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Cellular Dynamata

R. ABRAHAM

1. Introduction

At the end of the sixties, our program for dynamics lost momentum, and
some of us turned to applications for inspiration. My own attempts at mod-
eling in the biological sciences led me to complex dynamics, a blend of our
own style of dynamical systems theory with system dynamics. A complex
dynamical system is a directed graph, with a dynamical scheme (dynamical
system with parameters) at each node, and a coupling function on each edge,
expressing the control parameters of one scheme as a function of the states of
another.’

A related type of structure is a cellular dynamaton or CD. This is a special
kind of complex dynamical system, in which the graph is embedded in a
physical space. To my knowledge, the first CD was the one-dimensional
array of oscillators introduced by Anderson in 1924 as a model for cat gut.”
Chris Zeeman introduced me to the CD idea with his model for memory,
which he described to me in Amsterdam in 1972.3 As I understood him then,
there would be a two-dimensional array of Duffing cells, with a spatial pat-
tern of attractors corresponding to a memory engram. This is close to Walter
Freeman’s recent model for memory in the olfactory cortex.*

2. Definitions

A CD is specified by three sets of data,

A. the standard cell, a single dynamical scheme, envisioned as a response (or
bifurcation) diagram,

! For more details, see (Abraham, 1984).

2 For this and other early references, see (Kopell, 1983).

3 See his own description of a single memory cell in (Zeeman, 1977).
4 See (Freeman, 1991).
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B. the spatial substrate, a regular lattice in a manifold, usually Euclidean
space, and

C. the connections, a set of coupling functions, one for each node in the lattice,
expressing the local control parameters as functions of the states at all
other nodes. These data determine a single, massive, dynamical scheme,
which has its own response diagram.> There are three worlds of CDs,
depending on whether the standard cell is generated by a map, a diffeo-
morphism, or a vector field. Throughout this brief survey, we will assume
the latter.5

3. Examples

The first and most studied CD is a lattice of oscillators, in a one-dimen-
sional substrate. Here, the coupling is usually to nearest neighbors only, as in
Anderson’s model for peristalsis. Van der Pol oscillators are the usual choice
for the standard cell. Freeman’s olfactory bulb model belongs to this class.

Another early class of models comes from the discretization of PDEs,
especially the wave equation, the heat equation, or reaction-diffusion
equations.”

A simple neural net (given an arbitrary spatial substrate if neccesary) is
also a CD, in which the usual standard cell is the simplest possible dynamical
scheme (linear vector field in one dimension, plus a constant for control
parameter), with global, linear coupling. These nets have simple cells, but
complex coupling, and are capable of very complex behavior (that is, lots of
static attractors with thin basins).?

Closely related to the simple neural net is the cuspoidal net, in which the
standard cell is a cusp catastrophe, and the coupling is local and linear. As
two coupled cusps can oscillate, as Kadyrov has shown,® a cuspoidal net can
behave either as a simple neural net, or as a lattice of oscillators. They may
be useful for spatial economic models*® as well as for artificial intelligence.

* For more details, see (Abraham, 1986).

® For practical reasons, the iterated map CD is the type most commonly explored in
computer simulation. For a review of the results with one-dimensional substrates, see
(Crutchfield, 1987) . A color atlas of spatial patterns may be seen in (Abraham, 1991b).

7 For a history of this class, see (Abraham, 1991c).
8 On the existence of static attractors, see (Hirsch, 1989).

® See (Abraham 1991a). This is similar to Steve Smale’s two-cell oscillator (Smale,
1976).

1% See (Abraham, 1990b), (Beckmann, 1985), and (Beckmann, 1990).
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4. The Future

So far, the development of this new subject, now in its early period, depends
crucially on explorations. Currently, explorations of two-dimensional CDs
with massively parallel supercomputers are on the frontier. Besides the com-
putational cost, these explorations tax our cognitive strategies for the rec-
ognition of basic concepts of behavior of attractors and bifurcations. New
methods of reducing space-time patterns to symbol sequences are needed.!!
A number of ingenious ideas based on classical analysis have evolved, espe-
cially in the context of oscillator CDs.? A surprising feature on the current
frontier is the role played by applications. Many of the new ideas are coming
from modelers in the biological and social sciences.!> Morphogenesis re-
mains the Everest of the scientific modeling art.
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