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1. Introduction

Simple dynamical systems theory evolved from celestial mechanics in the work of Poincaré€ a century ago.
Complex dynamical systems theory (also known as systems dynamics) began during World War II, with
the work of Von Bertalanffy on general systems theory and Wiener on cybernetics. Cellular dynamical
systems theory developed in the early days of biological morphogenesis in the work of Rashevsky and
Turing. Since the advent of massively parallel computation, these modeling strategies have been
increasingly used to simulate highly complex natural systems. The challenge to understand our global
problems — combining physical systems of the atmosphere and ocean (Chaos) with biological systems of
the biosphere (Gaia) and the social systems of human and other species (Eros) — will test and extend our
mathematical and scientific capabilities. The name erodynamics has been coined to describe this
application of dynamical systems theory to the complex global system of our human civilization and
environment. In this minicourse we develop the basic concepts of erodynamics in the frame of economics
and the environment.

2. Types of dynamical systems

In mathematics, there are three categories of dynamical systems: flows, cascades, and semi-cascades. A
flow is a continuous dynamical system, generated by a vectorfield, in which the trajectories are curves,
parameterized by real numbers. A cascade is a discrete dynamical system, generated by a diffeomorphism
(smooth invertible map with a smooth inverse), in which the trajectories are discrete point sets,
parameterized by integers (positive and negative). A semi-cascade is a discrete dynamical system,
generated by an endomorphism (smooth map, not neccesarily invertible) in which the trajectories are
discrete point sets, parameterized by natural numbers (non-negative). In any case, the dynamics occurs on
a smooth manifold called the state space, which may have dimension one or more. In Fig. 1, the three
categories and the state space dimensions are used to spread out the family of all dynamical systems in a
tableau. In this tableau, a three-dimensional flow may sometimes be sectioned, in a procedure invented by
Poincaré, to a two-dimensional cascade. This, in turn, might be projected into a one-dimensional semi-
cascade, in a procedure introduced by Lorenz. Each of these constructions is reversible. Thus, these three
boxes, shaded in Fig. 1, are closely related, and have similar behavior. For example, each is the lowest-
dimensional box in which chaotic behavior is observed. Thus, we call it the stairway to chaos. All of the
parallel stairways are interrelated by similar constructions.

Let F, C, and S denote the rows, and 1, 2, 3, - - -, denote the columns of the tableau. Thus, S1, C2, and F3
denote the stairway to chaos, and S2, C3, and F4 the adjacent stairway, and so on. The most familiar
dynamical systems are distributed as follows:

Pendulum, Van der Pol: F2

Forced pendulum, forced Van der Pol, Rossler, Lorentz: F3
Hénon: C2

Logistic: S1

The exemplary dynamic models of mathematical economics are described in (Goodwin, 1990), the
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Semi-Cascades

Figure 1. The dynamical system tableau.

chapters of which are distributed over the tableau as follows:

Réssler: F3 —Ch.1,4,5,6,7,8,9
Forced Van der Pol: F3 — Ch. 10
Forced Réssler: F4 — Ch.10
Logistic: S1 — Ch. 1,2

Von Neumann: S2 — Ch. 3

The latter (Ch. 3) belongs to the frontier of current research on discrete dynamical systems.

In this outline of dynamical systems theory and modeling practice, we will concentrate on the top row of
the tableau, flows, keeping in mind that the discussions apply without significant modification to the other
two rows, cascades and semi-cascades. In any case, a dynamical system may be visualized by its portrait,
in which the state space is decomposed into basins, with one attractor in cach.

3. Simple dynamical schemes

We begin with the basic building block of complex dynamics, the simple scheme. This is a dynamical
system depending on control parameters. Just as the portrait of attractors and basins is the visual
representative of a dynamical system, the response diagram is the visual representative of a scheme.

Definitions. Recall that a manifold is a smooth geometrical space. (Abraham, 1988) Let C be a manifold
modeling the control parameters of a system, and S another manifold, representing its instantaneous states.
Then a simple dynamical scheme is a smooth function assigning a smooth vectorficld on § to every point of
C. Alternatively, we may think of this function as a smooth vectorfield on the product manifold, CxS,
which is tangent to the state fibers, {c JxS. For each control point, ¢ €C, let X (¢) be the vectorfield




assigned by the scheme. We think of this as a dynamical system on §, or system of first order ordinary
differential equations.

Autractors and basins. In each vectorfield of a scheme, X (¢), the main features are the attractors. These
are asymptotic limit sets, under the flow, for a significant sct of initial conditions in §. These initial states,
tending 10 a given attractor asymptotically as time goes to plus infinity, comprise the basins of X (c).
Every point of § which is not in a basin belongs to the separator of X (¢). The decomposition of § into
basins, each containing a single attractor, is the phase portrait of X (¢). Attractors occur in three types:
static (an attractive limit point), periodic (an attractive limit cycle, or oscillation), and chaotic (meaning
any other attractive limit set). The phase portrait is the primary representation of the qualitative behavior
of the simple dynamical system, and provides a qualitative model for a natural system in a fixed (or
laboratory) setting. Its chicf features are the basins and attractors. The attractors provide qualitative
models for the observed states of dynamical equilibrium of the target system, while the basins model the
initial states, which move rapidly to the obscrved states as startup transients die away.

Response Diagrams. For each point ¢ of the control manifold, the portrait of X (¢ ) may be visualized in
the corresponding state fiber, {c }xS, of the product manifold, CxS. The union of the attractors of X (c), for
all control points ¢ £C, is the attractrix or locus of attraction of the scheme. These sets, visualized in the
product manifold, comprise the response diagram of the scheme. The response diagram is the primary
representation of the qualitative behavior of the dynamical scheme, and provides a qualitative model for a
natural system in a setting with control variables. Its chief fcatures are the loci of the attractors as they
move under the influence of the control variables, and the bifurcations at which the locus af attraction
undergoes substantial change. The response diagram provides the qualitative model for the dynamical
equilibria of the target system, and their transformations, as control parameters are changed. A typical
response diagram, for a model with a single control parameter (the stirred fluid system of Couctte and
Taylor). For a discussion of this diagram, and many others, see the pictorial Bifurcation Behavior.
(Abraham, 1992)

Catastrophes and Subtle Bifurcations. For most control points, ¢ €C, the portrait of X (c) is structurally
stablc. That is, perturbation of the control parameters from ¢ to another nearby point cause a change in the
phase portrait of X (¢) which is small, and qualitatively insignificant. In exceptional cases, called
bifurcation control points, the phase portrait of X (¢ ) significantly changes as control parameters arc passcd
through the exceptional point. Many cases, gencric in a precisc mathematical sense, are known, and the
list is growing. These bifurcation events all fall into three categories. A bifurcation is subtle if only onc
attractor is involved, and its significant qualitative change is small in magnitude. For example, in a Hopf
bifurcation, a static attractor becomes a very small periodic attractor, which then slowly grows in
amplitude. Other bifurcations are catastrophic. In some of these, called blue-sky catastrophcs, an attractor
appcears from, or disappears into, the bluc (that is, from a separator). In those of the third category, called
explosions, a small attractor suddenly cxplodes into a much larger onc. All of these events are very
common in the simplest dynamical schemes, such as forced oscillators. The bifurcations are clearly
visualized in the responsc diagram of a scheme, which is sometimes called the bifurcation diagram. The
theory up to this point is adequatcly described in the literature (see the picturc books, and references
thercin). (Abraham, 1992)

4. Complex dynamical systems

A complex dynamical system is a network, or dirccted graph, of nodes and directed edges. The nodes arc
simple dynamical schemes or dynamical systems depending on control parameters. The directed edges are
static schemes, or output/input functions depending on control paramcters. These provide the serial
coupling from the instantaneous states at one node into the control parameters of another.



Figure 2. A typical response diagram

Static Coupling Schemes. Consider two simple dynamical schemes, X on CxS and Y on DxT. The two
schemes may be serially coupled by a function which, depending on the instantaneous state of the first (a
point in §), sets the controls of the second (a pointin D). A static coupling scheme is just such a function,
but may also depend on conirol parameters of its own. Thus, let £ be another control manifold, and
8 :Ex S — D. Then the serial coupling of X and Y by the static coupling scheme g is a dynamical
scheme with control manifold CxE, and state space SxT , defined by

Z((c.eXs,t)=(X(c,s), Y (g(e,s5),1))
This is the simplest example of a complex dynamical scheme, symbolized in the literature by schematic

diagrams such as those shown in Fig. 3 or equivalently in Fig. 4. In Fig. 3, the bullet icons represent
dynamical schemes, with the state spaces, S or T, vertical, and the control spaces, C or D, horizontal. The
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Figure 3. Static coupling of two simple schemes, pictorial
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Figure 4. Static coupling of two simple schemes, schematic

total spaces of the dynamical schemes are cartesian product manifolds. For example, C xS. The solid
triangle represents a static coupling scheme, g, with its control space, E, horizontal. Thatis, g isa
mapping, g: S xE — D. InFig. 4, the symbols are further abstracted.

* Other coupling schemes

Coupling by static functions is the most common device found in applications, but there are others. The
most frequent variation is a delay function. Thus, the coupling device must remember inputs for a given
time (usually fixed), the lag, and at a present time, must deliver a function calculated from past inputs.

This uses up memory in the simulation machine, but otherwise is straightforward and familiar. In many
applications, delays are unavoidable. One unfortunate aspect of this neccessity is the fact that the
completed CDS model is then a dynamical-delay scheme (system of differential-delay equations depending
on control parameters), rather than a standard dynamical scheme.

Another coupling variation sometimes encountered in complex systems is an integral function. In this
case, the coupling device must accumulate inputs over a fixed time, but need not remember the incremental
values. This kind of static node can be replaced by a dynamical node, in which the integration of inputs
becomes the solution of an cquivalent differential equation. Thus, a static node may be regarded as a trivial




type of dynamic node, in theory at least.

* Serial Networks. A large number of simple dynamical schemes may be coupled, pairwise, with
appropriate static coupling schemes. The result, a serial network, may be symbolized by a directed graph,
at least in the simpler cases. The purpose of the CDS, as a mathematical construction, is to create
qualitative simulation models for complex dynamical systems in nature. (Abraham, 1988) The full scale
complex dynamical system may be symbolized by a graph with two distinct types of directed node, static
and dynamic. (A directed node has separate input and output panels.) As controls at a given node or
coupling scheme may be scgmented (parsed into a product of different control manifolds) and some of
these connected to other directed edges, we may have multiple inputs arriving at nodes and at couplings.
Multiple outputs from nodes or couplings may also occur. Some examples are shown in Fig. 5. The edge
directions of these graphs of two types of directed nodes may be inferred from the conncctions because of
the rule: each edge must connect an output panel to an input panel. Further, an edge from a dynamic output
may only be connected to a static input.

5. Exemplary complex systems

Several pedagogic examples have been presented in the literature listed in the Bibliography. We review
some of them here.

* Master-Slave Systems The simplest complex scheme consists of the serial coupling (as illustrated
above) of two simple dynamical schemes. The behavior of these simple examples is notoriously
complicated. Suppose that the control parameters of the first (or master) system arc fixed. After startup,
from an arbitrary initial state, the startup transient dies away, and the master system settles asympiotically
into one of its attractors. We consider the three cases separately.

Static master. 1f the autractor of the master system is a static (point) attractor, and the control parameters of
the coupling scheme are left fixed, then the control parameter of the second (slave) system are likewisc

Figure 5. Multiple couplings.




fixed. Typically, this static control point of the slave system will be a typical (nonbifurcation) point, and
the slave system will be observed in one of its attractors (static, periodic, or chaotic).

Periodic master. With fixed controls of the master and the coupling function, a periodic master attractor
will drive the slave controls in a periodic cycle. This is the situation in the classical theory of forced
oscillation. Experimental study of these systems began a century or so ago, and continucs today. Here are
the two classic examples.

1. Duffing systems. If the slave system is a soft spring or pendulum, the coupled system is the classic one
introduced by Rayleigh in 1882, in which Duffing found hysteresis and catastrophes in 1918. (Abraham,
1992) The bifurcation diagram is very rich, full of harmonic periodic attractors and chaos. (Ucda, 1980)

2. Van der Pol systems. If the slave system is a self-sustained oscillator, the coupled system is another
classic one introduced by Rayleigh, in which Van der Pol found subtle bifurcations of harmonics and
Cartwright and Littlewood apparently found chaos. Both of these classical systems have been central to
experimental dynamics, and research continues today.

Chaotic master. This situation, chaotic forcing, has received little attention so far, Many experiments
suggest themselves, in analogy with forced oscillations. One situation which has been extensively studicd
is the perturbation of a conventional dynamical system by noise.

* Chains of Dynamical Schemes. 1f three schemes are connected in a serial chain by two static coupling
schemes (Fig. 6) a complex system with a very complicated bifurcation diagram may result. If the first pair
comprises a periodic master forcing a simple pendulum, as described above, the terminal slave may be
cither a periodically or chaotically forced system. Of course, if all three systems are pendulum-like (one
basin, static attractor) the serial chain is also pendulum-like. But a periodic attractor in either the first or
second dynamical scheme is adequate to produce rich dynamics in the coupled chain,

* Cycles of Dynamical Schemes. 1f the directed graph of a complex scheme contains a cycle (closed loop)
then complicated dynamics may occur, no matter how simple the component schemes. The minimal
example is the serially bicoupled pair (Fig. 7). Even if the two dynamical schemes are pendulum-like, the
complex system may have a periodic attractor. For example, Smale finds a periodic atiractor (and a Hopf
bifurcation) in exactly this situation, in a discrete reaction-diffusion model for two biological cells.

(Smale, 1976) A cycle of three pendulum-like nodes is discussed next, as we turn now to more complex
examples.

* Intermittency in an Endocrine System Model. Models for physiological and biochemical systems have a
natural complex structure. A recent model for the reproductive system of mammals (hypothalamus,
pituitary, gonads) is a very simple nctwork (Fig. 8). (Abraham, 1985) Although the simple dynamical
scheme at each node is a point attractor in a one-dimensional state space, the complex systcm may have
two periodic basins, each containing a periodic attractor. This phenomenon, sometimes called

L 1)

Figure 6. A chain
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Figure 8. An endocrine system model

birhythmicity, has also been found in a biochemical model. (Decroly, 1982) Small changes in the control
parameters of the coupling functions cause intermittent jumps between the two distinct oscillatory states.

6. Cellular dynamical systems

Here we introduce cellular dynamical systems theory, a mathematical strategy for creating dynamical
models for the computer simulation of biological organs and membranes, and other systems exhibiting
natural intelligence. Reaction/diffusion equations were introduced by the pioneers of biological
morphogenesis: Fisher (in 1930), (Fisher, 1930/1958) Kolmogorov-Petrovsky-Piscounov (in 1937),
(Kolmogorov, 1937) Rashevsky (in 1938), (Rashevsky, 1938) Southwell (around 1940), (Southwell, 1940)
and Turing (in 1952). (Turing, 1952) Rashevsky introduced spatial discretization corresponding to
biological cells. These discretized reaction/diffusion systems are examples of ccllular dynamical systems,
probably the first in the literature. Further developments were made by Thom (1966-1972) (Thom, 1975)
and Zeeman (1972-1977). (Zeeman, 1977) The latter includes a heart model, and a simple brain modcl
exhibiting short and long-term memory. The ideas outlined here are all inspired by these pioneers. The
strategy is based upon CDS concepts. (Abraham, 1986)

* Definitions. By cellular dynamical system we mean a complex dynamical system in which the nodes
are all identical copies of a single dynamical scheme, the standard cell, and are associated with specific
locations in a supplementary space, the physical substrate, or location space. Exemplary systems have
been developed for reaction/diffusion systems by discretization of the spatial variables. In these examples,
pattern formation occurs by Turing bifurcation. One of the most-studied examples of this class is the
Brussellator of Lefever and Prigogine. Other important examples of this construction are the heart and




11

brain models of Zecman. These modcls have something in common with the cellular autormata of Von
Neumann, yct possess morc structure. ' We might call them cellular dynomata.

The behavior of a cellular dynamical system may be visualized by Zeeman’s projection method: an image
of the location space (physical substratc) is projected into the responsc diagram of the standard cell, where
it moves about, clinging to the attractrix, or locus of attraction. Altcrnatively, the behavior may be
vizualized by the graph method: attaching a scparatc copy of the standard response diagram to cach cell of
the locatjon space. Within this product space, the instantancous statc of the model may be represcnted by a
graph, showing the attractor occupicd by cach cell, within its own responsc diagram. In cither case, the
behavior of the complete cellular system may be tracked, as the controls of cach cell are separatcly
manipulated, through an understanding of the standard response diagram provided by dynamical systems
theory: attractors, basins, scparators, and their bifurcations.

7. Exemplary cellular systems
Ccllular dynamical systems began in the context of reaction-diffusion cquations.

* Reaction-Diffusion Systems. An unusual cxample of serial coupling is provided by the reaction-
diffusion modcl for biological morphogenesis, introduced by Fischer in 1930 (scc Scction 5 for more
history). Given a spatial domain or substraic, D, and a biochemical state space, B, the stale spacc is an
infinite-dimensional manifold, 7, of functions from D (o B . The rcaction-diffusion cquation may be
rcgarded as a simple dynamical scheme of vectorficlds on F, depending on a control space, C.
Mcanwhile, the spatial substrate is actually composcd of biological cells, considered identical in structurc.
As the reaction-diffusion scheme, the master in this context, detcrmines instantancous statcs of
biochemical (morphogen, or control metabolitc) concentrations in the substrate, f :D — B, the cell ata
fixed position in the domain will extract the valucs of this function at its location, f (d). This is a point of
B, which may be regarded as the control space for another simplc dynamical scheme, modcling the
dynamics within the standard ccll. Let g4 (f) = f (d). Then g4 is the static coupling function from
master (o slave. But there arc many slaves, cach distinguished by its own location, hence coupling
function. The dirccted graph is thus a radial spray, or star, of slaves of a common master, as shown in Fig.
9. If in addition cach ccli may be a sourcc or sink of biochemical (mctabolite) controls, then cach
connection is a bicoupling.

* Neural Nets. Ncural nets may be regarded as a special case of CDS network. The dynamical nodes are
all identical schemes, in which a simple scheme with onc dimcensional control and state spaces has a single
basin of attraction (with a static attractor). The control valuc adjusts the location of the attractor, and there
arc no bifurcations. The planar response diagram has an inclined linc as attractrix. The coupling schemces
arc all identical as well, and arc simple amplificrs, g (¢,5)=¢s. All nodes interconnecied, as shown (Fig.
10). The intelligence of a ncural net depends on the matrix of controls, £ =(eij). This stratcgy, called
connectionism, may be extended dircctly to any CDS.

* Biological organ example. Organs typically contain many different types of cells. In the unusual case
that there were only one type of cell, one could imagine a model for the organ consisting of a singlc
cellular dynamical system. This is the casc with Zceman’s heart model, An cxplicit cellular dynamical
modecl for the organ will requirc an cxplicit model for the standard cell, which (with luck) may be found in
the specialized litcrature devoted to that cell.

However, if there arc two distinct cells, then cach will give risc to a distinct cellular dynamical modcl. The
modcl for the organ will then consist of a coupled systcm of two cellular dynamical systems, onc for cach
ccll type. More gencrally, the organ model will consist of a complex dynamical system, comprising a
network of distinet cellular dynamical models, onc for cach of the distinct celi types, visualized
(intcrmixcd) in a common physical substratc.



Figure 9. A star complex

Figure 10. Neural Net
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Moreover, even if there is only a single cell type in the organ (for example, a liver cell) a network of
cellular models may nevertheless be required. For there are usually at least two important compartments in
the organ: the intracellular space, and the extracellular space. The concentration of control metabolites or
humoral substances (such as the pacemaker substance in Zeeman’s heart model) in the extracellular space
contributes a second cellular dynamical system to the model. This second system arises through the
discretization of the nonlinear Fickian diffusion cquation for the perfusion of metabolites through the
organ. Even if the substance in the two compartments is the same (for example, cortisol in the adrenal
cortex), there will be two distinct cellular systems in the organ model. The dynamics of the extracellular
substance will be modeled by a (discretized) reaction/diffusion system, while the intracellular dynamics
may be modeled by reaction kinetics alone.

8. Simulation methods

After the strategies of complex dynamical systems have been used in an application, the resulting model is
simply a large dynamical scheme. That is, a system of coupled ordinary differential equations with free
control parameters, or partial differential equations of evolution type (parabolic or hyperbolic) must be
explored experimentally. The goal of the exploration is to obtain the response diagram, which is the useful
outcome of the qualitative modeling activity. As the exploration of the response diagram is an unfamiliar
goal for simulation, we review here some of the strategies uscd.

* Orbit Methods. When the dynamical scheme consists of a modest number of ordinary differential
equations of first order, simulation by the standard digital algorithms (Euler, Runge-Kutta and so on) or
analog techniques provide curve tracing in the bifurcation diagram. A large number of curves, for various
values of control parameters and initial conditions, may reveal the principal features of the diagram. Monte
Carlo techniques are sometimes used to select the control parameters and/or initial states.

* Relaxation Methods. When partial differential equations (reaction-diffusion, hydrodynamic, plasma,
liquid crystal, solid state, clastodynamic, and so on) are part of the model, they may be trcated most
naturally as dynamical systems by discretization of the spatial variables. Thus, the infinite-dimensional
state spaces are projected into finitc-dimensional approximations. Finally, these may be treated by orbit
methods, to obtain a bifurcation diagram with loci of attraction and separation. This is esscntially the
relaxation technique of Southwell (method-of-lines).

* Dynasim Methods. Whether small or large, ordinary or partial, the exploration of a bifurcation diagram
‘by analog, digital, or hybrid simulation is extremely time intensive. A considcrable gain in speed may be
obtaincd with dynasim methods. (Abraham, 1979) Here, special purpose hardware traces a large numbcer of
orbits in parallel. Having thus found all the most probable attractors at once, time is reversed and the basin
of each is filled with its own color. This process is repeated (perhaps in parallel) for different values of the
control parametcrs. When dimensions are large, new techniques of visualization may be nceded.
(Insclberg, 1985)

* Distributed processing. For the simulation of a complex dynamical model, the static coupling schemes
may be implemented by look-up tables, or fast arithmetic. It is the dynamical schemes which are FLOP
intensive. It makes sense, if distributed processors are available, to devote one to cach dynamical node.
Thus, the architecture of the simulation device is identical to that of the complex dynamical model, and
similar to that of the target natural system. Message passing traffic may be decreased by the following
trick, if the model is loosely coupled. This means that although an output may be changing rapidly, the
nodc it controls is only slowly sensitive to the rapid changes. Thus, occasional updates of control may be
transmitted in place of rapid ones. Further, if all current states arc broadcast on a schedule to the static
nodes and controls of the rapid integration routines running in cach processor, the node precessors may (if
they can afford the timc) make predictions of the next broadcast. A cheap predictor, such as Euler
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integration, may be used to change the local controls linearly with each local time step, in ignorance of the
rcal values at the neighboring nodes.

* Numerical methods for cellular systems. The destiny of a cellular dynamical model is a computer
program for qualitative simulation. Although we may expect someday a theory of these models, it may not
replace simulation as the dominant method of science, but only supplement it. Thus, we nced a technology
of numerical methods adapted to these large-scale simulations. Beyond brute-force integration of
thousands of identical copies of the standard dynamical scheme with differing (and slowly changing)
values of the control parameters, lookup-table methods might be employed for acceleration or economy. In
any case, massively parallel hardware and software will be needed, along with new methods of monitoring
large numbers of state variables. Color graphics is the method of choice at the moment, and we may
imagine a color movie projected upon a model of the physical substrate of the organ as the monitoring
scheme.

The current state of the art seems to be simple experiments with standard cells culled from the literature of
the physical sciences, such as the Duffing pendulum, the cusp catastrophe, and so on. From these
experiments, we may try to recognize some functions of natural intelligence, such as memory, perception,
decision, lcarning, and the like, as in neural net thcory.

9. Global modeling

Now we discuss the adaptation of the techniques of complex dynamical systems theory to the modeling of
large-scale economic systems in contact with environmental factors. Recent developments in the
mathematical theory of complex and cellular dynamical (CD) systems and their simulation give new
promise to the social sciences, especially, economics. Some proposals for CD economic system
simulations (sec, for example, Abraham, 1990A; and Abraham, 1990B) are based on this tcchnology.

Biospherics is the synthesis of the biological and earth sciences (biogeography, atmospheric science,
climatology, occanography, geology and the like) into a unified understanding of planctary ecology and
physiology (sce Snyder, 1985; and, Lovelock, 1990). It is increasingly important to study biospherics, and
CD models are promising here as well. The adoption of a common modcling strategy for biospherics and
for economics enables their combination into a single massive model, in which environmental factors are
coupled to the economy. In this section, we apply the techniques of cellular erodynamics to the problem of
building a spatially distributed model coupling biospherics and cconomics.

* Spatial economic models. Spatial economics denotes a theory of spatially extended economic systems,
in which transportation times and other geographic factors may be considered (sce Puu.) We consider now
a global model, in which the entire globe is covered by more-or-less uniform plaques, of a size such that
even the smallest country has several plaques within its borders. We chose an economic model for the
dynamics of a regional cconomic system, as for example in Chapter 3 of (Goodwin, 1991). By appropriate
choice of parameters, adapt a copy of the model to each plaque. Finally, couple cach local regional model
to cach of the other regions, with appropriate coupling functions. The result is a cellular dynamical modcl
for the global economy: a spatial economic model. Simulation of the modcl will be most natural on a
massively parallcl supercomputer.

* Biospheric models. Spatially distributed models for various aspects of the biosphere currently exist in
various laboratories. In particular, those aspects intcrvening in the climate --- such as atmospheric
dynamics and chemistry (including the greenhouse effect and the ozone holc), solar radiation, ocean
currents --- have been extensively modeled. Other aspects, such as those of the hydrologic cycle --- forest
transpiration, ground water, top soil --- and others, such as toxic wastes, have models in development,
cither in laboratories or in consumer-level computer games such as SimEarth (Maxus Software, Santa
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Clara, CA). The synthesis of these distinct CD models into a complex CD model for the biopshere is a
relatively simple matter, as they are devised in the common modeling environment of complex dynamical
systems theory.

* Erodynamic models. Consider now two CD models, one for the global economy, the other for the
biosphere. Suppose that both are made of cells for the same regions. All that is neccesary now is to couple
the two CD models into a single system. This could be done most simply by coupling, in each region, the
economic cell and the biospheric cell. This coupling is the subject of current research in the new field of
environmental economics. More general coupling would allow the influence of the biospherics of all
regions upon the economics of each region, and vice versa. Such coupling, in the style of conncctionist
ncural ncts, might be created by an evolving and leaming system. In any case, the result is a monolithic
CD model for the spatially distributed economic biosphere, a cellular erodynamic model.

10. Conclusion

While this simple prescription for a world model could be made immediately, perhaps little could be
Icarned from it. This is because the associated mathematics, the theory of massive CD systems, is still in
its infancy. Along with the advances in massively parallel computers and the arts of scientific
visualization, this theory may be crucial to our future.

Acknowledgments. A recent book by Richard Goodwin has been very stimulating for this approach. It is a
pleasure to thank Richard Goodwin, K. Velupillai, Graciela Chichilnisky, and Goeffrey Heal for helpful
discussions of these ideas.
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