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Abstract
Dynamical systems theory and system dynamics diverged at some point in the recent past. Here 
we take a first step toward convergence. This is a concise, visual introduction to the basic concepts 
of the new theories of chaos and bifurcation.
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1. A history of the divergence

Systems science evolved partly in reaction to destructive aspects of scientific rationalism: reduc-
tion and specialization. Along with cybernetics, holism, and related paradigm struggles, a move-
ment was planned with a mathematical core. In fact, in an essay entitled “The History and 
Development of General Systems Theory” written near the end of his life, Ludwig von Bertalan-
ffy, the founder of General Systems Theory, described his theory retrospectively in three main 
trends:   

• Systems science: mathematical system theory   
• Systems technology   
• Systems philosophy 

These are his names, verbatim, and to them he devoted, respectively, 7, 1, and 5 pages. In any 
case, we may take as our subject here, systems science, also known as mathematical system the-
ory, a branch of mathematics.

Within the 7 pages, then, von Bertalanffy described the branch of mathematics now generally 
known in mathematical circles as dynamical systems theory. But as it evolved within the ambiance 
of general systems theory, it attained the name system dynamics. By now this is a specialty with a 
holistic flavor, and is extensively taught in engineering schools, where it is presented as a technol-
ogy unifying mechanics, chemistry, heat balance, and so on, in the context of the modeling and 
simulation of engineering systems.

In fact, due to the hermeneutical circle so important to the history and development of the sci-
ences, in which experiments and models alternate in a spiral of evolution, this modeling context is 
very important. However, the system dynamics curriculum has not very flexibly followed the new 
developments of dynamical systems theory, and perhaps this divergence could be remedied.
With the advent of the computer revolution and the new mathematics of complex dynamical sys-
tems (including the theories of chaos, bifurcations, catastrophes, and fractal boundaries), a restor-
ative convergence may now be underway.

In this paper we will review the basic concepts of the new math, and then return to the vision of 
von Bertalanffy.

2. The stairway to chaos

Dynamics is a vast area, and our subject is a relatively new frontier within it. So, for those who 
already have an idea of the territory of dynamical systems, we would like now to locate our sub-
ject within this larger territory.

a. Four kinds of dynamics. 
Dynamical systems theory has four flavors:

• flows are continuous families of invertible maps generated by a system of autonomous first-
order ordinary differential equations, or vectorfield, and parameterized continuously by time, 
that is, by real numbers;
• cascades are discrete families of invertible maps generated by the iteration of a given invert-
ible map and its inverse, and parameterized discretely by the integers (zero, positive, and neg-
ative);
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• semi-cascades are discrete families of maps generated by iteration of a given map, generally 
noninvertible, and parameterized discretely by the natural numbers (zero and the positive inte-
gers).
• shifts, or symbolic dynamical systems, are systems with discrete time and discrete state 
spaces.

Both cascades and semi-cascades are also known as discrete dynamical systems, or iterations. In 
general, the state space, the space in which a flow, cascade, or semi-cascade is defined, may be an 
arbitrary space of any dimension: 1, 2, 3, and so on. The state space of a shift has dimension 0. 
This suggests a tableau of types of dynamical systems, as shown in Fig. 0.

.Figure 0. The stairway to chaos.

In this tableau, there is a relationship between cells on the same diagonal. For example, in each 
row, the cell marked A is the cell of lowest dimension in which chaos occurs. Hence, the tableau is 
called the stairway to chaos. Here chaos might mean any dynamic behavior more complicated 
than periodic behavior, but in the literature of chaos theory, the word chaos usually is given a 
more restrictive meaning. The second diagonal, marked B in Fig. 0, may be regarded as the cur-
rent frontier of chaos theory research.

Flows

Cascades

Iterations

Dimension 0 1 2 3

The Stairway to Chaos
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b. The basic concepts
The main features of a dynamical system — flow, cascade, or semicascade — are its attractors, 
their basins, and the boundaries of its basins, or separatrices. And for a dynamical scheme, which 
means a family of dynamical systems parametrized by so-called control variables, the main fea-
tures are its bifurcations. We are going to introduce these basic concepts now by example, step-
by-step on the stairway to chaos.

3. Some examples

Let us label the rows of the tableau of Fig. 0 by F (for flows) for the top row, then C (for cascades) 
for the middle row, and finally S (for semi-cascades) for the bottom row. We also refer to the col-
umns by numerals indicating the dimension of the state space. Thus the upper left cell is denoted 
F1, to its right F2, directly below that, C2, and so on.
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Attractor

Attractor

Separatrix
Figure 1. Cell F1: flow, one-dimensional. This 
example shows two attractors, each centrally 
located in its basin, and a single point separatrix. 
It is a repellor.

Figure 2. Cell F2: flows, two-dimensional. Here 
we see two point attractors, each in a two-dimen-
sional basin. The two basins are divided by a 
one-dimensional separatrix. (This is figure 
1.6.10 of DGB2, p. 51.)

Figure 3. Cell F2: flows, two-dimensional. Here 
also we have two point attractors, each in a two-
dimensional basin, and a one-dimensional sepa-
ratrix. But in this example, the basins are thin, 
and mixed together. This is more realistic than 
Figure 2, in terms of the portraits which occur in 
real models. (This is figure 2.1.22 of DGB2, p. 
64.)
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Figure 4. Cell F2: flows, two-dimensional, 
again. This time we have a single attractor, and it 
is periodic. Periodic attractors are models for 
oscillators. The basin is still two-dimensional. 
(This is figure 3.3.3 of DGB2, p. 104.)

Figure 5. Cell F2: flows, two-dimensional, and:
Cell C1: cascades. one-dimensional.

In a context such as Figure 4, a point P is chosen 
on a periodic orbit, and a short line segment, or 
section, S, is drawn through P transverse to the 
periodic orbit. This drawing shows a blowup of 
the region near P. Points such as x and y on the 
section, S, are followed forward along their tra-
jectories until they again pass through S, in the 
points R(x) and R(y). This operation defines a 
map, R, of S to itself, called the return map by 
Poincaré. (This is figure 7.1.4 of DGB2, p. 237.)

Figure 6. Cell F3: flows, three-dimensional, and:
Cell C2: cascades, two-dimensional.

This is the Poincaré section construction, as 
above, but one step to the right. We see three 
neighboring periodic orbits of a flow in a three-
dimensional state space. The section is two-
dimensional. (This is figure 4.3.13 of DGB2, p. 
145.)
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Figure 7. Cell F3: flows, three-dimensional. In 
this example, we see a chaotic attractor, the 
Rössler attractor. Its fractal dimension is bit 
more than two. (This is figure 8.4.9 of DGB2, p. 
292.)

Figure 8. Cell F3: flows, three-dimensional. This 
is a schematic enlargement of a piece of the 
Rössler attractor, showing its fractal structure. 
(This is figure 9.4.4 of DGB2, p.319.)

Figure 9. Cell F3: flows, three-dimensional, and:
Cell C2: cascades, two-dimensional.

Three is the lowest dimension, for flows, in 
which chaotic attractors appear. Similarly, two is 
the lowest dimension, for chaotic cascades. In 
addition, chaotic separatrices may occur. Here is 
an example of a fractal structure in a separatrix. 
(This is figure 14.1.9 from DGB2, p. 413.)
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Figure 10. Cell S1: semicascades, one-dimen-
sional. A quadratic, nonintervertible map, show-
ing the graphical method of Koenigs-Lemaray 
for determining the trajectory of a point on the 
diagonal of the square. Such dynamical systems 
may have chaotic attractors. (This is figure 2-12 
from JPX, p. 21.)

Figure 11. Cell S2: semicascades, two-dimen-
sional. This context is on the frontier of chaos 
research today. Interaction between a chaotic 
attractor and a chaotic separatrix produce com-
plex behavior. (This is figure7-24 from JPX, p. 
144, drawn by Danielle Fournier-Prunaret.)

Figure 12. Cell S1: semicascades, one-dimen-
sional. A dynamical scheme with one-dimen-
sional state space (here shown vertical) and one-
dimensional control space (horizontal). This is a 
bifurcation diagram showing the transformation 
of an attractive fixed point (FP+) into a repelling 
fixed point (FP-) and emitting a periodic attrac-
tor of period two (2P+). (This is figure 2-17 
from JPX, p. 27.)

For more details of these concepts, see the refer-
-2 -2 -1 0 1 2



 

MS##97.GST1 Abraham 9

       
ences labelled DGB2 and JPX in the Bibliography.

4. Complex dynamical systems

The main idea of complex systems is the connection of dynamical schemes into a network. Con-
nections are made from one scheme to another most simply by means of function from the state 
space of the first to the control space of the second. We may visualize this as a directed line seg-
ment, or arrow, from the response diagram (visualized as a rectangle, as in Figure 12) of the first 
to that of the second, as shown in Figure 13.

Figure 13. A serial link from the states of one scheme to the controls of another.

Many schemes may linked with connections such as this, according to a network, or directed 
graph. The result is a complex dynamical system. (For more details, consult CDS.)

5. Dynamical literacy and education 
What we have seen here is barely the beginning of an elementary course in dynamical literacy. 
This means, according to Ervin Laszlo who has championed the idea, the understanding and use 
of dynamics concepts as a cognitive and linguistic strategy for perceiving, understanding, and dis-
cussing the complexities of the world in which we live. Such literacy may precede the study of the 
concepts in their mathematical form and context with great benefit. A holistic view of the world, 
consistent with the paradigm of general systems philosophy and theory, actual requires such a 
cognitive strategy, and thus, it should be a goal of our educational system. The chaos revolution 
has made this goal achievable, and software such as STELLA (from High Performance Systems, 
see www.hps-inc.com) may be used with great effect to these ends, as had been demonstrated in 
the high school programs of Diane Fisher (www.teleport.com/~sguthrie/ccstadus.html). among 
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C2
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others. 

6. Conclusion

We now return to the program of the unification of the sciences, with the basic concepts of the the-
ories of chaos, bifurcation, and complex dynamical systems in hand. As the specialties of reduc-
tionistic science are replete with dynamical models which are dynamical schemes, we need only 
put them together to obtain holistic models. In fact, this has been an ongoing program in the fron-
tiers of system dynamics: Jay Forrester and the Club of Rome come to mind. What is new now, 
after the chaos revolution, is the paradigm, the technical tools, and the large machines, which are 
required to deal with the inevitably chaotic behavior of these massive models.

Personally I am convinced that for general systems theory to have a role in the creation of our 
future, it must take a place in the world educational system, and demonstrate its power against the 
challenge of our World Problematique.
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