Dynamics

Dynamics (also known as dynamical systems thebry) is the branch of
mathematics dealing with patterns in space and time. It has
coevolved with our concepts of time, providing abstract models and
cognitive strategies for calendars, élocks, theories of history,
and so on. For example, 1linear progress is modeled on a
geometrical line, and historical cycles on geometrical circles.
Since 1Isaac Newton's Principia Mathematica of 1687, the
mathematical structures known as differential equations have
dominated dynamics. Our current understanding of these models for
dynamical processes in nature is based on the revolutionary work of
Henri Poincaré a century ago. The chief features of this new
understanding are attractors and their bifurcations. There are
three types of attractors, namely static, periodic, and chaotic,
and we will give examples of these below. The recent developments
in this theory, including chaotic and fractal models, are just
beginning to have an impact on philosophy and criticism. This
article will suggest some applications of dynamics to the theory of

time.

Hierarchies and Fractals

As a first step,vconsider the model of time as a hierarchical
structure. Time has different strata, or time scales, rather than

a single cosmic time or universal clock. Such a model, with eight



levels, was proposed by J. T. Fraser in 1975 in Chapter 12 of his
Of Time, Passion, and Knowledge. In an extreme version of this
hierarchical model of time, there might be an infinity of strata,
with self-similarity across scales. Such a model was proposed in
1975 by the McKenna brothers in The Invisible Landscape. Thus,
zooming into the microstructure of time one gets lost, as each new
view is much 1like the 1last. This is the structure of the
mathematical objects called fractals, which abound in the
mathematical theory of dynamics. (For examples see The Beauty of
Fractals under Further Readings.) The specific fit of a fractal
curve to the graph of cultural novelty as a function of time was
discussed by Terence McKenna in 1987. For nonlinearity, that is a
temporal model which takes the prize. Following this trend, we may
find among the new ideas of dynamics some models for time with a

richer structure than those considered previously: fractal time.

Lines, Cycles, and Chaos

As described above, lihes and cycles have long been employed as
models for time, on various strata: psychological, social,
historical, and so on. For the sake of discussion, let us consider
the historical stratum. The linear-progress paradigm for history
may be modeled by a geometrical line or curve. We may construct a
dynamical model from the concept of a static attractor in dynamical
systems theory. Thus, consider the history of a region as

represented by a moving point in space, to which each position has



a prescribed motion. As history evolves, it must follow these
rules of motion, changing from point to point as it moves. This is
a dynamical model. Eventually, the path of this history approaches
closer and closer to a fixed point, and moves more and more slowly.
It essentially stops at the destination, like a train at a station.
This model is an example of a static attractor, and it models the
idea of linear progress with an apocalypse, an end of history. Of
course, this represents a distant view of history: from up close,
history is always chaotic.

Next, consider the cyclic paradigm for history. This may be
modeled by a geometric circle. We now construct a dynamical model
for cyclic history using the periodic attractor of dynamical
systems theory. Consider again the history of a region represented
as a point moving in a space with a dynamical rule prescribed at
each point. Eventually, the moving point gets closer and closer to
a loop, then goes around and around this loop, completing each
cycle in exactly the same period of time. This model is an example
of a periodic attractor, and it models the idea of history
repeating itself exactly in periods of a fixed length. These two
examples are classic, and have dominated historiography from
antiquity. In other strata of time, the static and periodic
behavior are also familiar.

But now we have a new model, this time using the chaotic
attractor concept of dynamical systems theory. Again, consider the
historical stratum for our example, with the history of a region
represented by a point moving in a geometrical space of three or

more dimensions. The track left by this moving point, a curve



which wanders about the space without crossing itself, moves closer
and closer to a thick loop which resembles a coil of rope. It then
moves around and around the loop, completing each cycle in a
different period of time, and never yisiting the same point twice.
This model is an example of a chaotic attractor, and models a
roughly cyclic history, which almost repeats itself, but at
unpredictable intervals. As a time series, this behavior appears

to be a cyclical model with noise.

Evolution and Bifurcations

Periods of disintegration in thé world of ideas, which result in
numerous small disciplines scorning each other, are followed by
opposing movements of integration, which result in numerous small
disciplines in a tightly coupled network. Closely related examples
of integrative movements are the study of time, and general
evolution theory. The latter, part of the systems theory approach
growing since World War II, studies the universal patterns
presented by all evolving systems. The recognition of these
patterns in human prehistory and history, following the pioneering
ideas of Ibn Khaldun and Vico from centuries past, is one of the
main projects of general evolution theory. Dynamical systems
theory provides models for the space-time patterns observed by
general evolution theorists on all levels of the evolutionary
hierarchy, and again, we will illustrate these model patterns on

the historical level. cConsider a dynamical system, characterized



by a set of attractors dispersed within a geometrical space of
virtual states, which we will call the state "space." This systenm
is generated by a fixed rule of motion attached to each point in
the space. After starting at one initial point and following these
rules, a model history ends up at one of these attractors, whether
a point, a cycle, or a chaotic motion. This fixed system is too
rigid to model evolution in the natural world, or in the history of
a social system, in which the rules are slowly changing in time.
What happens to the dynamical system when the rules of motion
shift? Well, the configuration of attractors shifts. And
eventually, while wandering about in the state "space," they may be
radically altered. Such transformations are called bifurcations,
and dynamical systems theory is gradually developing an atlas of
them.

The emerging atlas of bifurcations is organized in three
categories: subtle, explosive, and catastrophic. These model
transformations may be applied to evolutionary studies in any
empirical domain to enhance our understanding. For example,
imagine a dynamical model with a single attractor, a point. A
model history in this context is a curve of linear progress, coming
to rest at an apocalyptic state, as described above. But then the
rules begin to drift, as environmental factors evolve, for example,
and at some time the point attractor becomes a very small cycle,
which then grows. In mathematics, this is called a Hopf
bifurcation. It is a subtle bifurcation, in that at first it is
qualitatively invisible. Eventually, one sees that the course of

time has changed from a static state to a cyclic oscillation.



Similarly, a periodic attractor may subtly change to a chaotic
attractor, and one observes that the periods of history gradually
become irregular. For the next example, imagine a model with a
point attractor as above, where once again the rules gradually
begin to drift. And again, the point attractor drifts, and turns
into a periodic attractor. But in this case, it suddenly jumps
from a point to a cycle of a large girth. This is an explosive
bifurcation, and might be applied to a social transformation such
as the emergence of civilization, the Renaissance, or the
Reformation. Explosive bifurcations of chaotic attractors are
characterized by a sudden increase in the magnitude of their
chaotic behavior. After one of these, another explosion (in
reverse) might suddenly decrease the amount of chaos. This is
typical of the transient phase of a social transformation or
revolution.

For another example, imagine a model with two point attractors.
They represent static conditions for two different apocalyptic
states, such as Communism and Capitalism, or let us say, A and B.
All initial states might be tested, in principle, to see if they
evolve to rest at A or B. Those that end up at A fill up a certain
area of the state space, called the basin of attractor A. Those
that evolve to rest at B fill out the basin of B. Between these
two basins there is a thin region of indecision, called the
separatrix, whichvdivides the entire state space into the two
basins. Now we imagine, in this model, that a history starting up
in the A basin has come to rest at A. Then the rules begin to

change, and the two point attractors begin to drift about in their



basins. The history we are observing tracks A, following its
motion closely. The separatrix also moves. Attractor A approaches
closer and closer to the separatrix. At the climactic moment, they
collide, and vanish! Such an event is called a catastrophic
bifurcation. After the event, the rules continue to drift and
there is only one attractor, the point B. Our history finds itself
near the point where A was when it ceased to be an attractor. This
point is now in the basin of B, the only remaining attractor. our
history then rushes off, attracted to B. Here we have a model for
a catastrophic social transformation, such as the end of an era.
While eras end and are reborn in historical bifurcations, history

can only end once.

Conclusion

In these examples we have seen just a few of the ways in which
dynamical systems theory can extend our view of time. Fractal
geometry gives us models for a richer geometry of time, while
dynamics provides chaotic models for the behavior of time and an
atlas of bifurcations for modeling sudden transformations in
evolution. We may combine these into very complex temporal models,
in which static periods give way to chaotic motions, and evolution
proceeds in epochs alternatively static, periodic, or chaotic, and
punctuated by transformations of subtle, explosive, or catastrophic
character. Chaotic attractors are themselves fractal objects, and

chaos theory empowers us to make more realistic temporal models



than those of the past. We may call them models of Kairotic time.

See also Hierarchical Theory of Time; Kairos; Time Series.

[R.H.A.]
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