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Abstract.

Several endomorphisms of the plane have been constructed by coupling two logistic
maps. Here we study the dynamics occurring in one of them, a twisted version due to J.
Dorband, which (like the other models) is rich in global bifurcations. By use of the
critical curves, absorbing and invariant areas are determined, inside which global
bifurcations of the attracting sets (fixed points, closed invariant curves, cycles or
chaotic attractors) take place. The basins of attraction of the absorbing areas are

determined, together with their bifurcations.

1. Introduction.

Sequences of bifurcations governing the route to chaos in one-dimensional
endomorphisms have been extensively studied since 1975 [Mira, 1975], (Gumowski &
Mira, 1975a,b,c, 1980a,b], we refer to [Mira, 1987] as a review of the main results
obtained so far. However, models reducing to two-dimensional endomorphisms are
often obtained in several fields. Up to now, they have been mainly studied by
numerical simulations. Several properties and bifurcations may be characterfzed, and
basic tools of a theory obtained, by use of the critical curves. The critical curves of a
two-dimensional endomorphism, first considered by. Gumowski and Mira, are
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generalizations of the critical points of a one-dimensional endomorphism. In the latter,
the fundamental role played by critical points in determining and classifying global
bifurcations (in particular homoclinic bifurcations), has been developed by several
authors; besides the references cited above, see [Collet & Eckmann, 1980}, [Devaney,
1989). The fundamental role played by critical curves in two-dimensional
endomorphisms has been developed by Mira since 1965 [Mira, 1965, 1966, 1969],
[Gumowski & Mira, 1977, 1978, 1980a, b] and recently by his collaborators (as we shall
recall in Section 3).

In this paper we analyse an exemplary case. We make use of extensive simulations to -
show the particular role played by critical curves in determining properties and global
bifurcations. The chosen example is the family of two-dimensional maps T,, which
represents a coupled pair of logistic oscillators, T/\:R°—>R’, (xy) = (¥',y'), as a
function of a real parameter A, defined by:

{X’:(l—k)x + 42y(1-y)
y'=(1-2)y + 42x(1-x)

(1) Aegfo,1]

To simplify the notation, in the following we shall write T instead of Ty, as the
dependence on the real parameter A is understood. This map may be considered as a
model of a two-dimensional oscillator. Several two-dimensional models of oscillators,
derived from various applied fields (mainly physics and engineering, but also biology,
ecology and economics), have been published up to now. See, to cite a few, [Kaneko,
1983], [Hogg & Huberman, 1984], [Van Biskirk & Jeffries, 1985], [Lorenz, 1989,
[Taylor, 1990], ([De Sousa Vieira, Lichtenberg & Lieberman, 1991}, [Gaertner &
Jungeilges, 1992], [Aicardi & Invernizzi, 1992], [Lopez-Ruiz & Perez-Garcia, 1992]. The
map here considered is a particular case. However, the methodology we use may be
applied to more general models. '

The plan of the work is as follows. The fixed points of T, and their local stability
analysis, will be determined in Section 2. In Section 3 we shall briefly recall some
definitions and properties concerning the critical curves, to be used in subsequent
sections. As it is immediate to see, T is a map with a non-unique inverse. The
definition of its inverses (identifying their number, domains and codomains), is carried
out in Section 4. In Section 5 we consider the regimes in which there exist two disjoint
symmetric attractors, not fixed points of T, and in Section 6 the regimes in which T
possesses a unique attractor, with symmetry. Inside the basins of attraction we shall
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determine absorbing areas, bounded by arcs of critical curves. The critical curves will
be a basic analytical tool of our study. They will be used:

(a) to define the domains and codomains of the inverses of T (which, in their turn, are
the basis for the interpretation of the dynamics of T);

(b) to determine absorbing areas, simply connected or annular;

(c) to characterize the global bifurcations (that is, qualitative changes in the dynamics
of T, which are not related to the local bifurcations of some cycle, or periodic orbit, of

T); in particular, contact bifurcations.

2. Symmetry and fixed points of T. '

In this section we establish symmetry properties in the dynamics of the double
logistic map T, and identify its fixed points. The eigenvalues (or characteristic
miltipliers) and eigenvectors of the derivative (or jacobian matrix) of T, DT, evaluated

at these points, are determined via classical analysis.

2.1 Symmetry.

Let
P:R*R?, (xy) =+ (y.x)

denote the reflection through the diagonal,
(2) A={(x,x)}CR?.

Proposition 2.1 T is symmetric, or To® = Po T.
Proof. Let f;(x,y)=(1-A)x+4Ay(1-y). Then

P o T(x,y)=P(T(x,y))=P(E, (x,3), {; (v, x))=(f,(y,x), £;(x,7))=T(y,x)=T o P(x,y).
Thus, T commutes with . We have the following corollaries:

Corollary 2.1 The diagonal A is invariant: T (A)=A4A .

Corollary 2.2 If P is a fixed point of T, then P(P) is also.

Corollary 2.3 If P € A is a fixed point of T, then 1(1,1), r €R,

is an eigenvector of DT(P).
Corollary 2.4 If { p;, i €N} is an orbit of T, then { ®(p;) , 1 €N } is also.

Corollary 2.3 will be proved in Section 2.4; the others are immediate.




2.2 Restriction of T to A.
We now focus on the dynamics of T restricted to the invariant diagonal A. Let
(z,3) € A and (7,2')=T(z,2), then the restriction T\ A reduces to a one-dimensional

map, say

(3) 2’ = g,(2)

where gy(z) is a logistic function in nonstandard form:
(4)  gz)=(1+3))z- 427

For its graph, note that g’A(z)=1+3,\-8)‘z and g')((z)=-8,\<0 (for A>0). Thus, a local
maximum (called a critical point of rank-0 of g>‘) exists, for A>0, at c_1=%+ '8'17\ The
critical point of gy of rank-1 (in the sense of Julia and Fatou, that is, the locus of
points having two coincident preimages of rank-1) is the point c=gy(¢.,), and critical
points of g, of rank-(i+1) for i > 1 are the forward images (or iterates): c,-=g&+ Yc,y)
=g)(c). The fixed points of gy(z), solutions of the equation z=2z(1+3)X-42z), are the
origin, z}=0, and s“=%. About the multipliers, note that g')‘(0)= 1+31>1 and
gf\(% )=1-3) , which decreases from 1 to -2 as ) increases from 0 to 1, going negative as
) passes %, and crossing the flip-bifurcation value -1 at )\=% . The qualitative shapes of
the function g, as ) increases from O to 1 are shown in Fig.1 (for three particular

positions).

(2) (b) ()

(2]
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Fig. 1 Qualitative shapes of the function gy defined in (4).
(a): )‘=% , C.1=1, c=% ; (b): X=% , c_1=c=% ; (c): A=1, c_1=%, c=1, ¢,=0.

The dynamics of the map g, can be obtained from that of the Myrberg’s map, or of
the standard logistic map, by an homeomorphism. The complete description of the
complex bifurcation mechanism of type “box-within-a-box” (each box containing a
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sequence of flip-bifurcations known as Myrberg-cascade or Feigenbaum-cascade), can be
found in [Mira, 1987]. We recall the bifurcation diagram, shown in Fig.2, of z versus A
for 0.6 <A <1 (the interval 0<A<0.6, in which the fixed point s* is attracting, has
been omitted).

0.6 0.6

Fig. 2 Bifurcation diagram of g defined in (4); z versus .

The value A=),, =~ 0.8566 denotes the first accumulation value of the first Myrberg-
cascade, related to the sequence of flip-bifurcations starting from that of the fixed point
s* (the flip-bifurcation of s* opens the first box of the 2".kind, inside the first box of
the 1°-kind. See, for example, [Mira, 1987] for definitions). The value A=A, ~ 0.8929 is
the closure of the first box of the 2"%kind, homoclinic bifurcation of the fixed point s~
(that we shall reconsider in Section 5).

It is of wide use nowaday to say that the dynamics of gy enter in a chaotic regime
for A>X,,, this is due to the fact that infinitely many repelling cycles exist, and these
increase as ) increases up to A=1. We note however that for any given value of A,
bejond A,,, the asympthotic behaviour of the generic trajectory in (0,1) is either an
attracting cycle or cyclic-invariant chaotic intervals. The attracting cycles are rarely
observed (due to the existance of long chaotic transients coupled with numerical
truncation errors), and we may speak, in these cases, of “unstable-chaos”, reserving the
term “stable-chaos” for those values of X (bifurcation values) at which cyclic-invariant
chaotic intervals exist. In short, we shall use the term “chaotic regime’ or “chaotic
dynamics” to denote either the case of unstable-chaos or that of stable-chaos, noticing
that generally, numerical observations deal with the case of unstable-chaos, and
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justifying our choice because also in this case, closed invariant Cantor sets exist, on
which the dynamics of the map are chaotic (in the strict sense).

Similar considerations may be done for the dynamic behaviour of the two-
dimensional map T, and the same terms are used henceforth, with the meaning given
above. ‘

We note also that for any value A>%, the (unique) attracting set of the map gy
belongs to absorbing intervals or invariant intervals (defined in Section 3) bounded by

critical points.

2.3 Fixed points of T'. ,

Besides an attracting set of T at infinity (or at infinite distance from the origin), on
the Equator of Poincaré, T possesses four fixed points at finite distance, belonging to
the closed unitary square of the non-negative quadrant R?_, RE={(xy)€ R?: x>0,
y >0}, where, as we shall see, the interesting dynamics of T take place.

From Corollary 2.1 and the discussion of gy above it follows that the origin O=(0,0)
and the point S"=(;‘2—,%) are two fixed points of T on A. We determine now the fixed
points (x*y*) with x*# y* from direct computation. From the definition of T in (1)
(putting x'=x and y'=y), we get the following system:

x = 4y(1-y) = {y)
y = 4x(1-x) = f(x)

where f(x)=4x(1-x). It follows that if (x*,y*) is a fixed point of T with x* # y* then x*
and y"* are points of a 2-cycle of f(x). As the logistic function f(x) possesses only one 2-
cycle (see Fig.3), we get two more fixed points of T, and no others exist. The values of
x* and y* coordinates of the two fixed points, say Pi=(x",y*) and P5=(y*,x*),
symmetric with respect to A, can be obtained from the solutions, other than x=0 and
x=%, of the equation x=f£(f(x)). For x # 0 it is equivalent to

15 - 80x + 128x? - 64x° = 0
and factoring out the other solution already found, x=%-, we have:
(x-3)(16x? - 20x + 5) = 0

so that, assuming x*>y*, we get x"=(5+45)/8 and y*=(55)/8 (that is,
X" ~ 0.904508, y* ~ 0.345442).
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Fig. 3 Graph of £(x).
In summary, the four fixed points of T are:
(5)  0=(0,0),5=(},%), Pi=(x",5") , P3=(y",x")

where
(6)  x"=(5+8)/8,y" = (56)/8.

Note that, uncharacteristically, all the fixed points are independent of the control
parameter, A.

2.4 Eigenvalues and eigenvectors of DT at the fixed points.

The jacobian matrix of T as a function of the state, P=(x,y), and of the control
parameter, A, is :

(M DT(x,y;) = L/\l(-i_z,()ﬂ(ll.fﬂ]

We consider DT at the four fixed points, one at a time.
1. At the fixed point O=(0,0) we have :

1-A 4
DT(O;)) = [ o 1 ]

with eigenvalues s;=(1+43)) (with eigenvector r(1,1)) and s,=(1-5)) (with eigenvector
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1(1,-1)). Thus the origin is repelling along A, as s,>1 for any A>0. Along the
orthogonal direction we have attraction if A €(0,0.4) and repulsion, with s, <-1, if
A>0.4. Thus, the origin is a saddle for A €(0,0.4), and a repelling node for A>0.4.
The bifurcation occurring at A=0.4, a flip-bifurcation due to s,=-1, renders the
attracting branch of the saddle a repelling one, on which a repelling 2-cycle saddle
appears. See the schematic picture in Fig. 4, where the points of the 2-cycle, symmetric
with respect to A, are named R, and R,.

y{

() (b)

Fig. 4 Local invariant manifolds of the origin for A <0.4 in (a), for A> 0.4 in (b).

2. At the fixed point S"=(%, %) we have :

-2 -2X
-2 1-A

DT(S™;X) = ‘:

The eigenvalues of DT(S*) are s,=(1-3)\) (with eigenvector r(1,1)) and s,=(1+X) (with
eigenvector r{1,-1)). Thus along the direction orthogonal to A the fixed point §7 is
repelling for T, as s, >1 for any A>0. Along the direction of A we have attraction if
A €(0,0.8) and repulsion, with s;<-1, if A>0.6 . Stated otherwise, S* is a saddle of T.
for 1 €(0,0.6) and a repelling node for A>0.6. The bifurcation occurring at A=0586
(analogous to the one discussed above for the origin), creates a repelling two-cycle
saddle on the line A, the points of which are denoted by Q, and Q,. That is, at A=0.8
the following transition occurs: S* saddle of T — S* repelling node of T + two-cycle
Q;- Q; saddle of T (and it correponds to the flip-bifurcation of the fixed point s” for the
restriction of T to 4, g, ).

3. At the fixed point Pi=(x",y*) we have :




1-A 4/\(1-2y‘)}

DI(F) = L,\(sz*) 1-A

where the values of x* and y* have been given in (6). After straightforward algebraic
operations it may be seen that in this case we have the complex pair of eigenvalues s, ,
= (1-A\)£2\i , with modulus [s;3]= 1-2A+5A7 , so that [s,,]|< 1 for A€(0,0.4)
and |syy{> 1 for A>0.4. Thus, the fixed point Py is an attracting focus for
A €(0,0.4) and a repelling focus for A>04 . A Neimark-Hopf bifurcation occurs at
A=04.

‘4. Due to the symmetry property of T, the local analysis of DT(P3) is the same as
that of DT(P}), so that the fixed point P is an attracting focus for A €(0,0.4) and a
repelling focus for A >0.4 . .

3. Critical curves. _

In this section we recall some definitions and properties concerning the critical curves
of a two-dimensional endomorphism, depending on a real parameter A: p=T(p,A)=
(f(p,)),g(p,A)), where p=(x,y) is a point of R?, f and g are real valued continuous
functions;, piecewise continuously differentiable. The point p;=T¥(p), for i >1, is called
the image (or consequent, or forward iterate) of ramk-i of p. The preimages (or
antecedents, or backward iterates) of rank-i of p are the points which are mapped into
p after i applications of the map T. The critical curve of rank-1 of T, denoted as LC, is
the locus of points having at least two coincident preimages of rank-1. When fand g
are continuously differentiable functions, LC is generally the image by T of LC.,, where
LC., is the locus of points in which the jacobian of T vanishes :

LC,={peR’: |DT(p)|=0}; LC=T(LC,)
As LC., denotes the locus of the coincident preimages of LC, it results LC = T(LC.,),
however, note that LC_; € T"¥LC), and the inclusion is strict, LC., CTYLC), if T
possesses more than two preimages (as in the case which interests us in this work). In
such cases, the preimages of rank-1 of LC distinct from LC_, are called excess preimage
curves.

Critical curves of rank-(i+1) of T are the images of rank-i of the critical curve LC,
that is, LC,=T{(LC)=T"*¥LC.,), i 20, assuming LCy=LC. The critical curve LC
separates the plane into open regions. The points of each region possess the same
number of distinct preimages of rank-1. ‘

The critical curves play the same important role as critical points in one-dimensional
endomorphisms, in determining dynamic properties and bifurcations in maps with a
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nonunique inverse. Several properties may be found in [Gumowski & Mira, 1980a],
[Barugola, 1984, 1986], [Cathala, 1983, 1987, 1990], [Barugola & Cathala, 1992},
[Gardini, 1991, 1992a,b], [Gardini, Mira & Fournier, 1992), [Gardini, Cathala & Mira,
1992]. The critical curves have been used to determine the boundary of particular
trapping or invariant regions, called absorbing areas and chaotic areas (inside which
several bifurcations and transitions to chaotic regimes take place), and to characterize
the bifurcations related to these sets. We recall below some definitions.

A subset A of the plane is called trapping if it is mapped into itself by T, T(A) C A;
it is called invariant (or forward invariant) by T if T(A)=A, backward invariant by T if '
T Y(A)=A.

An absorbing area d' is a closed subset of the plane, bounded by a finite number of

arcs of critical curves, which is trapping, T(d’)Cd’, and for which a neighborhood
exists, the points of which have an image of finite rank in the interior of d’. Its basin of
attraction, 9(d’), is the open set of points having an image of finite rank in d’. Its
frontier (or boundary), F =38D =089, is backward invariant for T: T F)=9F. d’ may
contain one or several attractors, which may be chaotic or not.

An annular absorbing area is an absorbing area of annular shape, that is a simply
connected area deprived of the points of a hole in its interior.

A chaotic area d is an invariant area of d’, bounded by critical arcs or limit points of
critical points, which contains a chaotic invariant set. In the simplest cases, the
boundary of d is made up of a finite number of critical arcs. A chaotic area d may be
destroyed or modified by a non-classical bifurcation, called a contact bifurcation,
characterized by a contact between its boundary, 8d, and the boundary ¥ of its basin of
attraction [Gumowski & Mira 1980a, pp. 368-371]. After the bifurcation, in the region
which was before occupied by 4, in short the “old area d”, we may observe either a
chaotic transient towards one attractor (at finite or infinite distance), or a fuzzy
boundary (or fractal in the sense of Grebogi (Grebogi, Ott & Yorke, 1983]) separating
the basins of several attractors or chaotic areas. Several examples are described in
[Mira & Narayaninsamy, 1992], and we shall see several of these different cases
occurring in our map T.

Throughout this work, the arc of some curve connecting the point p to the point q
will be denoted by the contracted form pq.

In general, an absorbing area d’ can be determined with boundary, ad’, made up of a
finite number of critical arcs belonging to the images of an arc, say bgay, of LC.;.
Moreover, if a fixed point P* belonging to d' is expanding, but is not a snap-back
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repeller (SBR henceforth), then an annular absorbing area d] C d’ can be obtained, with
external and internal boundaries made up of a finite number of critical arcs belonging
to the images of the arc byay of LC.,. The bifurcation related to the appearance or
disappearance of an annular chaotic area (or equivalently of a hole W(P*) surrounding
the expanding fixed point) has been studied in [Barugola, Cathala & Mira, 1986] and
[Gardini, 1992a].

We recall that a fixed point P* of a map T is ezpanding if there exists a
neighbourhood U of P* such that all the eigenvalues of the jacobian matrix DT(p) are
greater than 1 in absolute value for all p € U. A point q is homoclinic to P* if there
exists a positive integer j such that T’(q)=P*, and a sequence of preimages of q
converges to P*. P* is a SBR if it is expanding and there exists a homoclinic point q of
P*.

The existence of infinitely many repelling cycles of T in a neighborhood of P* when
it is a SBR (i.e. the existence of chaos in the sense of Li and Yorke (1975]), has been
proven by Marotto [1978] for endomorphisms of R?, n > 2. In [Barugola, Cathala &
Mira, 1986] and [Gardini, 1992a] the bifurcation value is characterized in terms of
critical curves as follows. The bifurcation, say at A,, which determines the transition of
P* to SBR is a homoclinic bifurcation which involves critical points of T, and:

( i) - P* is not a SBR iff all the rank-1 preimages of P*, distinct from itself, are
external to d’,

(ii) - an annular absorbing area dj C d' exists iff P* is not a SBR;

(iii) - a value ), is the SBR bifurcation value iff (1) for A <A, all the rank-1 preimages
of P*, distinct from itself, are external to d’; and (2) at A=A, a preimage of rank-1 of
P* belongs to Ad’, and it possesses a sequence of preimages entering U, being U a
neighbourhood of P* such that all the eigenvalues of DT(p) are greater than 1 in
absolute value for any p € U.

Note that the property stated above, that at A=\, a preimage of rank-1 of P*
belongs to dd’, coupled with the fact that dd' consists of critical arcs, implies that at
the SBR bifurcation value, all the critical arcs T*(bqa,), for k greater than a suitable
value, pass through the fixed point P*.

4. Critical curves of T and construction of the frontier ¥ =39.

The map T defined in (1) is clearly a map with a nonunique inverse. The critical
curve LC of T (the locus of points having at least two coincident preimages of rank-1)
is the image of the locus of points in which the jacobian | DT(p) | (the determinant of
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DT(p) given in (7)) vanishes. That is, LC=T(LC_,;) where LC_, is the curve

2
(8) LC.: (x-1)(3-1)= (;4/;2

LC_, is an equilateral hyperbola of two branches. Let LC_,=LC_; ,ULC_,,, where
LC.,, denotes the upper branch (for x>—%— and y>% ) and LC_,, denotes the lower
branch (see Fig.5a). It follows that also the critical curve of rank-1, LC, consists of two
branches, say LC=LC,ULC,, where LC,=T(LC_,,) and LC,=T(LC_,,). The two
branches of LC_, and those of LC are symmetric with respect to A. The qualitative
shape of LC is shown in Fig.5b. LC separates the plane in three open regions, named ‘
Zo, Z, and Z,, locus of points having 0, 2 and 4 distinct preimages of rank-1,
respectively (see Fig.5b). We note that a point of LC, possesses only one preimage
(that is, two coincident preimages) of rank-1 in a point of LC_;,, while a point p
belonging to LC, possesses two coincident preimages in a point of LC_;, plus two
distinct preimages of rank-1, called excess preimages of p (belonging to the excess
preimages curves of LC,). Numerically computed excess preimage curves of LC,,
denoted as LC®], and LC%,, are shown in Fig.5c. These curves, together with the
branches LC_; , and LC_, ,, separate the plane into disjoint regions, which are distinct
preimages of the regions Z, and Z,. That is, a point p € Z, has four preimages of rank-
1, each belonging to one of the hatched regions of Fig.5¢c (bounded by LC_, , and its
excess preimage curves LC‘], and LC?,), while a point p€Z, has two distinct
preimages in the remaining regions, one above and one below the branch LC., , .

The critical points of the restriction of T to A, g, already denoted by ¢, ¢;,i>1in
Section 2.2, belong to the intersection of the critical curves LC, and LC; , with A. That
is, c.;=LC,,NA, c=LC,NA and c;=Tc)e T(LC,)N A, ¥V i>1. We denote also
c.13=LC.;3NA, ¢;=LCyN A and ¢;,=T(,) € T(LCHNA, Vi>1.

In Fig. 5b, we see that LC_; ,NLC, consists of two points, named 29 (in the region
below A) and its symmetric af (above A). We shall see, in the following sections 5 and
6, that for A €(0.4,1) an absorbing area d’ is determined, bounded by critical arcs
belonging to ajaj of LC, and its images.

4.1 Basins of attraction of the attracting fixed points of T'.

The intersection between the curves LC_, and LC does not occur for any value of A in
the range 0 <\ <0.4. However in this range the fixed points Py, i=1,2, are a.‘ttra.cting,
and the determination of an absorbing area is less important. We are interested in the
direct determination of the basins of attraction D(P}), i=1,2, of the attracting fixed
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(2)

(b)

(c)

Fig.5 A=0.5 Curve LC_, =LC_; ;ULC_,, in (a); curve LC=LC,ULC; in (b);
excess preimage curves LC_‘{' » and LCf{ y in (c).
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points. As in this range of A-values the origin O and the point S* are two saddles of T,
we may expect that the boundary of I(P) involves the stable sets of the saddles,
W(O) and W*(S*). Moreover, denoting 3=3(P7)U B(P3), then % (where the overbar
denotes the closure) is the locus of points having bounded trajectories in the plane, so
that its frontier F =83, which we shall call the ezternal frontier, is also the boundary
of the basin of attraction of points at infinity, that is, of the basin of the Equator of
Poincaré, and we may expect that F contains only the stable set of the origin.

We have performed numerical computations of the basins 9(P}) and of 9, which we
discuss below, distinguishing the intervals 0<X <0.2 and 0.2< <04, and showing

that at A\=0.2 the first bifurcation of the two basins D(P}) occurs. The bifurcation
value A=0.2 is the value of A at which occurs the first contact between LC.,; and LG,,
in the point O. In particular, for 0<A<0.2, the critical points c.;; and c, belong to
the negative quadrant of the plane, at A=0.2c_,,=¢,=0, while for A>0.2 ¢, and ¢,

belong to R? | so that the region Z, enters R% .

4.2 Basins in the first regime, 0< A <0.2.

For 0< X< 0.2, the origin belongs to Z,, so that only one preimage of rank-1 of the
origin exists distinct from O, say O_,;, belonging to A. The stable set W*(O) consists
of two arcs, connecting O and O_;;, symmetric with respect to A. The stable set
W*(8*) is the segment OO_, ; on A, which is backward invariant by T. It follows that
the external frontier ¥ = W*(O) is made up of two arcs and their endpoints, while
3D(P3) consists of the segment OO, ;=W°(S*) on A and of the arc of W¥(O)
connecting O and O_,, below A. The basin D(P}) is the symmetric image of B(P])

with respect to A, and both are simply-connected. Two examples are shown in Fig. 6.

4.3 Basins in the second regime, 0.2<A <0.4.

For 0.2<) < 0.4, we have again §=W’(O) made up of two arcs, and D becomes '

smaller as ) increases, maintaining the same qualitative shape (see the examples in
Fig.7a and Fig.7c). Changes occur in the stable set of the saddle S$*. The segment
connecting the origin to c, now belongs to the region Z, Thus W(S%) (which
determines the boundaries of D(P})), made up of the segment OO_, , on A and of all
its preimages of any rank, now has a more complex structure. It contains infinitely
many arcs, which accumulate on the external frontier . In fact, note that the four
preimages of the arc Oc, are the arcs Oc.,, and c£,,0.,, on A; and O_; 5¢.;; and
O.1,3C-1,5 On the straight line issuing from c_, ; and orthogonal to A (see Fig.7b and
14




(a) A=0.1

(d) A=0.2

Fig. 6 (a) A=0.1, T=shaded area, F=8%; (b) A=0.1, D(P})=shaded area;
(c) A=0.2, D=shaded area, F=39; (d) A=0.1, D(P7)=shaded area.
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Fig.7 (2) A=0.3, D=shaded area, ¥=3%; (b) A=0.3, B(P})=shaded area;
(c) A=0.4, D=shaded area, F=3%; (d) A=0.4, D(P;)=shaded area.
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Fig.7d). The last two segments belong to Z, and possess two rank-1 preimages, one in
Z, and one in Z,, and so on. We have an infinite sequence of preimages of two curve
segments, one in Z, and one in Z, (issuing from points on A which accumulates on O
and O_, ;). It follows that the basin of attraction B(P3) is no longer simply-connected.
Let us call the immediate basin, Do(P}), the simply-connected component of B(P})
containing the fixed point P}. The total basin, B(P})= U T (Do(P})), is disconnected
and made up of infinitely many components, the 'i)%iomages of any rank of the
immediate basin. The boundary of each connected component of the total basin I(P7)
belongs to the stable set of S* (because the boundary of the immediate basin belongs to
the stable set of §*). In the examples of Fig. 7b and Fig.7d the shaded areas show the
basin D(P}), and the symmetric white areas comprise the basin I(P3).

The total basins B(P}) and D(P3) will ultimately have a complicated structure of
areas above and below the line A. There follows a sort of uncertainty with respect to
the destiny of points near the external frontier §: we cannot predict if a numerically
computed trajectory will converge to P7 or P3.

Note that the bifurcation of the basins occurring at A=02is a global bifurcation
characterized in terms of critical curves. In fact, it is due to the contact (and then
intersection) of the critical curve LC, with the backward invariant sets F =W*O) and
W, and the result of this contact is an explosion of the curve segments which
constitute the stable set W*(S*) (via the entrance of the region Z, bounded by LC, in
the area 9).

Any point outside the area ® bounded by ¥ has an unbounded trajectory, not only

for the values of A examined so far, but for any A>0.

4.4 Beyond the bifurcation at A=0.4.

At A =0.4 the flip bifurcation of the origin and the Neimark-Hopf bifurcation of the
fixed points P7, i=1,2, simultaneously occur. The effect of these bifurcations is a new
composition of the backward invariant set ¥, and the appearance of new symmetric
attracting sets. As already noticed, for A>0.4 an absorbing area d’ can be computed,
and D denotes its basin of attraction, whose boundary ¥ separates in the plane those
points having bounded trajectories from those with unbounded ones. This external
frontier F is clearly related to the backward invariant set F previously described, in the
sense that it is formed of arcs involving the origin and the periodic points bifurcated
from it.

For 0.4 <) <)\, ~0.7596 the 2-cycle R,-R, bifurcated from O is a saddle, so that
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& = W(R,-R;), and the stable set W(R-R;) consists of arcs whose endpoints are the
periodic points O, R,, R, and their preimages of any rank [Mira, 1992]. The qualitative
shape of ¥ in this interval of A-values is shown in the examples of Fig. 8a and Fig. 8c.

As regards the study of the dynamics of T in 9, it may be divided in two regimes,
called the third and fourth. In the third one, which shall be considered in Section 5, for
0.4<A<A* (where A\*=0.70209 is a bifurcation value to be discussed below), 9
contains two disjoint symmetric attractors, belonging to two disjoint symmetric
absorbing areas, d) and d} (d} U dj C d'), with two disjoint basins of attraction 9; and
9, respectively, such that =%, Ud,. In the fourth regime, considered in Section 6, for '
A* <X <1, D contains only one absorbing area d' (symmetric with respect to A). These
regimes are separated by a contact bifurcation, at A =X*, between the boundaries of the
invariant chaotic areas existing at A=)* and the boundaries of their basins of
attraction, that will be described at the end of Section &.

4.5 Basins in the third regime, 0.4 < <A* ~0.70209.

As stated above, for values of X in the third regime, the map T possesses two disjoint
symmetric attractors, say A; and A,. These are two closed invariant curves I'y and T,
(bifurcated from the focal fixed points P] and P3) while these are attracting, or cycles
of T, or chaotic invariant sets, belonging to the absorbing areas d} and dj. It is clear
that the two basins of attraction ¥, and 9, are separated by the segment OO_, ; of the
invariant line A and its preimages of any rank, that is, the set —VWg"—) while the fixed
point S* is a saddle, i.e. for X £ 0.5, and the closure of the stable set of the 2-cycle Q-
Q, on A, bifurcated from S*, for A> 0.6 in this third regime. These boundaries are
qualitatively similar to those already described above in the second regime. We note
that with the preimages of rank 1, 2 and 3 of the segment OO_,;, the immediate
basins, say ¥y, and B ,, are obtained (two examples are shown in Fig.8b and
Fig.8d). That is, 9 ; is the largest simply connected area of ¥, which includes A, so
that the total basin 9, itself is given by the union of all the preimages of Dy,
D= U T™Dy,). It is clear that infinitely many preimages of P, , exist, and the areas
T"‘E%;, ,) accumulate on the external frontier ¥ as n — oo. The symmetric areas belong
to T™(D, ;) and give D,

As in the second regime, the total basins 9, and D, will ultimately have a
¢omplicated structure of areas above and below the line A, and there is sensitive
dependence on initial conditions near the external frontier ¥: we cannot predict if a
computed trajectory will fall eventually into Dy, ; or Dy,
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Fig. 8 (a) A=0.5, =shaded area, F=0%; (b) A=0.5, D,=black area;
(c) A=0.7, D=shaded area, F=3%F; (d) A=0.7, D,=black area.
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In the example shown in Fig.8b, the attractor A, in the immediate basin 9, , is an
invariant closed curve I',, and its total basin is the collection of white areas. The black
areas give the total basin 9,. In Fig.8d the attractor A, in the immediate basin 3 ,
(white area) is an invariant chaotic annular area; the value of X is near the bifurcation
value )\*, as can be deduced from the closeness of the boundary of the invariant chaotic

area to the boundary of its immediate basin.

4.6 Basins in the fourth regime \*<A<1.

For M*< ) <1 the complicated structure of two disjoint basins no longer exists, a .
unique absorbing area d’ can be determined with the images of the arc agag of LC,. It
includes the absorbing interval of the restriction of T to A, and its basin of attraction
is the simply connected domain @, bounded by the external frontier ¥. The qualitative
shape of ¥ is similar to that of Fig.8c until the 2-cycle R;-R, is a saddle, i.e. for
A* <A<\, ~0.7596. At A=), a pitchfork bifurcation of this cycle occurs, such that for
A>), the 2-cycle Ry-R, becomes a repelling node and a couple of 2-cycle saddles
appear on F. Thus, as X increases, the dynamics of T in D becomes more complex, and
also the dynamics of T in the backward invariant set F become more complicated. In
fact, from the couple of 2-cycle saddles a sequence of bifurcations of type box-within-a-
box is initiated, so that the resulting set ¥ becomes formed of invariant curve segments
with a complex structure, and may also become a fractal set. These obsevations
regarding the external frontier ¥, which may be found in [Mira, 1992], need a deeper
analysis, however we do not pursue further our study of ¥ and in the following sections
we will consider the dynamics of T inside 9.

We close this Section observing that the last value of A at which a bounded invariant
set exists is A=1, and at A=1 9 reduces to the closed unit square. This is a particular
bifurcation value, discussed at the end of Section 6, as well as the “explosive”
dynamics of T for the last regime, that is for A >1 (although not of interest in

applications), when an absorbing region no longer exists, and neither does 9.

5. Dynamics of T in the third regime.

As we have described in Section 4, to study the dynamics of T in this regime
(0.4< ) <)) it is sufficient to consider points of the immediate basin 9. In fact,
symmetric dynamics occur in the symmetric immediate basin ¥, ,, and the destiny of
the trajectory starting from any other point of the plane may be deduced from a figure
like that of Fig.8b or Fig.8d. That is, any point in the total basin D, (resp. 9;) has an
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image of finite rank in the immediate basin 9, ; (resp. 9 ,). A point of the frontier of
the total basins 9, or 9, not belonging to ¥ has an image of finite rank in the portion
of A which belongs to the frontier of 9 ; and 9y ,, that is, converges to the attractor of
the one-dimensional endomorphism g>‘=T\ A which, in this regime, is either the fixed
point 8% for A < 0.6, or the attracting 2-cycle Q;-Q,. Points outside % have divergent
trajectories.

For the reason explained above, the figures given in this section will show only an
enlarged portion of P, containing the attractor and the absorbing area of interest.
Moreover, in order to avoid heavy notation, in the figures the curves LC;, will be
denoted, henceforth, as L; for i > -1, and L=LC,.

Dynamics in 9, , .

The Neimark-Hopf bifurcation occurring at A =0.4 gives rise to an attracting closed
invariant curve T'; surrounding the repelling focus P}. An absorbing area including T',
.may now be constructed by use of the procedures we describe below.

Consider the point a,, intersection point of LC.,, and LC, below A (that is,
belonging to 9 ;). By a., we denote its preimage of rank-1 belonging to LC_, ,, while

a;, i>1, denotes the image of rank-i of ay (a similar notation is used, that is with

i
integer indexes, to denote images of any point of the plane). For values of ) near the
bifurcation value 0.4 the critical arcs aa; , ;=Ta.,a¢) i > O never intersect LC_; , (and
converge to the attracting set I';). Let X be the value af A at which an arc aa;,,
becomes tangent to LC.,,, while for A>X an integer m exists such that aja,,

intersects LC Thus for A >, the images of the arc a_;a, of LC_; , intersect LC_, ,

-La-
itself, and this permits us to apply a general procedure first described by Mira [1980) to
determine the absorbing area. This is the reason why we discriminate between two
intervals of values for )\, and describe a different procedure in each of them. To
determine the absorbing area d' we use Procedure 1 for 0.4< X< X~0.487 and

Procedure 2 for X <X < A* ~ 0.70209:

Procedure 1. Let h_; be a point of LC_; , such that a_ja; Ca_;h.; and a critical arc
anh, of LC,, , intersects LC_, , in a point be, With by € a.,3. Then the area d’ bounded
by the following critical arcs,

(9) ad’=blal U a,la.z u... U a\ma-m+ 1 U am+ lbl

is an absorbing area.
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Procedure 2. Let m be the first integer such that the critical arc ajan, ., of LC,,,
intersects LC., ,, and let by be the intersection point furthest from ay. Then the area d’
whose boundary is defined in (9) is an absorbing area.

Fig.9 ) = 0.45; absorbing area d’ (hatched area), here m=4.

An example in which d’ is constructed by Procedure 1 is shown in Fig. 9. Procedure 1
gives an absorbing area d’ which is contained in the region Z, below the curve LC_, .
This implies that of the two distinct preimages of rank-1 of any point of d’, only one
belongs to d' itself, we call it the local inverse. The behavior of T in d' is like that of a
map with a unique inverse, and being T(d') € &, an invariant area cannot be obtained
in a finite number of applications by T, as T**!(d') ¢ Td’) for any n 2 0. Thus we
have }‘il)an"(d' )=n|'>10T"(d’)=V, where V is a closed invariant area, bounded by a closed
invariant curve. Here we have dV=T',.

As in the interior of V the local inverse of T is contractive with P an attracting focus,
we may conclude that T, is globally attracting in 9y ,, apart from the repelling focus
Pi.

For A> X the images of the critical arc asa, of LC, intersect LC.,. and we use
Procedure 2 to determine an absorbing area. In the example shown in Fig.10b the
boundary of d’ is formed by six critical arcs: bya; CLC,, a2y CLCpe 3923 C LCy 4
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agay C LGs ,, 3425 CLC, ,, 3sb, C LCs ..

Qualitative changes occur in the absorbing area d’, not only because we use
Procedure 2 (as it is easy to see that it coincides with Procedure 1 assuming h_;=a,),
but due to the fact that for A> X, d’ possesses a portion, say &y, above LC_, ,. In fact,
a first consequence is that now an annular absorbing area may be constructed (as
discussed below), and a second consequence is that now in d’ dynamics typical of a
two-dimensional endomorphism may appear. In fact, the area §,=T(é,) is the locus of
points of d' having two distinct preimages of rank-1 in d' itself, one in §, and one
below the curve LC._, ,. For this reason the points of §; are called “branching points”,

and we refer to §; as “the area of branching points”.

Let us first describe the two bifurcations of T'; that can be characterized in this
regime. The first one is due to the tangency, and then intersection, of 'y with LC_,,.
The contact between I'; and LC.;, occurs at A=J,, A, ~ 0.48735. The shape of T, is
smooth and similar to an oval for 0.4 <A <J,, but a qualitative change occurs in its
shape as X crosses the bifurcation value \,, because this contact causes the appearance
of oscillations in T';. At A=), the invariant attracting curve T, is tangent to LC_, ,,
and thus to all the critical curves LC; for any i>0; while for A> Xy, T, intersects
LC.,, in two points and possesses a portion of curve above LC..,. Thus, the
qualitative change of I'; (already described in Gumowski & Mira [1980b, pag. 217]) is
due to the portion of invariant curve above LC_;, which is folded on LC, and causes
the deformation.

We note that any point of T'; has two distinct preimages of rank-1, only one of which
belongs to I';. Thus, before the contact, when Iy is below the curve LC_, ,, its rank-1
distinct preimage, say I'; .y, is above LC_, , and disjoint from I';. At the contact of T’y
with LC.,, we have also a contact between the invariant curve and its rank-1
preimage; '), NT, ;= NLC,, =TI, ,NLC,, is the contact point at A =X,, while for
A> ), it is the set of intersection points between T'; and the curve LC_, (see the points
Po and qq of LC_, , in Fig.10a).

The first bifurcation of T';, at A=X,, causes the appearance of smooth oscillations on
the invariant curve. The oscillations become more pronounced (and the annular area
becomes wider) after the second bifurcation of I';, which occurs, in our example, when
the invariant curve crosses LC., , in the two points a., and ag, at A=A, = 0.505. This is
due to the fact that after this crossing, the invariant curve I'; will be tangent to LC, in
two points, one above and one below LC_,; , (see the points p; and q, in Fig. 10a, rank-1
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(e) X =061

Fig.10 (a) A=0.55, invariant curve [';, its absorbing area d' in (b). (c)
A=0.6, invariant curve T, in (d) its annular absorbing area df, the
absorbing area d’ is the simply connected area with boundary equal to
8.d,, the external boundary of d,. (¢) A=0.61, annular area d’ and the
attracting 7-cycle of periodic points P;, i=1,...,7. (f} A=0.63, annular area
d’ and points of the attracting 7.2-cycle inside it.
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images of the points p,, external to a_,a,, and q,, internal to a.;a,).

For ) >}, while P? is not a SBR, not only a simply-connected absorbing area d’ can
be constructed, but also an annular absorbing area d), d,Cd’, giving a hole
surrounding P%, defined as H(P})=d'\d,. We call the internal boundary of d, 5, the
boundary of H(P}), while the esternal boundary of 4}, 8,d), is the residual part of the
boundary of the annular area, so that 8d,=38,d U 8,d.. The annular absorbing area can
be constructed having external boundary 8,d’=3d’ and internal boundary made up of
critical arcs belonging to TY(«,) for i=1,..., K, for a suitable K > m, where yo=a_,a, if
b, is internal to the interval a.,ag, Yo=bgay otherwise (in particular, for A > A, it is
Yo=boay).

In the example of Fig.10d the boundary of d’ is formed by critical arcs belonging to
the images of rank-i, i=1,...,5, of the arc bya,, while the internal boundary of d! is
formed by critical arcs belonging to 7 images of bga,. In the examples of Fig. 10e and
Fig.10f, the boundary of d) (both the internal and the external) is formed by arcs
belonging to 6 images of bya,.

At first the annular absorbing area d’ is very thin, almost indistinguishable from T,
but it becomes wider on increasing ). Equivalently, the hole surrounding P,
H(P})=d’\d/, decreases.

We have not yet spoken about the points which are attracted into this annular area.
From the construction of d’ it follows that any point of the immediate basin Dy, has
an image of finite rank inside d’, and inside d’ any point apart from P] has an image of
finite rank inside the annular area d’. To see this we observe that the points of the hole
H(P3) possess two distinct preimages of rank-1, one outside the hole and one inside the
hole. That is, T is locally invertible in the hole H(P}), and this inverse possess an
attracting focus in P}. Thus, the asymptotic behavior of T must be examined inside the
annular area d’.

We conjecture that while an attracting curve I'; exists, it is globally attracting in d’.
We cannot prove that no cycle exists outside I'y by direct computation, however we can
motivate our conjecture as follows. The dynamical behavior of the images of the arc v,
is indicative of the generic trajectory in d, and we observe numerically that an image
of high rank is almost indistinguible from I';. As the boundary of T"(d.) consists of
critical arcs belonging to images of v,, for any n >0, it follows that nl’;l 0T"(di)=I‘, in

our example.
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As T T, has a unique inverse on I';, T must have, on I';, the dynamics of an
invertible ma.p of the circle into itself (in the sense that T /T, is homeomorphic to such
a map). Thus, the trajectories on the attracting curve T; may be periodic {when the
rotation number is rational) or quasiperiodic (when the rotation number is irrational).
Cycles on I, appear and disappear via saddle-node bifurcations, and boxes-in-files
bifurcations (described in [Mira, 1987]) have been observed.

A particular 7-cycle on T, is shown in Fig.10e. It is particular because it is related
(in some way, as yet unknown) to the “disappearance” of the attracting curve I';. The
7-cycle is born in a saddle-node bifurcation, and the invariant curve I'; may still exist,
made up of the invariant manifolds (heteroclinic connections) between the attracting
and repelling points of the two 7-cycles (an attracting node and a saddle) born at this
bifurcation. We note however that for the attracting 7-cycle node shown in Fig. 10e the
eigenvalue associated with the direction transverse to the closed curve is negative
(which is possible only in endomorphisms), and it will cross the value -1. That is, the
_stable 7-cycle undergoes a flip-bifurcation, it becomes a saddle and an attracting 7.2-
cycle appears (see Fig.10f). This is the first of a sequence of bifurcations of type box-
within-a-box (that is, no longer boxes-in-files), and this marks the difference between
this 7-cycle and the cycles of T occurring before on I';. The cascade of flip and fold
bifurcations (similar to those occurring in a one-dimensional endomorphism), gives rise
to attracting sets which no longer belong to a curve of the plane, an example is shown
in the 7.2-band chaotic attractor of Fig.11a, which has a fractal dimension (between 1
and 2).

Throughout this work, in the color figures with color scale is given the hystogram of
the attracting set, obtained as follows. After a transient of N, iterations, the points of
N, iterations have been plotted, for each of the 19100 initial conditions (Xq,¥q) in the
rectangle [xinf, xsup]x [yinf, ysup]. The values of N, and N,, and the rectangie of the
plane, are reported in the figure captions. The color scale indicates the frequency at
which a pixel was hit by an orbit.

The dynamics observed in our example concerning the bifurcations on a closed
invariant curve and those initiated from a particular cycle are similar to those
described by Mira [1980] in a different example (see also in Gumowski & Mira [1980],
pp. 352-356).

The 7.2-band chaotic attractor of Fig.11 gives rise to the 7-band attractor of Fig. 12
by a global bifurcation which is analogous to the closure of boxes of the 2™ kind in the
box-within-a-box bifurcation structure (it involves the 7-cycle saddle existing between
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Fig.11 (a) A =0.641, hystogram of the 7.2-band chaotic attractor in the rectangle
(0.5,1.09]x[0.14,0.73], N,=8192, N,=1024. (b) the chaotic attractor inside d’, .

Fig.12 (a) A =0.643, hystogram of the 7-band chaotic attractor in the rectangle
(0.5,1.09]x[0.14,0.73], N,=8192, N,=1024. (b) the chaotic attractor inside d .
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Fig.13 (a) A =0.6439, hystogram of the 7-band chaotic attractor in the rectangle
[0.5,1.09]x[0.14,0.73], N,=8192, N,=1024. (b) the chaotic attractor inside d .

(b)

(a)

Fig.14 (a) A = 0.644, hystogram of the chaotic attractor in the rectangle
[0.5,1.)x[0.13,0.77], N,=8192, N,=1024. (b) the annular chaotic area d. .
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each pair of bands).

The global bifurcation which causes the abrupt increase of the chaotic set from that
of Fig. 13 to that of Fig. 14 is another contact bifurcation, between the chaotic 7-bands
attractor and the boundary of its basin of attraction. This global bifurcation is
analogous to the closure of boxes of the 1% kind in the box-within-a-box bifurcation

structure.

We shall see several other global bifurcations similar to those described above. Let
us call them contact bifurcations of the 2™ kind and contact bifurcations of the 1
kind, involving cyclic chaotic areas d; The distinction between these two kinds of
contact bifurcation has been made for the first time by Mira, see the exemplary case
with several examples in [Mira C. & T. Narayaninsamy, 1992]. From this paper and
from [Mira, 1992] the two bifurcations may be characterized as follows. Let d; denote a
k-cyclic chaotic area (i.e. ivariant for the map T%), k > 1.

A contact bifurcation of the 2% kind is due to the contact between the boundary of d;
and the boundary of its basin of attraction 9(d;) in a point belonging to the frontier of
the immediate basin of another attracting set. 1f the attracting set on “the other side”
is a chaotic area, the contact causes the reunion of chaotic areas.

A contact bifurcation of the I* kind is due to the contact between the boundary of d;
and the boundary of its basin of attraction 9(d;) in a point belonging to the frontier of
the basin of another attracting set which is not on the tmmediate basin. If the
attracting set on “the other side” is a chaotic area, the contact causes the spread into
wider chaotic areas (cyclical or not).

Let us consider again the transition from the 7.2-cyclic chaotic attractor of Fig.11 to
the 7-cyclic attractor. The contact between one of the areas of the 7.2-cyclic attractor
and its basin boundary occurs in a point belonging to the local stable set of the 7-cycle
saddle, which separates two immediate basins, giving rise to the reunion of the
immediate basins in contact. As this occurs pair by pair, the resulting set is a 7-band
chaotic attractor. In Fig.15a is shown an enlargement of a portion of Fig.1la. This
figure shows two bands of the 7.2-cyclic chaotic attractor near the point V of the 7-
cycle saddle of T, together with portions of the stable set W'(V) (which separates the
two branches of the attractor) and of the unstable set W¥(V) of V. Increasing X the two
bands come very close to the stable set W*(V), as it is shown in Fig. 15b at X=0.64218.
This value of X is very near the value of contact bifurcation between the chaotic
attractor and its basin boundary, as it appears from the enlargement shown in Fig. 15c
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Fig.15 (a) A=0.641, enlargement of the 7.2-band attractor of Fig.11a near
the point, denoted by V, of the 7-cycle saddle, and portions of the stable
set W (V) and unstable set W(V) of V. (b) A=0.64218, enlargement of
the 7.2-band attractor near the stable set WAV). (c) 2=0.64218,
enlargement of the figure in (b) near the saddle point V, the contact
between the 7.2-band attractor and the stable set W*(V) is not occurred.
(d) A=0.64219, enlargement near the saddle point V, crossing between the
7-band attractor and the stable set W*(V).
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(W¥(V) belongs to the basin boundary). The value A\=0.64219 is already bejond the
contact bifurcation value, as shown in Fig.15d, because the “old” two chaotic bands
cross the stable set of V. The bands are no longer invariant for the map T'* but only
for T7, that is, these now belong to the same band of the 7-cyclic chaotic attractor.
Thus, a contact bifurcation of the 2™ kind occurs at a value X, 0.64218 <), <0.64219.
At A=), the bands of the chaotic attractor have a contact with W(V). This example
illustrates also that such a contact bifurcation corresponds to the homoclinic
bifurcation of the 7-cycle saddle, because before the contact there are no homoclinic
orbits of the 7-cycle saddle, while at the contact and after the contact (when the
crossing occur), the stable and unstable sets of the cycle possess common points.

The basin of attraction of one of the 7 areas, considering the map T7, becomes very
complex. It is formed by an immediate basin and its infinitely many preimages of any
rank, which are jumbling in a very complex way with the preimages of the other
immediate basins (giving a fuzzy boundary in parts which are accumulation of such
disjoint open sets). The contact occurring between one of the 7-band and its basin
boundary take place in a point (or points) not belonging to the frontier of another
immediate basin. The same type of contact occurs for each band, so that the result of
this contact bifurcation (of the 1% kind) is an explosion of the seven disjoint chaotic

areas into a single annular chaotic area.

This invariant annular chaotic area (see Fig.14b) is bounded by arcs of critical
curves, and isolates the hole H(P}) around Pj, which is an area without any periodic
point of T, apart from the fixed point P}. In fact, for any value of A at which an
annular area d’, exists, it attracts all the points of the immediate basin 9, , (apart from
P3). Inside d/, we may have two or more coexisting attractors. Although we have not
observed this occurrence, it is a generic behavior of nonlinear two-dimensional
endomorphisms.

Several bifurcations take place inside the annular absorbing area, while the dynamics
on A are regular. In fact, S* is attracting on A for 0<A 5%:0.3, while for
0.6<)1<0.816, a 2-cycle Q,-Q, exists on A, which is attracting on A but a saddle of T
for the values of A which interest us in this regime, that is, for A <A™

We recall that in this regime two symmetric atiractors and basins exist. The
bifurcation of both these attractors and basins of attraction occurs at A=\*
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(A* =~ 0.7029) when an arc of the critical curve aza, € LG,,, on the boundary of the
annular absorbing area, becomes tangent to A at the periodic point Q;. Thus, a contact
bifurcation of the 2™ kind occurs, causing the reunion of the two disjoint annular
chaotic areas into a single connected chaotic area (see Fig.16a and 16¢c before the
bifurcation, Fig.16b and 16d after the bifurcation). In the magnifications of Fig.17,
several images of a small arc of LC_, , (also reported in that figure) are shown, which
show the contact occurring at A=A*. A critical point r,, image of rank-4 of a point r_;
belonging to the small arc of LC_; , shown in Fig.17a, merges into the periodic point
Qi

The points Q, and Q, of the 2-cycle belong to the area of branching points &, so
that this area contains some points whose infinite sequence of preimages under the
local inverse which gives points above LC_, , converge to the 2-cycle. That is, a local
stable set of the 2-cycle saddle exists for the local inverse of T in &;. Moreover, the
point 1., defined above also belongs to §,, and starting from r.; we may construct
infinitely many sequences of preimages in d’. For example, r., has two distinct
preimages, one in &, and the other below LC_,,, for each new point we take all its
preimages in d), creating new branches whenever we get a point in the branching area
§,. If one of these preimages falls into the local stable set of the 2-cycle saddle for the
local inverse of T in &, (which is the local unstable set of the 2-cycle for T), then we
would have a homoclinic orbit of the 2-cycle. We conjecture that this indeed occurs at
A=)*, and homoclinic orbits of the 2-cycle {Q,;, Q;} exist. Our conjecture may be
numerically verified, in Fig.17d are shown images of rank-i, for i from 1 to 100, of
points taken on a small arc of the local unstable set issuing from Q, (the direction of
which is (1,-1)), and we can see points mapped by T above the line A, which means
that the unstable set of the 2-cycle intersects the stable set of the same cycle on A,
creating homoclinic points. This implies the existence of infinitely many repelling
cycles near the 2-cycle on A, cycles which do not belong to A, but having Q, and Q, as
accumulation points. This may also be the reason for the density of the points of a
trajectory in these regions, as observed by numerical computations. The main difficulty
in proving the existance of homoclinic orbits in this case (as well as in the case shown
in Fig.15) is due to the fact that the cycle is a saddle. We shall see that in a similar
bifurcation involving repelling nodes or repelling foci (the SBR bifurcations of 5 and of
the fixed points P, P, in the next section), the existence of infinitely many homoclinic

orbits is easier to prove.
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(c) A=0.702 (d) A=0.703

Fig.16 (a) A =0.702, annular chaotic area d, below the diagonal A; (b)
A=0.703, a portion of the connected chaotic area; (c) A=0.702,
hystogram of the annular chaotic attractor in the rectangle
[0.4,1.)x[0.05,0.9], N,;=4096, N,=1024. (d) A =0.703, hystogram of the
connected chaotic attractor in the square [0.07,1.]x[0.07,1.], N,=4096,
N,=1024.
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(c) A=0.7025 s, %

Fig. 17 (a) A =0.70209, several images of the small arc of LC_, , denoted
by L.;; A=0.7021 in (b) and A=0.7025 in (c) where the images of the
small arc L., of LC_,, cross A. (d) A=0.7025, images of rank-i, for i
from 1 to 100, of 2000 points taken on a small germ (of lenght 0.0001) of
the local unstable set issuing from Q,.
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6. Dynamics of T in the fourth regime.

After the contact bifurcation at A=X\* the two disjoint attractors (for A<)*) become
one single attractor (for A>)*) inside a unique absorbing area d' (simply connected),
which is always bounded by the images of an arc of LC_, ,, which is now the arc aqal,
where a} is the symmetric image of aq with respect to A (aq and al are the two points
of intersection between LC_, , and LC,).

An example is shown in Fig.18. Fig. 18a shows the simply connected absorbing area
d’, and Fig.18b shows the chaotic area d contained in d'. It may be noted that the
chaotic area d is connected but not simply connected. Three holes exist inside d’, one -
surrounding the fixed point S* (which is now a repelling node), say H(S*), the other
two, H(P?) and the symmetric H(P3), are around the fixed points P} and P} (repelling
foci). The boundaries of these holes consist of critical arcs belonging to the images of

the arc aqa).

The hole H(S*) disappears at the SBR bifurcation of §* at A=X,~0.714 (see
Fig.19). At this bifurcation value, the two symmetric rank-1 preimages of 5 outside A
fall on the boundary of d’, and thus on an arc of a critical curve. All the critical curves
LC;, for i > 3 pass through " (some are shown in Fig.19a). This means that at A=), a
point belonging to the portion of LC.; , below A, say r_;, has an image, say r;, which
merges into $* (and a symmetric point exists, say r.,, belonging to the portion of LC_, ,
above A, such that r,=S*). Taking the infinitely many sequences of preimages of r_,
contained in d’, we can see that many points will fall in a neighborhood of $* in which
the local inverse giving points above LC_, , is a contraction (having an attracting node
in $*). This process illustrates the infinitely many homoclinic orbits of S5* existing after
the SBR bifurcation, which persist for any value of A > X,. This is due to the fact that
S* remains an attracting node for the local inverse above LC_, ,, for any A >, and its
rank-1 preimage below LC_, , belongs to d’, so that we may construct the sequences of
preimages starting form S* obtaining points in a suitable neighborhood of 5*. We recall
([Marotto, 1978], [Gardini, 1992a]) that to each homoclinic orbit are associated
infinitely many repelling cycles of T, which belong to Cantor sets of points invariant
for some power of T. Note however that this bifurcation is not the SBR bifurcation of
the fixed point S* for the restriction of T on A (this will occur later, at a greater value
of 1), so that none of the infinitely many periodic points of T near 5" belong to A.
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(a) A=0.705 (b) A=0.705

Fig.18 A=0.705 (a): the absorbing area d’, (b): hystogram of the chaotic attractor in
the square [0.07,1.]x[0.07,1.], N,=4096, N,=1024.

b

(a) A=0.714 (b) A=0.714

Fig.19 A=0.714 (a): the absorbing area d’, (b): hystogram of the chaotic attractor in
the square [-0.1,1.1]x[-0.1,1.1], N,=4096, N,=1024.
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After the SBR bifurcation of S* the absorbing area d’ is connected with two holes,
H(P;) and H(P3). These holes decrease on increasing A and disappear at the SBR
bifurcation of the fixed points P} and P3, which occurs at A=), >~ 0.737 (in Fig.20 we
can observe the critical curves LC; , for i > 1 passing through the fixed point P} ). We
may repeat the same reasoning as above, with the difference that we consider the local
inverse of T which gives points in d’ below LC., ,, for which the fixed points P} and P}
are attracting foci for any value of A>X,. It follows that P7 and P3 are snap-back
repellers for A > A, (with all that this statement implies about the dynamics of T).

After the SBR bifurcation of P} and P}, the chaotic area d coincides with d’ and is
simply connected (see Fig.20b and Fig.21a). Let us make an observation on the
chaotic area d €d’ (with d simply connected or not). As we have seen in several
figures, the generic trajectory that we observe numerically is often chaotic, but this
does not mean that in this area there are not stable cycles. Attracting cycles may exist
(and we conjecture that these exist) with small basins of attraction, having a complex
shape and fuzzy boundaries (on which the dynamics of T are chaotic). That is, unstable
chaos is likely to occur, and the trajectories observed in these chaotic regimes are due
to truncation errors.

Up to now, T has been studied as if it were a map having only O or 2 preimages of
rank-1. This is because the invariant area d’ has void intersection with the branch
LC.;,, so that the fact that T is a map with 0, 2 or 4 preimages of rank-1 has only
influenced the construction of the basin of attraction of the absorbing areas. However,
as is shown in Fig.21a, now the branch LC_, , is quite near the invariant area d’, and
we shall see that the influence of the 0-2-4 character of the inverses of T comes to play
some role now, as also before, at lower values of A.

We have observed a decrease in the “chaoticity” of the trajectories inside d’ as it
approaches LC_;, This may be explained by sequences of reverse flip and fold
bifurcations which make previously existing cycles disappear (that is, attracting 2k-
cycles disappear by reverse flip-bifurcation leaving an attracting k-cycle, previously
repelling; or a couple of two k-cycles disappear via reverse fold-bifurcation). Such a
process can easily be observed in one-dimensional endomorphisms, for example in cubic
maps or in bimodal maps without symmetry (several examples are shown in (Gardini &
Lupini, 1992)). A similar process (i.e. reverse bifurcations) occurs also’ in two-
dimensional endomorphisms. In our opinion, in this example it begins when the excess
preimage curves of LC_, ), that is LCflllb and chzg » have a contact and then intersect
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1.2 |

(b} A =0.757

Fig. 20 A=0.737 (a): portion of absorbing area d’, (b): hystogram of the chaotic
attractor in the square [-0.1,1.1]x[-0.1,1.1], N,=4096, N,=1024.
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{c) A=0.83
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Fig. 21 (a) A =0.75 chaotic area d’; (b) A =0.76, attracting node Q,-Q, on A, in the
absorbing area d’; (c) A =0.83, attracting 2%cycle on A.
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the invariant area d’. This contact occurs at a value of A in the previous regime.
Moreover, noting that the images of the area of d’ crossed by the excess preimages are
mapped by T to points near A and near the 2-cycle Q,-Q,, we may explain the
disappearance of periodic points outside A, near the 2-cycle on A. These
disappearances are however compensated by the increase of cycles with periodic points
near the other three fixed points of T (S*, P] and P3) and their SBR bifurcations.

At XA ~0.76 the 2-cycle on A becomes an attracting node of T (Fig.21b), and even if
d’ contains infinitely many repelling chaotic sets (as S*, P} and P; are SBRs), the

generic trajectory numerically observed converges to the attracting cycle Q,-Q,. Now a '

neighborhood of this 2-cycle exists containing no periodic points of T, and the
preimages of this neighborhood give the basin of attraction of the 2-cycle, which has
certainly a very complex shape, with a fuzzy boundary.

The disappearance of cycles in a neighbourhood of Q;-Q, described above shows that
the 0-2-4 character of the inverses of T influences the dynamics of T before the contact
of d’ with LC., , (through the effect of the excess preimage curves). However, the main
influence on the dynamics of T takes place after the contact (and then intersection) of
d’ with LC., This is because points of d’ below LC_,, are mapped by T in a region
(bounded by critical arcs of some LC;, and an arc of LC,) containing points having
four distinct preimages of rank-1 inside d’ itself. From now on, when chaotic dynamics

are observed, this region is the one more frequently visited by the points of a trajectory.

The flip-bifurcation of the 2-cycle in A is the one due to the logistic map gy on A
itself. A stable 2%-cycle in A is observed in Fig.21c. This 2-cycle however becomes
repelling (in the direction transverse to A) due to the two-dimensional character of T,
as it undergoes a flip bifurcation due to the eigenvalue related to the eigenvector
transverse to A. In Fig.22a an attracting 8-cycle is shown, which does not belong to A,
the 2%-cycle on A is attracting for the logistic map g but is a saddle of T.

Considering the points of the 8-cycle as fixed points of the map T® we can repeat the
same observations made for the fixed point P} of T:

- the points of the cycle undergo a Neimark-Hopf bifurcation which gives rise to 8

closed invariant curves (Fig. 22b);

- chaotic sets and a contact bifurcation of the 2" kind produces a 4-cyclic annular

chaotic area (Fig. 22c);

- some SBR bifurcation gives a 4-cyclic chaotic area, not annular (Fig. 23a);

- contact bifurcation of the 1¥ kind between the 4 basins of attraction and the 4-cyclic
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Fig.22 Attracting sets inside the absorbing area d’.
A=0.835 in (a); A=0.84 in (b); A=0.845 in (c).
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(a) A=0.852

(b) A=0.854

Fig. 23 hystograms of the attracting sets in the square [-0.1,1.1]x[-0.1,1.1],
N,=1024, N,=1024. A=0.852 in (a); A=0.854 in (b); A=0.865 in (c).
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1.2

chaotic areas gives rise to a single observed chaotic attractor in the absorbing area d’
(d=d') (Figures 23b and 23c).

(a) A=0388 1.2 (b} A =0.8835

L,

1.2 12

¢

Fig. 24 Attracting sets inside the absorbing area d’. X=0.88 in (a); A=0.8835 in (b).

In Fig. 24a an attracting 4-cycle of T is shown, for which we repeat the sequence:
- it bifurcates via Neimark-Hopf giving rise to 4 closed invariant curves (Fig.24b);
- periodic orbits on the closed curves can be seen and then again closed curves followed
by transition into 4-cyclic annular chaotic areas (Fig.25a, with a magnification in
Fig. 25b);
- contact bifurcation of the 1* kind giving rise to a unique observed chaotic attractor in
the absorbing area d’ (d=d’) (Fig. 25¢c with a magnification in Fig. 25d).

On A, gy has an attracting 2%.cycle in Fig.22, an attracting 23-cycle in Figures 23a
and 23b, 2-cyclic absorbing intervals in Fig.23c, Fig.24 and Fig.25. All the repelling
cycles on A are saddles of T .

Now that the dynamics on A are also chaotic (i.e. for A>X,,~ 0.8566), the SBR
bifurcation of $* for the restriction of T on A, that is for gy, is approached. At A=0.89
(see Fig.26a) the two critical curves LC, , and LC,, intersect A in the two points c;
and c; which are near the fixed point S*. The SBR bifurcation of §* for gy occurs when
the two critical curves LC,;, and LC,, intersect A in the fixed point: cy=cy=8" (at
A=)}; ~ 0.8928). Before this, all the points homoclinic to S* in d’ were outside A.
After, there are points homoclinic to §* also in A.
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(a) )=0.88498

(C) A =0.88499 (d)

Fig.25 Hystograms of the attracting sets. (a) )\ =0.88498, 4-cyclic
annular chaotic areas in the square {0.1,1.1]x{0.1,1.1]; (b) enlargement of
the portion of (a) in the rectangle [0.474576 ,0.546674]x([0.332147,
0.375085), N,=4096, N,=1024. (c) A=0.88499 hystogram of the
attracting set in the square [-0.1,1.1)x[-0.1,1.1]; (d) enlargement of the
portion of (c) in the rectangle [0.474576,0.546674]}([0.332147,0.375085],
N,=8192, N,=2048.
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(e) A=0.9999

Fig. 26 Hystograms of chaotic attractors. N;=1024, N,=512. (a) A =0.89,
in the square [-0.1,1.1])x[-0.1,1.1); (b) A =0.94, (c) A=0.95, (d) XA =0.99,
() A=0.9999, in the square [-0.125,1.075]x[-0.125,1.075); (f) a chaotic
trajectory in the unit square at \ = 0.9999.
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It seems that the bifurcation mechanism which governs the “route to chaos” of the
two-dimensional map T is not related to that of the one-dimensional logistic map gy
or it is partly related, because it is due to bifurcations which are typical of the two-
dimensional map, at least for values of A below \,,. However, increasing the parameter
), the analogy between the one-dimensional case (logistic map) seems to become more
adequate. The chaotic area d (equal to d’) tends to become the unit square (see
Fig.26), that is, approaches the boundary of its basin of attraction. At A=1 the SBR
bifurcation of the fixed point at the origin O occurs, and d=d’ =% is exactly the unit
square (the vertices of the unit square are the distinct preimages of the origin). It is an
invariant chaotic area but is not absorbing (a neighborhood U of d’ does not exist
because a repelling fixed point belongs to the boundary of d’). At A=1, T is chaotic in
the unit square in the precise sense of the term (that is, no attracting cycle may exist,
all the possible cycles of T have been created and all are repelling). In fact, the map T
reduces to two disjoint equations, two squared logistics without interaction:
TYx,7)=( £(x), (7)) where f(x)=4x(1-x). LC_, becomes the pair of straight lines x=%—
and y=% : LC, the straight lines y=1 and x=1; LC,, the lines x=0 and y=0 (see
Fig. 26f). At A=1, g, is chaotic on the segment [c,,c] =[0,1] on A.

At X=1 the last contact bifurcation of d’ cccurs. It is a homoclinic bifurcation (SER

(Y]l

of the origin). This is a particular contact bifurcation of the 1% kind. The difference
from those previously seen is that the attractor “on the other side” of the basin is a
point at infinity (instead of an attractor at finite distance), so that it will have the

catastrophic effect of a disappearance of the bounded chaotic attractor.

For A>1, the unique attractor is a point at infinity. In the unit square there survives

a Cantor set A, invariant for T, with repelling cycles, that is, a “strange repeller”.
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