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Abstract. We review the history and basic concepts of singularity theory, and contrast 
with the problems of iteration theory and the method of critical curves, in the two-dimen-
sional case. We call the combination of these two theories endosingularity theory.

1. Introduction.

The theory of singularities of smooth mappings has been unfolding from the nascent 
works of Morse (1931), Tucker (1936), Whitney (1943, 1944), and Wolfsohn (1952). In 
his seminal work of 1955, Hassler Whitney introduced the basic concepts of folds, cusps, 
and other generic singularities into the literature of mathematics, and modern singularity 
theory was underway. 

Very soon afterwards, these ideas were radically extended and reformulated by René 
Thom, utilizing the new ideas of jets and transversality. Thom's lectures in Bonn in 1959, 
recorded in a splendid sets of notes by Harold Levine, broadcast the fundamentals of a 
new branch of mathematics to an eager group of young geometers. Arriving in Berkeley 
in the Fall of 1960 for my first university post, I was fortunate to be able to attend a series 
of lectures by Thom himself on the new theories and problems.

In the next few years, at Berkeley, Columbia, and Princeton, I continued to work on the 
classification of generic singularities, and the technology of transversal intersections. 
(Abraham, 1963, 1967) Some of these problems were solved during this time by John 
Mather, then a young graduate student at Princeton. From this development in global 
analysis there evolved two important derivatives: catastrophe theory and the theory of bi-
furcations.

2. Catastrophes.

In the catastrophe theory of René Thom, the idea of structural stability was elevated into 
a new paradigm for applied mathematics, and the concepts of attractor and chreode of the 
theoretical biologist Conrad Waddington were introduced into the literature of dynamical 
systems theory, now also known as chaos theory. In 1965 and 1966 I was receiving hand-
written chapters of catastrophe theory from Thom in Paris. Against a growing resistance 
by the mathematical community, I persuaded my own publisher to bring these out as a 
book, which appeared belatedly in French in 1973, and in English in 1975. These publi-
cations brought the new paradigm to the attention of a wide scientific audience, and after 
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Zeeman's splendid collection of articles appeared in 1977, to a popular audience as well.

Unfortunately for the history of mathematics and its applications to the sciences, catastro-
phe theory became the target of hostile attacks by highly respected mathematicians, most 
notably in a critical review of Zeeman's book by Stephen Smale. Smale and Zeeman had 
been competitors in the race to prove Poincaré's conjecture, for which Smale had been 
awarded the coveted Fields medal of the International Congress of Mathematicians, in 
1960. This backlash movement successfully disposed of catastrophe theory, which is little 
known today in spite of its great power in crafting dynamical models for natural phenom-
ena, and this backlash has seriously impeded the growth of chaos theory as well.

3. Bifurcations.

After catastrophe theory, the second spin-off from Thom's lectures (and Levine's notes) 
on the theory of singularities of smooth mappings was the theory of structural stability and 
bifurcation of continuous-time dynamical systems. In addition to the 19th century ideas 
on bifurcation due to Jacobi, Poincaré, Andronov, and Hopf, the new bifurcation theory 
also utilized Pontriagin's idea of structural stability, 1934, Whitney's notion of stable sin-
gularity, and Thom's technology of jets and transversal intersection. All this led to a new 
approach to bifurcations, formulated by Sotomayor in the 1960s. (See Abraham, 1977, for 
more historical details.) Since this pioneering work, bifurcation theory has produced an 
enormous literature, especially dealing with the onset of chaos.

4. Critical curves.

Discrete-time dynamical systems generated by a diffeomorphism (invertible map) were 
introduced by Poincaré in his approach to the Oscar prize problem on the stability of the 
solar system in the 1880s. The theory of their qualitative behavior has been developed 
ever since in parallel with continuous-time dynamical systems theory. However, discrete-
time dynamical systems generated by a noninvertible map were largely ignored by the 
pure math community. With the advent of computers and computer graphics, workers in 
the physical sciences, engineering, and other applied areas began to study these systems, 
particularly their chaotic behavior, and to make significant mathematical discoveries. 
Most notable here was the work Myrberg on the one-dimensional case in the 1950s, the 
work of Gumowski and Mira in the 1960s on critical curves in the two-dimensional case, 
and the discovery of fractal geometry by Mandelbrot in the 1970s.

See (Abraham, 1997) for extensive historical material on discrete dynamics, written by 
Mira, as well as an elementary introduction to critical curves. See (Mira, 1996) for a more 
advanced treatment of the subject. The main steps of these three parallel evolution paths 
are shown in Table 1.
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Date Continuous-time Discrete-time Singularities

1880 Poincaré
1890
1900
1910 Birkhoff Julia
1920 Fatou Morse
1930 Andronov Tucker
1940 Hopf Whitney
1950 Myrberg Thom
1960 Sotomayor Gumowski, Mira Mather
1970 Mandelbrot Zeeman

Table 1. Chronograph of three theories.

5. The 1-jets of morphisms.

Here we will recall the simplest level of singularity theory, which is simply linear algebra, 
but expressly strangely. Let M and N be smooth manifolds,  smooth maps 
from M to N, and  a point. Let denote the tangent (the first 
derivative as a linear transformation) of f at p.
Then f and g are said to be 1-equivalent at p iff f(p) = g(p), and  = . A 1-equivalence 
class is a 1-jet, and the set of all 1-jets, J(M, N), has a natural vector bundle structure, es-
sentially identical to the linear map bundle L(TM, TN) over MxN. See (Abraham, 1978) 
for definitions of these. The map 

which assigns to every point  its 1-jet is called the 1-jet extension of f. Keep in mind 
that the 1-jet is essentially the first derivative of f at p, a linear map. But formally, it con-
sists of p, q, and an equivalence class of maps, all of which map p to q, and have the same 
first derivative at p.

Thus, given a smooth map, , we may indicate the 1-jet of f at a point , if 
, as , and thus obtain the two essentially identical diagrams 
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shown in Figure 1. 

Fixing points (p, q) in MxN, the fiber  may be identified with the space of 
linear transformations . Supposing dimensions m of M and n of N, and 
choosing coordinate charts at the points  and , the 1-jet space may further be 
identified with the space of linear maps , and thus with real matrices of size n 
by m. Choosing different coordinate charts, we obtain a different isomorphism from 1-jets 
to matrices. This is just linear algebra.

The 2-jet bundle is obtained by iterating this procedure, that is, in terms of the 1-jet of the 
1-jet of a map. This leads to multilinear algebra. But we continue now with 1-jets.

The relationship between the matrix representatives of 1-jets induced by different pairs of 
coordinate charts is shown in Figure 2, the tent of equivalence of linear algebra. Here a 
linear transformation T from a real vector space V of dimension m to a real vector space 
W of dimensions n is represented by two real matrices of size n by m, say  and , 

which are equivalent, , if A and B are the matrices for the changes of bases.

J p q,( )
1 M N,( )

L TpM TqN,( )

p M" q N"

L Rm Rn,( )

P1 P2

P B 1# P1A=

V W
T

R m R m
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Figure 2
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6. Singularities.

As rank is an equivalence invariant for linear transformations and their matrices, the sets 
 of 1-jets of corank k (that is, of rank k less than the maximum rank) for k 

= 0, 1, 2,..., min(m, n) – 1, may be defined in terms of the matrices representing 1-jets in 
coordinate charts. A point  is a singular point of a map, , iff the 1-jet of f 
at p belongs to  for k > 0.

Basic to the approach of René Thom in the 1960s was his observation that these invariant 
sets, the singularities  with k > 0, were finite unions of smooth submani-
folds. He then defined genericity for a map  in terms of transversal intersection 
of the jet of f and the singularity submanifolds in the jet bundle. A similar situation occurs 
for the higher jets, which are essentially (that is, in local representation by coordinate 

Sk J1 M N,( )$

p M" f: M N!

Sk J1 M N,( )$

Sk J1 M N,( )$

f: M N!
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charts) Taylor series polynomials of higher degree. By means of his jet transversality ap-
proximation theorem, Thom showed that any map could be approximated by one which 
met these singularity submanifolds transversally. Thus the dimensions of these intersec-
tions may be counted. For example, the corank-1 singularity occurs generically at isolated 
points for maps from the line to itself (real-valued functions of a single real variable), and 
on curves for maps from the plane to itself. Whitney called these fold curves, and they co-
incide approximately with the critical curves of Gumowski and Mira. If a plane en-
domorphism is restricted to a critical curve in this sense, the inverse image of the 1-jet by 
the 1-jet extension of the endomorphism, the restricted map may have a generic corank-1 
singularity at isolated points on the fold curves. These singular points were called cusp 
points by Whitney. The corank-2 singularity does not appear generically in these low di-
mensions.

These generic singularities of plane endomorphisms comprised the main results of Whit-
ney in 1955, which were extended significantly by Thom in 1959. But Whitney also com-
puted normal forms for plane endomorphisms exhibiting the fold and cusp singularities. 
He showed that, by separate choices of special coordinate charts (x, y) at a cusp point and 
(u, v) at its image in the plane, the local representative of the map could be put in the nor-
mal form,

For a clear and elementary explanation and computer graphic study of this map, see the 
paper of Gardini, Bischi, and Abraham in this volume.

7. The 1-jets of endomorphisms.

The normal forms of singularity theory, such as those of Whitney seen above, require 
careful choices of separate coordinate charts at the source and the target of the map. This 
is like the theory of equivalence in linear algebra and matrix theory. But for the endomor-
phisms of iteration theory, we must be satisfied with a single choice of coordinate chart 
at the source and target of a map. For this reason, we usually express a map in local rep-
resentation in the form 

(x, y) maps into (x’, y’), 
rather than 

(x, y) maps to (u, v) 
of singularity theory. As singularity theory is to equivalence of matrices, iteration theory 
is to similarity of matrices. As the normal forms of singularity theory are to the diagonal 
matrix with ones and zeros on the diagonal, the normal forms of iteration are to the real 
canonical matrix, with blocks on the diagonal corresponding to eigenvalues. The equiva-
lence relation for iteration theory corresponding to the similarity of matrices is usually 
called conjugacy. That is, two endomorphisms from M to itself, f, g, are conjugate if their 
exists a diffeomorphism h of M to itself such that .

As in linear algebra, the reduced freedom of choice in choosing smart coordinate systems 

LC 1#

u xy x3#=
v y=

g h°f°h 1#=
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results in an increase in the number of equivalence classes, and thus in normal forms. We 
may reconsider the Whitney fold and cusp maps now as examples.

8. The Whitney families.

If there is a theory of normal forms for singularities of a map under conjugacy, we do not 
know of it. So we can only provide some guesses here. 

Consider first the one-dimensional fold map,  Any line endomorphism, at a fold, 
can be transformed into this representation by suitable changes of coordinate chart at the 
source and target. But restricted to a single coordinate chart at both the source and target, 
we may not improve on the form, . Thus we have a one-parameter family of 
normal forms in the context of iteration theory, all exhibiting the fold singularity generi-
cally. This is the main point of this paper.

For endomorphisms in two dimensions, the generic fold may be the two-parameter fami-
ly,

Consider now the cusp singularity. We do not have a definitive normal form family to of-
fer, but recommend the study of the three-parameter family:

We call these the Whitney families of endomorphisms.

9. Conclusion.
As seen in Table 1, the evolution sequences of 
• continuous-time dynamics, or flows, 
• discrete-time dynamics, or iteration theory of noninvertible maps, and 
• singularity theory for maps 
are sequentially delayed in historical time. While we know that noninvertible iterations 
developed from invertible iterations, and these in turn from continuous-time dynamics, 
the later emergence of singularity theory seems to be relatively independent. Of course, 
all stem from a common root in Poincaré. In this paper we have indicated the difference 
between singularities of maps as defined by equivalence and those of endomorphisms as 
defined by conjugacy. These latter we may call endosingularities. The normal forms for 
singularities and those for endosingularities are quite different. We propose thus two 
things: an experimental program for iteration theory, based on moduli (families) of nor-
mal forms for the fold and cusp endosingularities, and a theoretical program for global 
analysis aimed at deriving the endosingular moduli.
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