lished any self-control has no intellect or steady power of concentration,
and thus no peace nor happiness. (Verse 66) As a ship is swept away on the
water by a strong wind, so too is the intellect carried away when the uncon-
trolled mind is governed by the wandering senses. (Verse 67) What is dark
night for most beings, therein is awake for the self-controlled; what is awake
for most, is night to the wise. (Verse 69)

These verses are, among other things, about turning the mind on itself,
and in so doing changing itself. Much of the Gita, and much of Eastern
philosophy concerns the use of meditation and introspection to explore
consciousness, to gain control of it, a process that it considers more
important than life itself. The Callahan-Sashin model (1987) includes
control parameters among its 8D structure; they suggest giving the ther-
apist control of some of them for the correction of affective disorders.
Eastern philosophy and now much of Western psychology places em-
phasis upon the individual’s gaining insight and control of the pro-
cesses of consciousness directly (Abraham, 1987) for normal healthy
mental development and for the betterment of self and society (Abra-
ham, 1975, 1988) and ecological harmony with the environment. And
speaking of harmony, much of Bhuddist meditation makes use of music
and rhythm. It seems that it is no accident that music, mind, medita-
tion, mathematics, brain, and the universe have resonated and devel-
oped together (Abraham, 1986). And it is hopeful that we see all of
them evolving to ever greater states.

Godel (1931) showed that paradoxes and tautologies could result
in formal systems and logical languages when allowed the luxury of
self-reference, which therefore must be denied them. Does dynamic
modeling transcend these limitations? Will it fulfill its potential for
describing self-organizational dissipative systems—those systems in
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which “. . . fluctuations play a central role . . . [forcing] . . . the system
to leave a given macroscopic state and lead on to a new state” (Pri-
gogine, 1976, p. 93) in which self-awareness and self-modification are a
normal part of the control? We feel that dynamical theory is a part of the
system, language, conscious process being modeled; that there is no
boundary between the more formal aspects and the transcendent prop-
erties and that both consciousness and mathematics are synergistically
evolving dynamically together as a bifurcating stream.

Dynamical Model of Psychological States

This is a simple model, unabashedly contrived as a didactic exercise
illustrating some features of one mode of model construction. That
mode is borrowing a simple model from an established application in
one discipline and mapping variables and parameters from the new
discipline fairly directly onto those of the existing model. Here the old
model is that of the damped oscillator of the buckling column. Because
many psychological systems behave as damped oscillators, it seems
reasonable to explore the model of the buckling column as a gener-
alized starting model for many of these systems.

Some potential target psychological systems for this exercise might
include altered states of consciousness, emotional or mood swings
(manic-depressive cycles when extreme), altered personality states
(from normal variations to schizophrenic), and attitude changes of all
sorts. This new discipline isn’t so new really because it belongs to the
heritage of the theory of cognitive spaces of Lewin (1943) and Brown
(1936). It was inspired by the dynamical model of attitude change of
Kaplowitz, Fink, and Bauer (1983), and Kaplowitz and Fink (Vol. 2,
Chapter 14).

More specific potential systems drawn from many literary, philo-
sophic, and psychological sources may be found in a remarkable and
scholarly compendium, Maps of the Mind, by Hampden-Turner (1981).
For example, in his Map 14, “The Divided Self: Jean-Paul Sartre to R. D.
Laing,” he summarizes aspects of Sartre:

"Existential being refers to a continuous dynamic flow of consciousness-
through-action (praxis). . . . Interpersonal relationships were a perpetual
struggle to assert the fluidity of our own existence against persistent at-
tempts to objectify us.

There is “no exit,” . . . from the viscious circle (Huis Clos) of proffering
in “bad faith” false versions of ourselves. (p. 60)

And aspects of Laing:

The process of becoming schizophrenic begins with split or schizoid
functioning. Persons ontologically insecure, that is those who have not been
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allowed to experience themselves as continuously related to the world by
moral action, may split themselves into two systems, a system of false selves
presented as a mask to the world, and an inner self of authentic experience
not revealed to others.

Schizoid organization is a question of degree. When I offer my true,
embodied self to others for acceptance or rejection there is existential anx-
iety . . . [and so I] seek relief in the fabrication of false selves designed to
gain acceptance.

Contemporary psychiatry [has] made a false objectification of psychic
states. Patients seeking help find themselves further petrified by the view-
points of psychiatry.

Patients can be helped back to a fusion of their subjective experiences
with the social realities seen by others, only if these true selves are first
accepted as legitimate bases to build upon.

When the continua of whole-part, subject-object, separation-rela-
tionship are cloven in a divided self, then all split-off ends are pathological,
mutually excitatory, and wildly oscillating, the turned-on-hippie and the
buttoned-down automaton alike, and both can only be healed by the integra-
tion of their extremities.

In the light of such models as catastrophe theory, Laing’s work takes on
renewed importance and the concept of a widening, catastrophic splitting
in mind and behaviour, with jumps or oscillations between, becomes much
more than a metaphor and is capable of mathematical expression and three-
dimensional representation.

In his Map 16, “Left, Right and Centre: The View of Silvan
Tompkins,” he summarizes:

The basic ideological cleavage between, [hu]Man is a valuable end in
[her/}himself (Left) and the valuable exists independent of [hu]Man, who
should conform to it (Right), can be used to generate several derivative
propositions.

The Left is more comfortable in the realm of feeling, especially interper-
sonal affections which are the roots of fraternity and equality. The Right
fears that affection among people might hinder norm attainment, but gener-
ally approves of feelings when expressed towards objects symbolizing the
norm.

It is therefore necessary to ask whether Left or Right ideologies are a
sufficient basis for political life or learned disciplines, . . Thomkins suggests
that the ideological centre may be the true repository of creative change-
plus-continuity. He cites Kant who reconciled the subjective with the objec-
tive, rebellion with authority, and passion with discipline.

The Centre, so defined would not be a faint-hearted compromise be-
tween Left and Right, nor a hostile juxtaposition of extremeties which goad
one another, but a movement between the poles which encompasses their
extremities while reconciling both within a single process.

Perhaps the best models are parliamentary democracies where conflict
exists within the context of cooperation, dissent within loyalty, private
conscience within public accountability, open persuasion within secret bal-
loting, freedom within the law, and Left-wing changes within Right-wing
continuities (see Map 58). It is a process of learning which moves from outer
to inner in a cycle of eternal return. Ideologist should beware lest they
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become obsessed with one arc of a circle, having failed to appreciate the
whole. (Italics and brackets added)

Hampden-Turner cites many other examples of cognitive systems
in which oscillation occurs, including Papez-MacLean’s limbic system
with its emotional polarities of “rage-fear, fight-flight, pleasure-pain,
expectation-actuality, tension-relaxation, etc.” (Map 22), Leary and Cof-
fey’s model of Sullivan’s dynamisms (Map 34), and the moral structures
of Osgood’s semantic differential and its societal extensions by
Hampden-Turner (Map 43). Also, Bateson’s cybernetic—schismogenetic
views and their application to alcoholism (Map 48), and their extension
to schizophrenia, authoritarianism, and mental health by Jackson,
Haley, Weakland, Sanford, and Hampden-Turner (Maps 49-51). Alco-
holism has, in fact, been modeled as a dynamic system (Goliike, Lan-
deen, & Meadows, 1983) in the general systems theory approach of
Bertalanffy-Forrester (used also in Chapters 1, 5, 9, 10, 11, 12, and 13,
Volumes 1 & 2). Lévi-Strauss’s cognitive—social-mythical systems
{Maps 57-58) and its extension to a program of social change are also
oscillatory “cybernetic system[s] of figure ground reversal.” They are
reconciliatory in the Zen-like embracement of opposites, making them
vulnerable to “run away and go into a catastrophic revolution.” The
ancient philosophy of Tao as evolved to the Yin-Yang of T’ai Chi (Map
3) he summarizes, “But the symbolism is less polarized than unified.
Life is a rhythmic movement among opposites, a timeless ebb and flow
in vibrating wave patterns.” In addition to those models in which os-
cillation is explicitly recognized, many involve bipolar cognitive di-
mensions on which oscillation could be expected to occur, such as
Williams’s psychoreligious struggles (Map 5), Freud’s instinctual-ener-
gy dimensions (Map 9), Jung’s dynamic unities (Map 10), Fromm’s
growth—decay dimension (Map 11}, and so on.

In most of these models, bifurcations resulting from increases in
environmental and personality stress factors lead to cyclic attractors
displaying underdamping of oscillations between extreme values. Such
attractors represent unhealthy personal and social systems. Learning
and development constitute damping factors (control parameters) that
are responsible for bifurcations leading to static or damped periodic
attractors representing a balance within normal limits between oppos-
ing values. Such attractors represent a healthy system. His is a most
eloquent plea that wholesome balance is a dynamic and mature state of
affairs, not a tepid compromise. His survey should give one a good
survey of the richness of material available for exploration. Although
we pick one now as an example for application, the real advances will
be made when the application of dynamic modeling not only helps
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such models to mature but helps to reveal the rich commonality among
them. Hampden-Turner recognizes this potential for synthesis in his
summary of many applications of catastrophe theory to psychological
and social systems (Map 56).

So now we pick one of these candidates, the right—left—center
model of Tomkins, leaving the Laing or any of the others as an exercise
for the reader. In this model we assume that there is some swaying back
and forth along a disciplinary—ideological dimension, such as holistic
humanism versus behavioristic reduction in psychological theory, or
along a political-ideological dimension, such as individual liberty ver-
sus authoritarian conformity. This dimension may reside cognitively in
an individual, estimable by some type of psychological probe, or so-
ciologically in a population, estimable by some type of population
measurement. The ideological position and its rate of change are the
principal variables in the system.

One of the main parameters might represent perceived social pressure
or other environmental demands to deviate from a central position inde-
pendent of the direction, right or left, of the demanded deviation. It would
be analogous to the weight on the buckling column; psychologically a
weighting, importance, relevance, or amplification factor (R in Figure
53, also Appendix B4). Some psychologists might be passionate opera-
tional behavioral modifiers but disinterested in politics, and some cit-
izens might be pussionate about the behavior of their government but not
of their scientists, and both might be interested in the educational style
of their children’s schools but not so interested in drug testing in profes-
sional sports. The greater the weighting factor, the greater the amplitude
and rate of swaying and the deviancy of the final position, right or left, if
“buckling” occurs; the smaller the weighting factor, then the less the
amplitude and rate of swaying and the deviancy of the final position.

One’s position may be pushed and pulled ideologically right or left
by two types of forces, one emotional, the other intellectual (LE, LI, RE,
and RI in Figure 53). Emotional forces may be given greater weight by
making the accelerative coefficients of a term of the third power of the
ideological position a function of them, while making the accelerative
coefficients of the linear term of the ideological position a function of
the intellectual forces. These accelerative forces are also a function of
two other forces. One is a stiffness or centralizing tendency opposing
the importance factor and tending to send the individual to a central or
near-central position (S in Figure 53). The other is a decentralizing or
uniqueness tendency opposing the centralizing tendency (U in Figure
53). These forces represent a safe, tension-reducing, return-to-center
tendency on the one hand, and a tendency to move away from the
center to a less safe position, a deviation-from-center tendency. Addi-
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Figure 53. Tompkins left-right—center ideological paradigm. (Forces acting on the sys-
tem: LE, left emotional; LI, left intellectual; RE, right emotional; RI, right intellectual; S,
stiffening or centering; U, unique or individualizing; R, relevant.) (From Abraham, Abra-
ham, & Shaw, © 1990, central part of figure is by Dave Fernandez, from Maps of the Mind
by Hampden-Turner, © and courtesy Hampden-Turner & Beazley).

tionally there is a damping coefficient that combines with the rate of
change of position to affect acceleration.

A basic model, that is, its ODEs given in Appendix B4, will behave
pretty much like the buckling column (Appendix B1 and Figures 23—
24). There are two sources of biasing a final position away from center,
which the general model of the buckling column shown did not have.
One is the possibility of differential magnitude of the restorative emo-
tional and intellectual forces attached to each noncentral position. An
equivalent feature could be given the buckling column if it were made
of a sandwich of two bonded leaf springs of different strengths. This
would be equivalent also to saying that there were built in biases to-
ward the left or right. Even with a weight less than the critical buckling
value for the importance of that ideological dimension, the resting state
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Figure 54. Phase portrait of ideological system showing right bias (I, right—left ideological
dimension; I', rate of change of I. basin for right focal point attractor greater than that for
the left that defines bias) (from Abraham, Abraham, & Shaw, 1990, based on Abraham &
Shaw, 1982—88, © Aerial). ‘

would be off center. The portrait would look like an asymmetrical ver-
sion of that for the buckling column (Figure 54; compare to Figure 15d).

Contingent Operant Behaviors

Operant behaviors are those that are performed under specific environ-
mental conditions that are rigged to change after the occurrence of the
response (an arrangement called “reinforcement”). In operant learning,
response probabilities change over time as a joint function of these
contingencies (associative factors) and several state variables (drive or
regulatory factors) of the animal (Abraham et al., 1972). In some cases,
the environmental change that is contingent upon the occurrence of the
response provides the opportunity for another (contingent) response,
which in turn is followed by another environmental change. Transla-
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tion: One response may reinforce another. The rat presses the bar (in-
strumental response), food is delivered, a consummatory response oc-
curs (the contingent response), and sensory consequences to that
follow.

Premack (1969) sought essential parameters of reinforcement exist-
ing between such pairs of instrumental and contingent responses. He
suggested that the different responses could be considered as existing
hierarchically along a continuum of response probability. He made an-
other very interesting proposition. Any pair of responses could be con-
sidered as existing in a Lewinian “life space” that we could construe
more simply as a state space having two dimensions representing the
probabilities for each response. He proposed that the reinformement
value of any response was proportional to its probability and examined
how the velocity vectors of a point in the space were different when the
contingencies were introduced, when the probabilities were indepen-
dently manipulated, and when the contingencies were reversed. Rais-
ing the base rate of say, pinball playing, could give it the ability to
reinforce eating candy, whereas candy eating might lose its ability to
reinforce pinball playing.

One of the really exciting aspects of this work was that it was
counterintuitive. It demanded adjustments to major theories of learning
and even countered conventional empirical wisdom, to wit, that bio-
logically driven rewards such as food were considered more potent
than sensory rewards resulting from manipulatory, exploratory, and
other behaviors. Although many experiments have shown some con-
straints upon these generalizations since the inauguration of this ex-
perimental paradigm, it has provided a base for further theoretical
work, some using dynamical approaches.

One such model, based on drive-regulatory (homeostatic, equi-
librium) rather than associational features of learned performance, sug-
gests the use of the difference between current and baseline states for
each response as key components in the nonlinear, coupling terms in
the differential equations of the dynamical system (Hanson & Tim-
berlake, 1983):

I' = b(C, — O)I - I/(a,1,)
C' = —(1/b){I, - I)C — C/(a,C,)

where
I is some measure of the strength of the instrumental response,
C is some measure of the strength of the contingent response,
o, the subscripts that label the baseline value (set points or
homeostatic balance points) of each response,
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a is a resistive coefficient for each response, and

b is an amplification factor for the linking or coupling

component.

So, the rate of change in the instrumental response is proportional to
the product of the current level of that response and the difference
between the base and current levels of the contingent response, being
positive when the current level is below the base level, and negative
when the current level is above the base level. It is diminished by the
ratio of the current level to the base level of the instrumental response
itself. This ratio is larger the greater the current level, and smaller the
greater the base level. The relative importance of each of the two com-
ponents of the equation is controlled not only by the current and base
levels of the two responses but on the constants a and b characterizing
the response system. Similarly, the rate of change in the contingent
(relatively constrained) response is proportional to the same type of
cross-coupled term and linear term, but now the cross-coupled term is
negative if the current instrumental level is less than the baseline level,
positive when it is greater. Further, the amplification factor, b, which
made the coupling term and the rate of change greater (when b > 1) for
the instrumental response, is inversely diminishing the influence of the
coupling component for the contingent response (unless b < 1).

So how does this system behave? Note that these are mass action
equations, very similar to those we saw for ecological populations. But
here we have response competition rather than population competi-
tion. The state spaces consist of two-dimensional plots, the instrumen-
tal response as a function of the contingent response, the dimensions
being some measure of the strength of the responses (probability, rate,
duration). Because we have mentioned that the simplest population
model yielded an unstable center (Figure 17a) but that the addition of a
small perturbation might shove the system to a more stable static or
periodic attractor (Figure 17b,c), we therefore might expect such attrac-
tors here. Interestingly, though, this model is more complex, having a
saddle at the origin, and retaining the unstable center in the upper
right-hand quadrant, its locus depending on the experimentally deter-
mined coefficients (Figure 55). An example from their own experiments
where a; = .013, a, = .10, b = 96, I, = 8.4, and C, = 84.8, the center of
the center is at (19.7, 84.8). Besides the retention of this instability, this
model illustrates a couple of other obstinate features. One, its stiffness,
common in behavioral systems, seemingly caused mainly by the re-
ciprocal use of the coefficient b, sorely taxed the resolving power of our
simulation program, Dynasim (Abraham, 1984), until the equations
were rescaled. Think of stiffness as numerical awkwardness created by
the wide numerical range of the coefficients. The other feature is that
the trajectories are not confined to positive values despite the fact that
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Figure 55. Contingent operant behaviors: phase portrait (I, time spent on the instrumental
response; C, time spent on the contingent response) (From Abraham, Abraham, & Shaw,
1990, © Aerial).

the behavioral measurements obviously must be. Either the coefficients
or the measurements need corrective transforming to translate the
space and measurements to conform to each other, or the phase space
could be clipped, but that would complicate interpretation.
Nonlinearites have had a long, liberalizing, but nonetheless per-
plexing refractory influence on the reductive, linear, equilibrium ap-
proach of the historical mainstream of behavioral analysis. Terms like
induction (Pavlov, 1927; Segal, 1972), contrast (Skinner, 1938), elation
and criss-cross Crespi effect (Crespi, 1942), contrast and interaction
(Catania, 1961, 1963) suggest that when learned response systems are
coupled they often display nonlinear dynamics. We could further sug-
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gest that learning generally involves nonlinear dynamics. One-trial
learning (Abraham, 1967; Estes, 1960; Guthrie, 1930; Voeks, 1954; even
Skinner, 1938) could be considered a dynamic reorganization, a cata-
strophic bifurcation, rather than a random stochastic event. And Hull
(in a letter quoted in Hilgard & Marquis, 1940) stated, “As I see it, the
moment one expresses in any very general manner the various poten-
tialities of behavior as dependent upon the simultaneous status of one
or more variables, one has the substance of what is currently called
field theory.” And while in the behaviorist tradition and cast in the
language of hypotheoretico—deductive theory the use of which he pi-
oneered in Psychology, he described learning and the performance of
learned behavior in a series of coupled differential equations (Hull,
1943), that could easily be recast into modern dynamical format. We do
not mean to imply that the drive reduction and equilibrium approaches
of Hull and Hansen and Timberlake are necessarily correct, and in fact,
prefer the contiguity approaches of Guthrie, Voeks, and Estes (Hull
himself confessed to Voeks of leaning that way also) but are suggesting
that the dynamical systems approach could yield an elegant approach
to learning theory.

Coupled Circadian Oscillators

It has not been uncommon to model coupled circadian oscillators (see
note 7, Czeisler et al., 1986). One such model has considered two prin-
cipal mutually coupled Van der Pol oscillators, one a more fundamental
endogenous circadian pacemaker, x, reflected in core temperature mea-
surements, and a second more labile one, y, reflected in sleep—wake
activity cycles (Gander, Kronauer, Czeisler, & Moore-Ede, 1984; Kro-
nauer, Czeisler, Pilato, Moore-Ede, & Weitzman, 1982). These may en-
train to environmental exogenous drivers such as the sun, called
zeitgebers, z. The couplings between x, y, and z may vary so that they
may show varying degrees of independence. The differential equations
for one of their models are:

X' +u, (-1+x)x' +e?x]+F,__,y =0
V' +u, (m1+y3)y +o,y] +F,__ x"=00rF,_ .,z

where o is frequency, u is internal oscillator stiffness, and the F’s are
coupling forces. This model entrains y to z; y thereby mediating z’s
influence on x. A principal experimental paradigm removes the effect
of z and observes a gradual decline in w (increase in length of the
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circadian cycle). Garfinkel and Abraham (1985) applied the visual dy-
namical approach to see if features of this model might be made clearer
than the use of the traditional raster plots. The state space is a 2D torus.
The phase portraits of the model (collapsed into a planar format visu-
ally) for successive 25-day segments of the 100-day-long experiment
exhibit dramatic changes (Figure 56). The response diagram shows the
bifurcation points as the braids on the torus change under the influence
of the decline in w, (Figure 57).

SLEEP-WAKE

|
{
DAYS 51-75 DAYS 76-100

Figure 56. Coupled circadian oscillators freerunning with zeitgebers removed (from Gar-
finkel & Abraham, 1985, and from Abraham, Abraham, & Shaw, 1990, © Garfinkel and
Aerial).
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ACTUAL TRAJECTORY SEEN
IN SIMULATION

BIFURCATION POINTS AT WHICH
ORBIT CHANGES FROM ONE
BRAID TO ANOTHER

Figure 57. Response diagram of coupled circadian oscillators with frequency of the
activity oscillator, w,, as the control parameter; the attractors bifurcate between different
braids with complex winding ratios or chaotic orbits, but the trajectory is making a
smooth, albeit complex, flight during the progression (from Garfinkel & Abraham, 1985,
and from Abraham, Abraham, & Shaw, 1990, © Garfinkel and Aerial).

The model of coupled Van der Pol circadian oscillators already
existed, of course. The benefit of adding the generalization of using
dynamical system theory has been merely to relate it to the general
concept of dramatic reorganization within the context of a dynamical
scheme as revealed visually using the phase portrait and response dia-
gram. These models have direct clinical as well as theoretical and ex-
perimental application, as in the suggested use of light as a zeitgeber in
sleep disorders (Czeisler et al., 1986; Czeisler & Allan, 1987; Sinclair,
1987).

The neuroendocrine system provides many other examples of cou-
pled circadian oscillators to which dynamical systems theory has been
successfully applied (Réssler, Gotz, & Rossler, 1979). In particular, the
hypothalamic, pituitary, gonadal systems involving LH (luetenizing
harmone) (Abraham, Kocak, & Smith, 1985; Smith, 1980) and adrenal
systems ACTH/Cortisol (Abraham & Garfinkel, 1986) have been model-
ed. The LH model uses complex dynamical schemes, a serial network
(hypothalamus—pituitary—gonad) with parallel short (pituitary—hypo-
thalamus) and long (gonad—hypothalamus) feedback between dynam-
ical schemes connected by piecewise linear functions (Sparrow, 1981).
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This complex dynamical scheme exhibits catastrophic, subtle, and ex-
plosive bifurcations including static, periodic, and chaotic cusp catas-
trophes. It also provides a model for intermittency and noise amplifica-
tion in a serially coupled system. Using age as a control parameter, it
has been used to model puberty as a Hopf bifurcation. Its clinical rele-
vance includes control of ovulation. The cortisol model is a bit more
sophisticated biologically in including secondary messenger and
ligand/receptor systems and experimentally in suggesting efficient
hardware/software realizations. Although still somewhat biologically
simplistic, these models probably represent some of the more interest-
ing and useful applications of dynamical systems theory in psycho-
biology and hopefully serve as metamodels for the application of such
theory to research on complex psychobiological systems.

Neuropsychobiological Models

At a more metaphorical level, there have been a few examples of dy-
namical concepts applied to neurochemical, pharmaclological, and
electrophysiological bases of behavior (Basar, Basar-Eroglu, Rosen, &
Schutt, 1984; Ehlers & Havstad, 1982; Freeman & Skarda, 1985; Makeig
& Galambos, 1982; Mandell, Russo, & Knapp, 1982). More explicit mod-
els, now classics, are those of Zeeman (1977) on neuronal excitability
and behavior. Some other contemporary examples include investi-
gation of the fractal dimensionality of EEG (Mayer-Kress & Layne,
1987; Watt & Hameroff, 1987) and evoked potentials (Réschke & Basar,
1987).

One of the most original and innovative applications investigates
nigrostriatal dopaminergic (DA) control of neuronal firing rates as a
substrate to behavioral stability under schizophrenia (King, Barchas, &
Huberman, 1984). There are four differential equations involving vari-
ables of neuronal firing rates and concentrations of nigral and striatal
stored and released DA. Parameters include those related to short and
long feedback loops, external depolarization of nigral input, and vari-
ous synthesis, release, degredation, and reuptake constants. The non-
linearities derive mainly from a second-order relationship between DA
synthesis and the firing rate of the DA neurons. The system exhibits
several periodic bifurcations and a chaotic one and a cusp catastrophe,
and sensitivity to initial conditions. We are currently running some
simulations on this model using their original equations instead of
their reduction to a single logistics equation. This system is being in-
vestigated with in vivo voltammetry (Justice, Nicolaysen, & Michael,
1987). We hope to see this model extended formally to include second-
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ary messenger dynamics at one end, and to include additional behav-
iors at the other end (Aranow, 1987).

Strategies

We hope we have illustrated that mathematics and psychology are in
the midst of a chaotic catastrophe of their own, converging in a tur-
bulent period from which we will see emerging a new era of scientific
maturity. Both fields are increasingly attempting to model complex
cooperative systems evolving through multiple modes of dynamical
equilibrium. Philosophically, we hope they provide powerful meta-
phors upon which to predicate paths to creative, fulfilling, and produc-
tive society and the protection of individual rights of its members (F. D.
Abraham, 1975; R. Abraham, 1981). Scientifically, we hope to see a
revolution not only in this convergence of the cooperation of mathe-
matics and science but a revolution in the nature of experimental de-
sign in the behavioral sciences. Just as the elegant Markovian models of
the learning process led to increased use of within-subject dependent
variables, so should the current theorizing that also stresses temporal
sequences in behavior. The use of factorial and related designs may
have to subjugate themselves to experiments that stress starting at a
great number of different initial conditions and collecting many such
varied replications to reveal phase portraits and attractors, especially
multiple attractors, and under several parametric conditions in order to
pin down bifurcation points of dynamical schemes. Greater respecta-
bility will accrue to the smaller n designs typical of psychobiology,
notoriously shakey compared to the large n designs typical of purely
behavioral research; their tightness will come in producing more com-
plete trajectories and in developing inferential tests of the parameters
characterizing limit sets, characteristic exponents, characteristic multi-
pliers, and fractal dimensionality. Another revolution that might be
anticipated is the increased incorporation of on-line control of experi-
mental independent variables by the model in response to the reading
of dependent variables (Abraham, Betyar, & Johnston, 1968; Abraham et
al., 1973; Abraham, 1976; Garfinkel & Abraham, 1985).

Finally, although naturally no approach will hegemonically rule
scientific progress, those of us enthusiastic about the dynamical the-
oretical approach forsee its attractiveness providing a more common
language for a growing community of scientists, an observation made
by Staddon (1984) for the field of psychology who felt that some the-
oretical controversies lay in communication failures deriving from
models that were too idiosyncratic. As champions of individuality, but
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enthusiasts of the dynamical approach, we feel assured that increased
use of the approach will be characterized by individuality and scien-
tific multiplicity.

Appendices

A. Glossary

Actual separatrix. Separatrix that forms a boundary between basins.

Annihilation. A catastrophic bifurcation in which an attractor
disappears.

Attractor. Irreducible limit set to which all nearby trajectories tend.
Attractors may be static, periodic, or chaotic.

Average velocity vector. Bound vector divided by the time it takes for
the trajectory to go from the first to last point.

Basin. A region of the state space containing all the trajectories that
tend to a given attractor.

Bifurcation. When a phase portrait changes dramatically, qualitatively,
into some topologically nonequivalent form as some control pa-
rameter moves past a bifurcation point.

Bifurcation point. A value of a control parameter at which a bifurcation
occurs.

Bound vector. A vector from one point to another.

Braid. A finite number of closed trajectories, alternately attractive and
repelling, winding around a two-dimensional torus.

Cantor set. An infinite set of points on a line taken by iteratively deci-
mating equally spaced intervals such as the middle third of each
remaining segment.

Catastrophic bifurcation. A bifurcation where a limit set suddenly ap-
pears (creation) or disappears (annihilation).

Center. A nest of closed trajectories around a central rest point.

Chaotic attractor. Attractor comprised of a chaotic limit set.

Chaotic limit set. Limit set that is neither a point nor a cycle.

Characteristic exponent. A complex number that measures the rate and
character of approach and departure of trajectories with respect to
a limit point.

Characteristic multiplier. A complex number that measures the rate
and character of approach and departure of trajectories with re-
spect to a limit cycle.

Closed orbit. Closed trajectory or limit cycle.

Closed trajectory. A trajectory that closes upon itself. A closed orbit or
limit cycle.
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Complex dynamical system. A hierarchical network of simpler in-
teracting dynamical systems involving various possibilities of cou-
pling and feedback.

Constant trajectory. A trajectory that stays within a single point (which
must be a critical, fixed, or rest point).

Control parameter. A parameter in a dynamical system that may be
varied, changing the dynamical system. Its change past a critical
value, the bifurcation point, may be responsible for a bifurcation.

Converging flows. Trajectories that converge. For example, as toward a
fixed point attractor.

Creation. A catastrophic bifurcation in which an attractor appears.

Critical point. A state at which the velocity vector is zero. A rest point.

Cusp catastrophe. A three-dimensional response diagram with a one-
dimensional phase portrait and two control parameters. There is a
region within the bifurcation set (the cusp curve), with two point
attractors and a point repellor in between. There is a single point
attractor elsewhere. There is a catastrophic bifurcation (called a
fold) as the control parameters cross the cusp.

Cycle. Periodic trajectory. Oscillation. Limit cycle.

Deformation. The addition of a weak vectorfield to a dynamical system
with usually only minor consequences in its phase portrait.

Differentiation. The process of deriving the instantaneous velocity vec-
tor. The limit of the average rate of change of a variable. The limit
of difference ratios between states and time as time shrinks. The
reverse of integration. Differentiation of the phase portrait pro-
duces the vectorfield.

Differential equation. An equation that expresses the rate of change of a
variable.

Divergent flows. Trajectories that diverge. For example, as from a point
repellor.

Donor. The saddle from which a saddle connection departs.

Double fold catastrophe. A response diagram with one control param-
eter in which there is a region where there are two point attractors
with hysteris (direction of change in the control parameter) deter-
mining which of the two bifurcation occurs. Outside the region of
the double fold, there is but a single attractive point. A model for
hysteresis.

Dynamical scheme. A dynamical system with control parameters.

Dynamical system. Technically, the vectorfield. More loosely applied
to a system and the information adequate to produce its vector-
field. Also, loosely, the integral—differential pair, the phase portrait
and the vectorfield.

Entrainment. Two oscillators are coupled, and one or more parameters,
such as phase or frequency, become identical in both oscillators.
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Epsilon equivalence. A deformation of a dynamical system in which
trajectories remain within a specified distance of each other.
Explosive bifurcation. When there is a sudden change in magnitude of

an attractor.

Fixed point. A critical or rest point.

Fixed point attractor. Attractor comprised of a fixed point.

Fold catastrophe. Creation of a static attractor and a companion
separatrix.

Fractal dimension. A measure of fractal microstructure.

Fractal microstructure. A characteristic of the Cantor-process-like pat-
tern of the trajectories of chaotic attractors as revealed in a Lorenz
section of the attractor.

Fractal separatrix. A separatrix having fractal microstructure. For ex-
ample, the inset of a chaotic saddle or a homoclinic tangle.

Generic. Properties shared by almost all dynamical systems.

Heteroclinic trajectory. A saddle connection for which the donor and
receptor are different saddles.

Homeomorphism. Continuous “rubber sheet” deformation of the state
space.

Homoclinic trajectory. A saddle connection for which the donor and
receptor are the same saddle.

Hopf bifurcation. A subtle bifurcation with a static attractor changing
to a periodic one. The excitation of an oscillation.

Hyperbolic. A limit point is hyperbolic if none of its CEs is on the
imaginary axis. A limit cycle is hyperbolic if none of its CMs is on
the unit circle.

Information gain (increase). The increase of information about past
states with diverging flows.

Information loss (decrease). The loss of information about past states
with converging flows.

Index. The dimension of the outset of a limit set.

Inset. The set of trajectories arriving at a limit set.

Instantaneous velocity vector. The instantaneous rate and direction of
change in the state of the system at a point in time. One exists for
each point on a trajectory and thus for every point in the state
space. The tangent vector to a trajectory.

Integration. The limit of summing the rates of change in state for some
interval of time. Reverses the process of differentiation in returning
the values of states from rates of change information. As differ-
entiation produces the slope or tangent (representing the rate of
change) of some variable as a function of time, so integration pro-
duces the variable as a function of time. Complete integration of
the vector field produces the phase portrait.

Limit cycle. Limit set consisting of a periodic trajectory.
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Limit point. Limit set consisting of a critical point.

Limit set. Special asymptotic trajectories approached or departed by a
trajectory in the phase space. They may be limit points, limit cy-
cles, or chaotic limit sets.

Lorenz section. The pattern of trajectories of a chaotic attractor as re-
vealed by a hyperplane within a Poincaré section. Makes clear the
pattern of layering of trajectories crossing the Poincaré section.

Mass action, law of. Any (ordinary differential) equation in which the
rate of change of a variable is proportional to the product of that
variable and some other variable, such as the concentrations of two
reagents in a chemical reaction, sizes of two populations of cooper-
ating or competitive species, or strengths of interacting behaviors.
May generalize to more than two variables, of course.

ODE. Ordinary differential equation.

Ordinary differential equation. Differential equation where the rate of
change of a variable is expressed as a function of that variable. ODE.

Oscillation. Periodic trajectory. Limit cycle.

Outset. The set of trajectories departing a limit set.

Periodic attractor. Attractor comprised of a limit cycle.

Periodic trajectory. A trajectory that repeats itself endlessly with the
same cycle time; the instantaneous velocity vectors at each point
remain the same through successive cycles.

Phase portrait. The state space, filled with trajectories (only a few rep-
resentative ones are usually shown).

Poincaré section. A hyperplane perpendicular to a trajectory, used to
reveal the pattern of any repeated crossings by that trajectory.

Receptor. The saddle to which a saddle connection goes.

Repellors. Irreducible limit sets from which all nearby trajectories
depart.

Response diagram. Diagrams showing the of bifurcations of attractors
in a phase portrait as a function of the control parameters.

Rest point. Constant trajectory. Critical point. Fixed point.

Rotation number. The ratio of the frequency of a driven oscillator to
that of the driving oscillator.

Saddle. Limit set that some trajectories approach and others depart.

Saddle connection. A saddle-to-saddle trajectory.

Sensitive dependence on initial conditions. Refers to the fact that ina
given chaotic dynamical system, trajectories differing by only a
small amount at one moment (the initial conditions) may diverge
and differ by a large amount at a later time.

Separatrix. Points in a state space that are not in any basin. They may
be actual or virtual.

Spectrum. The set of characteristic exponents of a limit point, or char-
acteristic multipliers of a limit cycle. Also, the power distribution
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function for the frequency transform of a time series, which is
better called the power spectrum.

State. A point in a state space representing the state of a system at a
given moment.

State space. A geometric model for all the possible states of a system.
Euclidian spaces, cylinders, spheres, and tori are frequently used.

Static attractor. Attractor comprised of a limit point.

Static Creation. The fold catastrophe for a point attractor.

Strobe plane. Poincaré section. Named because strobing the trajectory
by a light or an oscilloscope trigger pulse reveals the repeated
crossings of the plane by the trajectory.

Structural stability. The property of a dynamical system whereby all
delta perturbations of it have epsilon-equivalent phase portraits.

Subtle bifurcation. Bifurcation with a sudden change in the type of an
attractor, but in which the magnitude changes gradually.

System. A set of related or interacting variables that change over time.

Tangent vector. The instantaneous velocity vector at any point of a
trajectory.

Tangles. Complex heteroclinic transversal intersections of saddle insets
and outsets.

Time labeling. Labeling a trajectory with time marks or “ticks.”

Time series. A variable that is a function of time. Graphically, time is
the axis for the independent variable (usually horizontal).

Topological equivalence. A homeomorphism between two phase por-
traits, preserving trajectory curves and directions, but not times.

Trajectory. A curve connecting temporally successive states in a state
space.

Transversality. A clean (nontangential) intersection between two
hypersurfaces.

Vectorfield. The collection of all the instantaneous velocity vectors in
the state space. A dynamical system.

Virtual separatrix. Separatrix that lies within one basin.

B. Differential Equations for the Model Systems

1. The Buckling Column

1

X =v
v' = (=1/m) [a;x® + a,x + cv]

I

where
x is the horizontal displacement,
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v is the instantaneous velocity of the column,

m is the mass,

c is a damping coefficient (¢ = 0 for the undamped
frictionless case), and

a, and a, are also constants.

2. The Sustained Oscillator
i"'=v

v/ = (—1/CL) {i + Bv® — Av}
where
i is current, v is voltage, C is capacitance, L is inductance,

and Bv3® — Av is the characteristic function of the tube (A and
B are constants).

3. The Forced Hard Spring

X =v
v’ = (—1/m) [azx® + a,x + cv] + F cos(6)
0 = w.

where

x is the driven displacement,

v is the driven velocity,

0 is the driving phase,

o is the driving frequency,

F is the coupling strength,

a;x3 + a,x, a,> 0 is the restoring force of the spring, and
a; > 0, = 0, < 0 for hard, linear, or soft spring, respectively
(see Stoker, 1950, for details).

4. Dynamical Model of Psychological States for Tompkins’s Left—
Right—Center Ideological Paradigm
x'=v

(—1/R[azx® + a,x + Cv)

VI

I

where
a, = (RI — LI + 2U/S),
a, = (RE — LE + U/S),
x is a position on the right-center—left ideological dimension,
v is the rate of change of that position,
R is the importance or relevance of the dimension,
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C is a linear damping coefficient representing resistance to
change,

LI, LE, RI, and RE are the intellectual and emotional attractive
forces of the Left and Right,

U is the uniqueness force, and

S is the centralizing force.
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