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Abstract

In the operation and maintenance of an electric power system, it is very useful to
know the load, especially the peak load, in advance. In this paper we consider the
difficult problem of peak load prediction (PLP) in an electric power system. We
propose a discrete, complex dynamical model for PLP, similar to those proposed
recently for macroeconomic prediction, in the spirit of complex dynamical systems
(CDS) theory.
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1 Introduction

The background for this work is the problem of the stability of an electric power
system. See [20] and the references therein for the history of research in this
area. Many difficulties arise from an unexpected increase in the peak load, due
to ezogenous factors such as climate (for example, air-conditioning demand dur-
ing summer) or social habits (for example, TV demand during baseball or soccer
games). Our approach for the prevention of service problems involves the model-
ing and prediction of the overall peak load of the grid. This power consumption
factor fluctuates widely, presenting the utility management with many practi-
cal problems. Some exogenous factors create predictable perturbations in the
distributed parameters of the grid while other exogenous factors may be unpre-
dictable.

2 Applications of chaos theory

The methods of chaos theory might be used to make short-term predictions (such
as one day or a few days in advance) of the peak load as follows.

1. Assume a massively detailed, continuous, CDS model for the power system,
with all its buses of generators and loads. The creation of a useful model,
capable of rapid simulation on a hybrid or massively parallel supercomputer,
is a nontrivial task.

2. Given such a model, we could assume a reasonable coupling of exogenous
factors to the distributed loads within the grid.

3. From existing data for the exogenous factors, we would make a short-term
(such as one day) prediction of the exogenous parameters, using the tech-
niques of chaos theory.

4. Then we may simulate the effect of these predicted forcing terms with the
computer model.

This program has been considered in the recent literature on voltage collapse
[6] [8] [9] [10] [13] [15] [18]. But our task in this paper is only to consider the third
step of this sequence [17]. And our method will be that of discrete CDS, using a
time increment of one day. We will describe a model to predict peak load, which
could be used in a practical way to give warning of unusually heavy loads, and
thus prevent outages. The technique to be described has been used to model real °
economic data, with encouraging results [19].

In the future, we will try to obtain detailed peak power data for a real power
grid, to apply the modeling strategy of this paper to adapt a discrete, CDS model
to the data, and to relate the exogenous factors of the consumer population
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(temperature, sports events, etc.) to the parameters of the model. Assuming,
eventually, some success in this program, an experimental intervention in a real
power system could be considered, attempting to avert a voltage collapse or
outage due to excess loading.

Although there are some dangers inherent in any intervention in a real sys-
tem by an experimental method, we may emphasize that the methods envisioned
here may involve only very subtle variations in the load parameters at a few key
nodes of the grid. Certainly this is safer than a electro-surgical manipulation of a
human heart in a living and critically ill patient [15]. And in fact, methods per-
fected in the power grid of a large urban area, besides obtaining greater reliability
for the consumer network, may provide theoretical and technical byproducts for
the other technologies (physical, biological, social, economic, psychological, etc.)
which share the basic structure of the electric power grid: a massively parallel,
distributed, and chaotically driven, CDS.

3 CDS economic models

There is increasing interest in modeling the world economy as a spatially-distributed
CDS, which may then be coupled to a similar CDS model of the environment.
This effort is the dynamical approach to environmental economics [2] [19]. In
these projects, each nation is divided into regions, in which there are a standard
set of sectors (the new United Nations System of National Accounts uses 40 sec-
tors), which are fully coupled, like a neural net. Actual economic data may be
used to set the parameters in the dynamical model for each sector of each region,
and the parameters of the coupling, as in input/output matrix models. In the
models referred to, the standard sector model is a two-dimensional discrete dy-
namical system, with variables labor and capital, or value-added and investment.

We may distinguish two different levels of economic modeling: detailed models
and reduced models. The modeling strategy developed by Jay Forrester is ex-
emplary of the detailed approach [14]. The actual dynamics of each sector (or
possibly, each factory, bank, or service unit) is modeled in the input/output style
of system dynamics.

In the reduced modeling strategy, only the aggregate financial records of the
sectors (or perhaps, smaller economic units) appear in the model. The economic
CDS model described above is of this second type. The greater region is divided
into smaller regions, for which economic records are available. And each smaller
region is divided into sectors, that is, different types of economic activity. For
example, the greater region of Italy is divided into North and South Italy, or into _
a larger number of provinces. In each smaller region, there are sectors such as
industry, banking, government, and so on. For each sector of each region, there
is a node of the CDS model, and thus, a discrete dynamical system. In this
example, the state variables of each node might be capital and labor, or value
and investment.
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The basic data of a CDS model comprise a directed graph, or network, a dy-
namical system at each node, and an explicit coupling (output-to-input) function
at each directed edge, or link. In the example above, we have a polynomial map
at each node, in which the coefficients depend on the state variables at all of the
other nodes. This is a cellular dynamical system, somewhat like a neural net.

4 The PLP model

In place of the geographic regions and economic sectors of the economic model, we
now have geographic regions of electrical power, and classes of power consumers,
such as transportation, industry, etc. The consumer nodes of the economic model
correspond almost exactly to the consumer nodes in the electrical power model,
except that we now have a special class of nodes in the electrical context, namely
generators, which primarily supply power.

In the place of the state variables such as capital and labor in the economic
model, we will now have electrical power consumption as the (single) state variable
at each node of the electrical power model. Thus, the state variables of the CDS
model would provide precise information on the space-time distribution of power
demand in the full power grid.

We may try to construct a discrete dynamical model for the power demand from
data on record. Chaos theory suggests that this sort of direct model may succeed,
if the power demand of a given sector, for the next time interval, is modeled by
a function of the demand in the present time interval, and possibly, the demand
of the preceding time interval as well. Of course, exogenous parameters, such as
temperature and holidays, must be included. We now propose such a strategy.

Suppose that daily records of peak power load for each sector are available, as
well as some exogenous variables, such as the average temperature, number of
people on holidays, etc. Following the modeling methods of [19] we construct, for
each sector, a discrete dynamical system of the form:

&' = p(x)

where z denotes the peak load of the sector in a given day, and 2’ denotes the
peak load of the following day. The function p might be a polynomial, its coeffi-
cients to be determined so as to minimize the difference between the prediction
of the model and the actual peak load data. Polynomials of degree one (linear),
two (quadratic), and three (cubic) all have interesting dynamical behavior, when
coupled in a CDS network with nonlinear coupling functions. A net of linear
nodes (continuous dynamics) with sigmoid coupling functions may have chaotic
behavior, see [5]. A net of quadratic nodes with linear coupling also has compli-
cated dynamical beharior, see [3]. And a net of cubic nodes with linear coupling
functions is even more complex, see [4].

The method of least squares may be used to fit the coefficients to the available
data. These local dynamical systems relate each day’s peak load to the previous

4 Ueda



day’s peak load, without consideration of the exogenous factors, or the peak loads
at the other sectors.

The coupling functions must now relate the coefficients of the polynomial of
a given node to the values of the peak load at other nodes, and to the ambient
variables such as local temperature. Strategies for determining these coupling
functions are a fine art, and pose the main difficulty of this modeling strategy.

5 An example

As an example, we now consider the Kansai region of Japan. Considering the
actual power grid, the second largest in Japan, we may divide the power system
into 165 generating stations and 9 local load dispatching centers. This system is
treated as a simple network of sources and loads. The sources, being controlled by
the central load dispatching center of the power company, are regarded as control
parameters in the CDS model for the 9 loads. The loads (that is, demands by
power consumers) comprise the state variables for simulation in the model.

We further divide each local center, regarded as an ensemble of consumers, into
six sectors or types: residential, commercial, industrial, agriculture, municipal,
and transportation, following [12, p. 15]. Alternatively, a classification in three
types (residential, commercial, industrial) might be used, following [7, p. 74]. The
most useful classification scheme for consumers will depend on the data available
from the local electrical utility companies, in this case, the Kansai Electric Power
Company.

Our purpose in this classification is to distinguish different types of coupling
to exogenous parameters, such as: average daily temperature, humidity, cloudi-
ness or light intensity, wind, population dynamics, and social events, as well as
different shapes of load curves, used as templates in the model, which are to be
derived from data.

We now have a complex dynamical scheme with 6*9 = 54 nodes, and at each
node we will place a discrete dynamical scheme coupled to neighboring nodes, and
to the exogenous parameters. In this model, we will use a one-dimensional map
at each node, representing the increment of total power demand by the consumer
sector represented by that node. The discrete time interval is a single day.

6 The dynamics

Taking an average from available data, we may obtain an exemplary daily load
curve for node (%, j) for each ¢ and j (the i-th sector of local center j) for each day -
of the week of a given season, and use this as a baseline for computation. Then,
we may use the difference from this baseline as the primary state variable in our
model. Thus at each node (7, j) we have a one-dimensional state, x(, j), at each
time step. Our discrete dynamical model is generated by a one-dimensional map
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with parameters, which are used to fit the model to the historical data, and to
describe the coupling to the exogenous factors listed above. We now propose, as
a trial based upon the economic model described above, a quadratic map. Thus:

T =a+ bz +cz?

in which the three coefficients are to be fit to data at each node. By eliminating
the quadratic term, or ¢ = 0, we would obtain the linear model traditionally
used by power engineers in the field, but we will not make this restriction. The
incorporation of exogeneous factors will be restricted to the constant term. Thus
(following [12, p. 12])

a=W+C+E+P

where W denotes the weather factors, C denotes the increment due to social
events (festivals, sports, etc.) and (following (7, p. 76]) E accounts for economic
factors, from indicators such as the gross national product, while P reflects pop-
ulation growth. For example, Dhar suggests a parabolic model, the weather-load
model, for W as a function of temperature, its shape determined by a least-squares
fit of local data. The factors C, F and P must be determined similarly. Note
that all of these exogenous factors may be estimated with existing dynamical
models, so our CDS model may be embedded in a network of other CDS models.
And of course, the influence of these factors upon the power grid is matched by
a reciprocal influence of power consumption on the climate, economy, etc.

The coefficients b and ¢ are to be determined by least squares fit of available
data, within each node (that is, in each sector of each local center). We note
that this model is complex and massively parallel, comprising a lattice of logistic
functions with potentially chaotic time-series behavior. Models of this type have
recently emerged in econometrics, where similar prediction problems are encoun-
tered [19]. An experimental study of logistic lattices may be found in [3]. See [2]
for a similar example with two-dimensional quadratic functions at each node.

Of course, our model aspires to be useful in the day-to-day management of
a large power system. But it is a massively parallel model, of the kind usually
submitted to a supercomputer for batch processing. However, we now envisage
the availability of massively parallel analog computers on a chip, such as Chua’s
Cellular Neural Net [11].

7 Conclusion

We have completed our proposal for a CDS model for the PLP, a strategy for
modeling the ”power economy” with a CDS model, similar to recent models for
the "money economy.”

What remains to be done is a test of concept in the field, that is, with real,
daily, peak load data. With only moderate success, comparable to that attained
by the similar CDS model for the economy of Italy, some number of power grid
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overload problems may be averted. Further, the way would then be open for more
extensive models in which environment, economy, and electric power system may
be combined in a single global model.

We also envision an experimental study of the chaotic dynamics and bifurca-
tions of small discrete CDS networks, similar to the studies of continuous CDS
networks to which we have referred above.
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