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Abstract. A reaction-diffusion system (such as the models of Fick, Fisher, Kolmogorov-
Petrovsky-Piskunov, Rashevsky and Turing) is discretized by Southwell’s relaxation
method, to obtain a cellular dynamaton, a complex dynamical system similar to a cellular
automaton. This is then coupled to a spatial array of identical dynamical schemes, in the
style of Thom and Zeeman, to provide pedagogic examples of complex dynamical
systems of coupled cellular dynamata, which are capable of morphogenesis. Some

practical problems of numerical simulation are discussed.
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1. Introduction. The concepts of complex dynamical systems and of cellular dynamata
have evolved from modeling efforts in mathematical biology, one of the most exciting
current frontiers of the applied mathematical art. Here, we trace this historical evolution,
in relation particularly to the fascinating problem of biological morphogenesis. We are
interested primarily in mathematical morphogenesis: an study of space-time patterns in
mathematical objects constructed from dynamical systems theory. Any implications for
the biological sciences remain for the future. We will describe exemplary dynamical
models, complex systems of cellular dynamata, in which experimental work might reveal
pattern-formation behavior suggestive of natural phenomena.

2. Historical survey. Reaction-diffusion equations were introduced relatively recently
into the mathematical literature, in attempts to make models for morphogenesis, that
Mount Everest of theoretical biology. This is the story, as far as we know it. The simple
(linear) diffusion equation was created by Fourier for his theory of heat (1807). Perhaps
this was partly inspired by the wave equations of Euler and d’Alembert (1752) and
Sophie Germain (1807). Soon it was used by Fick (1860), a physiologist and colleague
of Helmholtz in Berlin, for the diffusion of blood through tissue. Later it was adapted by
Heavyside (1899), the telegrapher, for his cable equation. This is particularly significant,
as Heavyside was interested in the capability of the diffusion equation to support
traveling waves, and thus pulses of Morse code. This property led to the first
applications to morphogenesis, of (Fisher, 1930/1958) and Kolmogorov, Petrovsky, and
Piskunov (Kolmogorov, 1937) . An excellent numerical method for the integration of
these equations was developed by (Southwell, 1940) using spatial discretization to reduce
the partial differential equation to a system of ordinary differential equations. Further
applications were envisioned in (Rashevsky, 1938) and (Turing, 1952) . The latter has
been particularly influential, and is noteworthy for the use of spatial discretization. This
was not just a technique of numerical analysis, as in Southwell’s method, but an attempt
to model plant tissue more faithfully. This, together with the metabolic models of
(Thom, 1975) and (Zeeman, 1977) led to the development of cellular dynamata (or CDs,
or cellular dynamical systems.)

The equations written by these people, transcribed to a common notation, are as follows.
Let D c R" be the closure of an open set, the domain, with n =1, 2, or 3. Assume the
boundary satisfies some conditions of regularity if necessary. Let F be an appropriate
space of real-valued functions on D, incorporating fixed boundary conditions. Let/ CR
be an interval, and u :/ — F a smooth curve. We are concerned with equations of
evolution for u,

u' =Vu) 2.1

where the vectorfield or operator, V, is defined almost everywhere in F. The Fourier
heat equation is the well-known
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u'=cAu +p 2.2)

where u represents the distribution of heatin D, u 20, ¢ € R is a positive constant, A is
the Laplacian (n = 1, 2, or 3), and p € F is a fixed function describing the heat sources
and sinks. Special cases are named for Laplace, Poisson, and Heavyside.

The Fick equation, also called the porous medium equation (Aronson, 1984) , is a simple,
nonlinear modification,

u'=cAum)+p (2.3)

where m is a positive integer. As this has been found to be a good model for the
isentropic flow of an ideal gas in a homogeneous porous medium (4 representing the
density), it may be appropriate for biological models as well. Written in the traditional
Fickian form (m > 1)

u’'=c div(mum-1 gradu)+p 2.4)

The function crmu™-1 may be regarded as the diffusion rate (diffusivity), which increases

with density. Thus the equation is useful for modeling the population (that is, migration)
dynamics of a species which dislikes crowds, and is sometimes called the density-

~ dependent diffusion equation. All of these are diffusion systems. The first reaction-

diffusion systems were introduced independently in (Fisher, 1937) and in (Kolmogorov,

1937).

First we will describe the Fisher equation. Applications of the diffusion concept (and the
heat equation) to the diffusion of populations of species (fish, birds, mammals) had
already been made. Fisher applied this idea to populations of species of genes within a
single animal species (allelomorphs) in Ch. VI of his classic text on natural selection
(Fisher, 1930/1958) . But this depends not only on diffusion (migration) but also on
reaction (sexual union). After seven years, there appears in (Fisher, 1937) the Fisher
equation

u'=cAu+u(l-u) (2.5)

which models the diploid case. Thus, there are two alleles, of frequency u and (1 —u),
respectively. The reaction term, u (1 — u), is of logistic form; this is the simplest model
(mass action law) for sexual interaction. Fisher established the traveling wave property
for this equation and determined the wave speed. See (Murray, 1980) , (Brown, 1984) ,
(Weinberger, 1984) , (Ludwig, 1979) , and (Fife, 1979) for details. The paper of
Kolmogorov, Petrovsky and Piskunov (Kolmogorov, 1937) established analogous results
for the KPP equation, with a more general reaction term,
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u'=chAu +Q,(u) (2.6)

where g: [0, 1] = R, and Q; (u) = g ou, usually written g (4). They assumed that
g(0) =g (1) and g is concave. Further generalizations of Fisher’s results have been
made. See (Brown, 1984) and refererces therein, especially (Kametake, 1976) ;
(Rashevsky, 1938) discusses a similar idea.

A further step in the evolution of the diffusion equation was its application to two or
more diffusing species, with mutual interactions. This occurred in the context of
chemical kinetics (reactions of the linear catalytic type) in (Turing, 1952) and later with
mass action kinetics, and in the context of population dynamics (interactions of
predator-prey, cooperation, or other types of reaction dynamics). These fields remain
active, and closely related, even today, see (Nicolis, 1977) and (Fitzgibbon, 1984) . We
turn now to the Turing equations,

u'=cAu +ou - Bv
2.7)
v =dAv +yu + dv

where u,v:I — F. Turing showed the existence of a symmetry-breaking pitchfork
bifurcation, hence called the Turing bifurcation, in which a standing-wave pattern
emerges from a uniform distribution of the morphogens, # and v. This result assumes:
a, B, Y > 0. The bifurcation parameter is d. When d > c, standing waves develop. This
is well-described in (Maynard-Smith, 1968) and (Conway, 1984) . Turing applied his
result to phylotaxis, see Part I of (Abraham, 1982-88) .

The replacement of the linear reaction terms with first order reaction kinetics for a
reaction A +B 2 AB (u and v denoting the concentrations of A and B, resp.) leads to
the equations

u'=cAv —-Kpuv - Kpu + o

2.8)-
v'=dAv —Kpuv - Kpv +J
while in another much studied case, the Brusselator of (Nicolis, 1977) , Ch. 7
u'=cAu +A +u?v -Bu —u
(2.9)

v/ =dAv +Bu - u?v

Today, standing and rotating waves have been established in general reaction-diffusion
systems of the form
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u't=DiAui+f1uy, ..., Un)
j (2.10)
u’m =D Aty + Uy, ..., Up)

by, for example, (Auchmuty, 1984) ; see also (Erneux, 1975) , (Winfree, 1980) , (Fife,
1976) , and (Kopell, 1973) .

In this unbroken line of development, beginning apparently with Pearson and Blakeman
around the turn of the century (see p. 436 in (Edelstein-Keshet, 1988) ) and revived in
(Fisher, 1930/1958) , an important bifurcation took place in (Turing, 1952) . Perhaps
stimulated by his problem of phylotaxis (growth bud formation in the apical meristem of
the branches of plants), or by the earlier work of (Rashevsky, 1938) , or through contact
with the master numerical analyst Southwell, his colleague in the British war effort
(Southwell, 1940) , he discretized spatial variables into mathematical cells corresponding
to physiological cells (or clusters of them). The system (1.7) is then reduced to a linear
dynamical system, in case n =1,

u’y =c Wiy + uioy — 2u;)12 + ow; — Pv;
2.11)
Vi=dWig +Vicg = 2v;)2 + yu; + Oy;

in which Turing established a periodic attractor. This result was later extended in
(Smale, 1976) .

A model for a biological organ as an array of identical cells defined as a standard
dynamical system with controls, appearing in (Rashevsky, 1938) , and (T uring, 1952),
has been the inspiration for the CD systems described in this paper. Our goals here are to
describe these CD models in general (Section 3), to describe two specific examples —
one the discretization a la Turing of a reaction-diffusion system (Section 4), the other an
array of identical dynamical schemes such as the well-known Duffing system
(discretization of a nonlinear wave equation, Section 5) — and to then couple these two
exemplary CD’s together, creating some simple pedagogic models somewhat like
biological organs (Section 6).

These models may be regarded as spatial discretizations of the morphogenetic fields of
(Thom, 1975) and Zeeman, (Zeeman, 1977) and this work has been much influenced by
them (esp. Zeeman’s heart and memory models). But the CD models could be made in
closer fidelity to the observed dynamics of the target organ, whether it be cell membrane,
enzymatic membrane, apical meristem, pituitary, cerebral cortex, distributed computer
network, slime mold or world populations. We end with some comments on numerical
techniques for the simulation of CD models (Section 7).

The important role of morphogenesis in the field of mathematical biology is described in
great detail in the recent texts of the subject. See especially (Edelstein-Keshet, 1988) and
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(Murray, 1989) . The distinction between mathematical models of morphogenesis and
the science of biological morphogenesis must be kept in mind.

3. Cellular dynamata. We begin by recalling briefly the concepts of complex dynamical
systems. A dynamical scheme is a dynamical system depending upon control
parameters. Thus if S is a manifold (the state space), X(S) a suitable space of dynamical
systems (vectorfields) on S, and C another manifold (the control space), a dynamical
scheme is a map, p: C — X(S). In Thom’s language, this is called a morphogenetic
field. Given two of these

H1: C1— X(S1)

Ha: C2 = X(S2)

a serial coupling is a function, 6: §; — C,. Details and numerous examples may be
found elsewhere (Abraham, 1990) . The canonical examples are the forced pendulum
and the forced Van der Pol oscillator. From these fundamentals we may construct
elaborate networks of serially coupled dynamical schemes, suitable for designing
dynamical models of biological and social systems, which we call complex dynamical
systems.

By a cellular dynamical system we mean a spatial array of dynamical schemes, each
identical to one called the standard cell, which are serially coupled among themselves.
A typical arrangement might be a cubical lattice, with mutual coupling between nearest
neighbors. Any control parameters not determined by coupling within the cellular
dynamical system are regarded as free controls of the entire scheme, and may be coupled
to an external system, or set to fixed values.

A cellular dynamical (CD) system is much like the cellular automaton (CA) of
(Neumann, 1966) The analogy may be made by identifying the attractors of the standard
cell as (roughly) the set of finite states, and integration of the coupled system for a fixed
interval of time as the successor function. Next we consider some examples from the
spatial discretization of reaction-diffusion systems.

4. Reaction-diffusion systems. In a sequence of examples, we now show how the
reaction-diffusion systems of Turing and KPP may be transformed into cellular
dynamical systems.

Example 4.1. We start with a single Fickian diffusion equation, Fisher’s equation
u'=cAu+u(l—u) 4.1)

where D c R" is a regular domain with boundary, u,: D < R* — R" is a smooth
function(t €e I cR,n =1,2,0or3)and u:t — u, is a smooth curve in an appropriate
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function space, F, such as F = C3(D, R). Let Fy c F denote the closed affine subspace
defined by the given boundary conditions. The right-hand-side may be regarded as a
vectorfield on Fy, V, defined almost everywhere, and the evolution equation (3.1)
describes the tangency of u to V. We proceed in two steps. For simplicity, we will
describe these steps only in the case of one spatial variable: n =1,D ={a, b].

In the first step, we discretize the spatial domain, D =[a,b] c R, into N intervals
{[xi, xi41]: i =0, ..., N -1} of equal width. By evaluating a function € F at the
endpoints, we obtain a projection

TF SRV 4o (u(xg), ..., u;(xy))
and let F,, = (Fp), which is an affine subspace of R¥+! of codimension 2,
Fo={(uo,..., uv)€ RN ug=A,uy =B}

for boundary conditions (A, B). The vectorfield V on Fy projects (approximately) onto
the vectorfield V on F o defined, with central difference approximation, by

VA,uy, ..., uy_-1,B)=0,Vy, ..., Vy_s,0) (4.2)

where
V; =2—(A°'T)2-[ui+1—2u; +uiqlrew;(1—-w), i=2.,n-1.

This is the starting step in the numerical interaction scheme known as the method of
lines, or Southwell’s relaxation method.

Step 2. We now factor this dynamical system of dimension N — 1 (3.2) into a cellular
dynamical system having N ~ 1 standard cells, each with one state variable and one
control parameter. Note that

2c c

V; = —-(Wui +8u,'3:| +-2—(W(ui+l+ui)

So we consider the scheme
’_ —_— 2C 3
u'=Velu)= -(-——)2-u +eu’+C 4.3)

as the standard cell of a cellular dynamical system, with spatial array (x1, ..., xy-1).
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Serial couplings exist between nearest neighbors only, as shown in Fig. 4.1.

Fig. 4.1 about here.

with coupling functions, C; = T Acx) (U; 41+ u;—1). Notethatifi =1,u;_1=A and for
i=N-1,u,1=B.

Example 4.2. We now consider a 2-component reaction-diffusion system

u'=cAu +eud+f(u,v)
4.4)
vi=dAv + w3 —fu,v)

where f (4, v) = auv — B(u + v), representing first-order chemical kinetics with
constants ¢, B € R, or any other function. Transforming each of these equations as in
Example 4.1, we obtain a CD system having a standard cell (2 state variables, 2 controls)
with schematic diagram, again, as in Fig. 4.1,

u’'= —(%C)z-u+eu3+f(u,v)+c
vi= - (Azxd) v+wd-fu,v)+D

with coupling functions

- _2c . .
Ci W (Uig1+ui—1)
D; = _(f_x%’f Vis1 +Vi-1)

By now it is clear how to transform an arbitrary reaction-diffusion system into a CD
system.

5. Reaction-wave systems. Besides the heat equation of Fourier and its progeny, the
wave equation of d’ Alembert also yields interesting CD systems, through spatial
discretization. In the notation of Section 3, the linear wave equation,

u”=c?Au (5.1
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may be rewritten as the system

u'=v
5.2)
v/ =c2Au

on the domain Fy X F defined by boundary conditions,

Fo={ue Flu(@)=A,u(b)=B}

Fi={veF|v@)=A’,v(b)=B"}

Discretizing, we obtain a vectorfield (V, W) on F, x F1, where F, = n(Fg) as in Section
4, F = n(F) similarly, and the components of the vectorfields are

Vilu,v)=v;

4 ) (5.3)
Wiu,v)= 2(&) (i1 — 2u; + 1]

-

This may then be factored into a CD system, with standard cell,
Vu,v)=v

1 2 5.4
Wo,v)= _TACT)Tu +C

.

representing a linear spring. The coupling is by nearest neighbors,

C; = ﬁ—xz—)f [t 1 + i) (5.5)

as in Fig. 4.1. This is actually the discretization used by Johann I Bernoulli (1728) and
d’Alembert (1749) to create the original wave equation (Cannon, 1981) . If instead of
the linear wave equation (4.1) we had chosen a nonlinear one with friction, such as

uw”=c2Au —eA(u3) +yu’ (5.6)

then the same process yields a CD system with standard cell,
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[

Viu,v)=v

. ' ) G.7)
Wu,v)= - (Acx)2 u- (Ai)z wi+w+C

representing a nonlinear damped spring. In this case, the serial coupling functions are

2
Ci= _—72(Zx) (i1 + U] - Efx_)f [ +u2 ]+ f; Visl (5.8)

Note that if periodic forces are applied, we obtain a coupled array of Duffing systems.

6. Abstract memory models. To create biological organ models in the next section, we
are going to couple together two different CD systems—one modeling the diffusion of
morphogens (control metabolites or hormones) in the extracellular space, the other
modeling the dynamics of the cells, and their near-neighbor interactions (if any). To
exercise the concepts and demonstrate the capacity of such a system for morphogenesis,
we are going to develop here an example of a coupled system of two CD systems,
inspired by Zeeman’s model for the transfer from short-term to long-term memory
(Zeeman, 1977) .

Example 6.1. The first CD system will be Example 4.1 from Section 4, representing the
Fickian diffusion equation, with no sources or sinks. The discretization is done on the
scale of the biological cells of a fictitious membrane, through which the hormone is
supposed to be diffusing. All the cells of this membrane (which we shall take to be one-
dimensional, to simplify the drawings) are identical, and the standard cell model will be
the hysteretic roggle switch,

’

x'=x3-x-A 6.1)

which is the simple bistable device of catastrophe theory. Its response diagram, the
double fold catastrophe, is shown in Fig. 6.1.

Fig. 6.1 about here.

We suppose that the neighbor interactions in this membrane are nil, but that each cell is
controlled by the average of the hormone concentration over its surface. This is
approximately the value of u at the center of the cell, or u; for the i -th cell. The
coupling between the two CD systems is from the state of the first in a given cell (say u;)
to the control of the second in the same cell. Thus we have:
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x: the spatial variable (continuum version)

X1, ..., Xy—1: the locations of the
centers of the equally-spaced identical cells (switches)

u: the concentration of hormone in the extracellular space
(continuum version)

Ui, ..., uy-1: the average hormone concentrations perceived by
the separate cells

o4, ..., Opv-1: the states of the
cells (switches)

subject to the dynamical equations,

u ',' =- %Q—u; + eu,-3 +C; 6.2)

with nearest neighbor coupling

Ci= -2—(-A£x—57(ui+1 +Uj-1)
from (3.3), with intracell dynamics,
o’ =0 — oy —A;
from (5.1), and with
A; = by

to control the i -th cell (toggle switch) by the morphogen concentration around it. This is
shown in Fig. 6.2. With initial conditions for the u;’s and o;’s chosen, let the dynamic
begin. We suppose that the diffusion rate is small with respect to the relaxation rate of
the switches. Thus, the o;’s go quickly to the (one or two) point attractors (ON and
OFF) of the switches. As the hormone continues to diffuse to a (moderate) constant, the
trajectories of the o; ’s follow these attractors. While the software pattern of the initial
u;’s (the short-term memory) is forgotten, the pattern (of ON’s and OFF’s) of the o;’s
(the long-term memory) is latched into hardware. If this constant value of hormone
(determined by the boundary conditions outside the cortex) is lowered, all of the switches
are reset to OFF because the ON state has disappeared by a fold catastrophe. If the
hormone level is now raised to the middle (again by external action at the boundary), the
switches stay off (because of hysteresis). This is the toggle memory model.
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Fig. 6.2 about here.

Example 6.2. This system is very much like a computer memory. In Zeeman’s original
model, inspired by neurophysiological networks, the standard cell was the Duffing
system. This is a nonlinear spring (compare 4.7) with periodic forcing,

x'=y
1y =—kx + hx3 - cv + Asinf 6.3)
0’ =2nf

.~

where the coefficients k (Hooke’s spring constant), # (hardness of the spring), ¢
(Coulomb friction constant) and A (coupling constant of the forcing oscillator) are fixed,
and f (the frequency of the forcing oscillator) is a control parameter. The response
diagram of this scheme (locus of attractors and separatrices) is the famous hysteresis
curve, discovered by (Duffing, 1918), see Fig. 6.1. Its behavior, in this abstract system
of two coupled CD systems, is the same as the toggle switch, except that the states (ON
and OFF) are oscillations (periodic attractors) rather than static equilibria (point
attractors). We call it the vibrating memory model. Playing with this model will reveal
several different mechanisms for the production of a single pattern (zebra stripes, for
example) in long-term memory.

7. Membrane models. We specialize to two spatial dimensions, n = 2, and consider a
homogeneous biological membrane from the physical point of view. We regard the cells
as a uniform distribution of identical dynamical systems, say a square array. Among
them, a carrier liquid, or serum, percolates. This was called a morphogen in (Turing,
1952) . The existence of morphogens in living systems is still controversial. This
biochemical metabolite, H , diffuses within the membrane, interacting with H -receptors
on the surface of the standard cell. Here we develop a few specific examples of this
scheme, to illustrate the type of model proposed here. In all cases we will discretize the
partial differential equations at the centers of the cells.

Example 7.1. For the percolation of H, take the linear heat equation with no sources (1.2,
p = 0). For the standard cell, take the Duffing scheme (5.3), with no secretion. Thisisa
two-dimensional version of the vibratory memory model, described at the end of the
preceding section. It is able to latch patterns which occur briefly in the distribution of

H -concentration, perhaps due to external forces.

Example 7.2. Among the behaviors of the cells might be the release of another
metabolite, R, into the extracellular space, which also diffuses within the carrier liquid.
We now add to the previous example an additional morphogen, R, which is secreted by
the standard cells (as a response to the stimulus of the hormone, H ') into the extracellular
serum. Thus, it also diffuses. Taking identical (linear heat) models for each diffusion
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(but with different diffusivity) we have the equations,

u' =Au, (7.2A)
for diffusion of H, and
(
o'=p
1B’ =-A100+A303 - BB+ Fsin6 (7.2B)
0" =2nu
for the standard cell, with coupling
M = Gu‘. s (7.20)

that is, the forcing frequency within the i -th cell is proportional to the H concentration
around it (frequency modulation by metabolite H), and

vi=dAu +p (7.2D)
for the diffusion of R, with the source term
pi =Eaq;, (7.2E)

so that the secretion rate of R around the i -th cell is proportional to its displacement, o;.
This system produces, from a transient (short-term, software) pattern of H, a latched
(long-term, hardware) copy, which maintains a latched (long-term, software) pattern in
the concentration of the response metabolite, R. See Fig. 7.1.

Fig. 7.1 about here.

Example 7.3. This is identical to the preceding, except we suppose that H and R are the
same substance. The governing equations are

u'=chAu+p (7.3A)
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o'=p
4 B’=-A10+A303-BP+ Fsinb (7.3B)
0’ =2xu
W; =Gu; (7.30)
pi=Eq; (7.3D)

This system is able to latch a long-term memory in the stimulus hormone level, and
maintain it. Probably some dynamic patterns, such as rotating waves, can also be self-
sustained.

Example 7.4. We now consider an inhomogeneous organ (or membrane) consisting of
two kinds of cells, A and B, each uniformly distributed. We imagine that one cell of
each type shares approximately the same location, in a uniform square lattice. Through
this lattice, again, circulates serum containing a single diffusing hormone. We may
represent this system by coupling together three CD systems. If the standard model for
cells of type A is the uniform oscillator,

0'=2mu (7.4A)

and for B, the nonlinear damped spring scheme,

o' =B
(7.4B)
f'=-A;0+A303-BB+C
with serial coupling between them defined by
C,' =F sine,- (7.4C)
and interaction with H defined by

as in (6.2B), then we regain Example 7.2. This example indicates how inhomogeneous
organs fit into our scheme. Again, morphogenetic behavior occurs. We see here a
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similarity with the models of (Hoffman, 1989) for the visual cortex, in which visual
images are transformed by the nonlinear action of a Lie group, infinitesimally generated
by distinct distributions of special cells.

Many variations on these examples are possible, and worth considering. The diffusion
equation may be replaced by a nonlinear, population-dependent porous medium equation.
The number of morphogens may be increased, and biochemical interactions between
them allowed. The coupling between hormones and receptors, assumed linear in these
examples, may be replaced with more realistic (even empirical) laws. More importantly,
we may add near neighbor interactions to the standard cell models of each homogeneous
distribution, as well as interactions between closest neighbors of distinct populations (as
in Example 7.4). The standard cell model may be a more realistic one from the literature
of physiology, such as (Dempsher, 1984) or (King, 1984) . The frontier at this time is the
exploration of examples like these in numerical simulation on massively parallel
machines, using interactive computer graphics to observe the results (at least, forn =1
or 2), as in (Abraham, 1991) . For a stimulating review of experiments with CD systems,
see (Crutchfield, 1987) .

8. Numerical simulation techniques. In case a model were made according to this
strategy of coupled CD systems, its utility would certainly depend primarily on its
numerical simulation by digital computer. As it is simply a dynamical system with
special structure, the numerical simulation could be carried out by direct application of
traditional methods for dynamical systems, such as a Runge-Kutta autostep method.
However, if the spatial resolution of a two-dimensional membrane is taken as 100 by 100
(a modest choice), then each array has 10,000 points. In the case of Example 7.2
(suitable for an organ such as the adrenal cortex) the overall dynamical system has
dimension 40,000. Obviously, some acceleration techniques are in order. Let us, first of
all, decompose the coupled CD complex into its separate CD components. In Example
7.2, these are three: the H diffusion system, the array of (uncoupled) identical cells, and
the R diffusion system. (Introducing weak coupling in the second subsystem does not
change this decomposition.)

For a single subsystem derived from a partial differential equation (PDE), the direct
application of an ordinary differential equation (ODE) solver — such as Euler or Runge-
Kutta — is rather slow. In case the algorithm is Euler, this method is identical to the
relaxation method of Southwell for the PDE. But as Southwell’s method was originally
applied (during World War II) by hand, the motivation for acceleration tricks was strong.
And Southwell did indeed invent some excellent ones, see (Southwell, 1940) . For
example, his strategy called advance to a finer net is extremely effective for the
relaxation of nonlinear heat and wave equations. Furthermore, as the coupling terms of
CD systems obtained by discretization (as in Sections 4 and 5 above) are between nearest
neighbors only, the domain may be divided into subsets, each to be integrated (in
parallel) by a separate processor. This division into subsets may be compatible with that
of Southwell’s advance to a finer net. In addition, both of these techniques may also be
applied to the CD subsystems corresponding to spatial arrays of identical cells (there are
two of these in Example 7.4) provided that their couplings are sufficiently local—for
example, among nearest neighbors only. Thus, CD subsystems of reasonable models
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(comprising coupled CD systems) may be accelerated considerably.

What then, of the integration (numerical simulation) of the complex model in toto? Let
us assume that each CD subsystem is managed adequately by its own parallel processor,
by an autostep method such as RKS4/5 the Runge-Kutta-Butcher algorithm of fifth order,
with embedded Sarafyan of fourth order for step size adjustments, see (Lapidus, 1977) ,
p. 173. As step-size is being varied independently in all of the simultaneous and parallel
subsystem simulations, the coupling between them must be effected at periodic
rendezvous times. Thus, we may use (in each subsystem simulation) the technique of
periodic reportage. This means that at agreed intervals called giant steps (of pseudo-real
time), each subsystem simulator is to round off its integration (with a special babystep, or
small time step, if necessary) and report its current state to registers readable by the
others, and perhaps recorded for posterity. The faster siblings must then wait for the
slower ones to finish. Thus is a complete giant step taken. As the current states are
available for coupling the siblings only at giant steps, the intervening babysteps
(differing in total number for each simulator, as local time step adjustments are made by
them) are made as if the other siblings were asleep. Thus, a poorer accuracy is
maintained in the control values than in the internal dynamics of the subsystem. (How
much poorer, if any, depends on the choices made by the master of the game.) This is
appropriate for loosely coupled systems, or when the internal dynamics are much faster
than the controls, as in Example 7.1, the vibratory memory model. With this strategy of
periodic reportage, the simulation of coupled CD systems may be accomplished in a
network of microcomputers, with readily available software. The integration of a sibling
by the parallel-processing relaxation method, on the other hand, is more tightly coupled.
This could be accomplished in a highly parallel machine.

9. Conclusion. CD complexes, the coupled cellular models proposed here, are not well-
known to pure mathematics or to experimental dynamics. There is no great body of
existing theory upon which to fall back. CD complexes owe their complexity to the level
of fidelity with which they attempt to imitate natural systems. To the extent to which
they may succeed as models, then, their behavior may be anticipated through the study of
those natural systems, the target systems they aim to simulate. Thus, the best expert of
the behavior of coupled CD models, to date, must be experimental scientists, such as
neurophysiologists.

The situation is somewhat better for the CD simplex, a singleton CD model, coming from
a PDE of evolution type. There is a growing body of literature on the morphogenetic
behavior of reaction-diffusion equations (Fitzgibbon, 1984) and a corresponding body of
theory for reaction-wave equations (which are closer in behavior to our vibration
memory model) cannot be far behind.

The particular strategy described here for the architecture of models of complex systems
such as networks of biological organs is now at about the level of mathematical physics
two centuries ago. Altogether, it is clear that a further advance in this strategy will be
greatly facilitated by a period of extensive experimental work. And miraculously, as
described in the last section, the tools required for the rapid execution of the necessary
experiments are being provided by the computer revolution at about this time. So we
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hope to see some successful models in the near future.
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FIGURE CAPTIONS

Fig. 4.1. A CD system with one-dimensional spatial substrate. .

Fig. 6.1. The response diagram of the double fold catastrophe.

Fig. 6.2. The CD memory model with toggle cells and Fickian diffusion.

Fig.7.1. A CD vibrating memory model with two diffusing metabolites and a two-dimensional spatial
substrate.
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