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Abstract

 

Complex dynamical systems theory and system dynamics diverged at some point in the recent 
past, and should reunite. This is a concise introduction to the basic concepts of complex dynami-
cal systems, in the context of the new mathematical theories of chaos and bifurcation.
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1. Introduction

 

Dynamical systems theory begins with Newton in the 17th century and took a radical turn with 
Poincaré a century ago. During this century, the community of scientists using dynamical systems 
to model natural systems discovered a technique of combining simple systems into networks, and 
this movement evolved, through cybernetics and general systems theory, into the branch of math-
ematics now known as 

 

complex dynamical systems theory

 

, or nearly equivalently, as 

 

systems 
dynamics

 

.

Dynamical systems occur in four different flavors:
• flows, or continuous-time, autonomous dynamical systems,
• cascades, or discrete-time, reversible dynamical systems,
• iterations, or discrete-time, irreversible dynamical systems, and
• shifts, or symbolic dynamical systems.

Flows have been used since Newton, are the best understood models, and are most often used by 
scientists. Cascades and iterations were introduced by Poincaré, and symbolic dynamics followed 
soon after. Here, for the sake of simplicity, we speak only of flows.

Our intention is to present, without rigorous definitions, a minimal lexicon for dynamical literacy. 
For those interested in pursuing the ideas further, the references should be consulted. A more 
extensive and annotated bibliography may be found at the website of the Visual Math Institute, 
www.vismath.org.

 

2. Dynamical systems

 

A 

 

flow

 

, or continuous dynamical system, is generated by a vectorfield on a state space. The 

 

state 
space

 

 may be a Euclidean space or a smooth manifold of any dimension, finite or infinite. For 
beginners, it is most helpful to think in terms of Euclidean spaces of dimension one, two, or three. 
The 

 

generator

 

 of the system is a field of vectors which may be regarded as giving the required 
vector velocity, at any given point, which the trajectories of the system must have.
A 

 

trajectory

 

 is a curve in the state space having at each point the required velocity vector. The 

 

flow

 

, then, is the set of all points in the state space, moving along the trajectories like a fluid.

When followed for a long time, most trajectories end up in a dynamical equilibrium called an 

 

attractor

 

. Attractors may be classified in three or more categories, such as fixed, periodic, or cha-
otic. Normally there are many attractors. Fixing attention on one attractor, we might mark each 
and every state which ends up at this attractor in the long run. The set of states so marked com-
prise the 

 

basin

 

 of the attractor. Basins may be fat, like lakes, or thin, like meandering rivers.

Distinct basins are bounded and separated by 

 

basin boundaries

 

, also called 

 

separatrices

 

. These 
may be 

 

thin

 

, like points in dimension one, curves in dimension two, surfaces in dimension three, 
and so on. Very often, however, they are 

 

thick

 

, that is to say, fractal.

The most useful image of a dynamical system is its 

 

portrait

 

: the state space divided into basins by 
separatrices, with one attractor indicated in each basin.
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3. Dynamical schemes

 

Dynamical systems are much employed in the mathematical modeling and computer simulation 
of the simpler systems found in nature. Such models usually have some 

 

control parameters

 

, vari-
able coefficients for example, which are tuned by the modeler so as to obtain the best fit between 
some given experimental data and the simulated data output by the model. A model with controls 
is called a 

 

dynamical scheme

 

, or alternately, a parameterized family of dynamical systems.

When the control parameters of a scheme are fixed, we then have a dynamical system, one mem-
ber of the parametrized family. This system may be visualized as a portrait. And if the controls are 
then moved, the portrait will be changed. When the controls are moved smoothly and gradually, 
the portrait may be seen to also change smoothly and gradually. Sometimes, however, the portrait 
undergoes a radical change even when the controls are moved very gently. Such an event is called 
a 

 

bifurcation

 

.

Bifurcations are certainly the most important features of a scheme, and locating them is a difficult 
job for the experimentalist. One might begin a study of bifurcations by looking at some exemplary 
cases, and most elementary texts do just this. The simple examples fall into three categories:

•

 

subtle bifurcations

 

, in which the change is not immediately striking,
•

 

catastrophic bifurcations

 

, in which a basin suddenly appears or disappears, and
•

 

explosive bifurcations

 

, in which an attractor suddenly expands or contracts.

 

4. Complex dynamical schemes

 

The schemes described above, and those usually found in elementary texts, are 

 

simple schemes

 

. 
Their state spaces have low dimension, and they have just a few control parameters. They are suit-
able for modeling only the simplest natural systems, such as a simple pendulum. More complex 
natural systems require model schemes made by combining several simple schemes in a network. 
These are called 

 

complex dynamical schemes

 

. 

One begins with a 

 

directed graph

 

, that is, a diagram with blank boxes, 

 

nodes

 

, connected by 
arrows, or 

 

connections

 

. The nodes, corresponding to subsystems of the natural system, must be 
filled in with specific simple schemes. The connections must be specified by coupling functions, 
which enslave some controls (

 

inputs

 

) of a target scheme to the states (

 

outputs

 

) of a source scheme. 

After being connected in this way, some of the controls of the node schemes are enslaved, and are 
thus no longer control parameters. Other node controls remain free. Thus, the fully connected 
complex scheme is still a dynamical scheme. The meaning of 

 

complex

 

 in this context refers to the 
means of construction of the model, as a system of subsystems.

Neural nets are complex dynamical schemes. So are most models in mathematical biology, ecol-
ogy, atmospheric science, and so on. The evolving experience with massively complex schemes 
has led to an idea, called 

 

connectionism

 

, that the network is more important than the choice of 
models for the nodes. 
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5. Software

 

Years ago, we taught our students to build models using programming languages such as BASIC, 
PASCAL, C, and so on. Special simulation languages such as DYNAMO and STELLA came 
along and greatly advanced the art of complex dynamical modeling. Then came the fabulous envi-
ronments for symbolic manipulation and general math problem solving such as MACSYMA, 
MAPLE, MATHEMATICA, MATLAB, and the like. Today it is relatively simple to build a com-
plex dynamical scheme to model scientific data. The larger problem is to understand the model, 
and this is where the evolving theory of complex dynamics (systems dynamics) comes to our aid.

 

6. Conclusion

 

Today we live in a world troubled by many large problems. One difficulty in facing these prob-
lems is their sheer complexity. We have, collectively, a complexity horizon. Systems within the 
horizon we can understand; those outside are beyond our ken. And the 

 

world problematique

 

 is 
well over the horizon. 

To a certain extent, our problem consists of the rejection of the solution. For we now have 
advanced methods for the mathematical modeling and computer simulation of complex dynami-
cal systems which can significantly expand our complexity horizon. These new methods are 
greatly underutilized, as our society is handicapped by a mass epidemic of math anxiety and math 
avoidance syndrome.

A challenge for the world community of general systems thinkers is to influence the educational 
systems of all nations so as to promote dynamical literacy, and the systems approach to under-
standing global problems.
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