Math 145 Chaos Theory

Ralph Abraham www.ralph-abraham.org

> Math Dept, UCSC Spring 2017

Meeting #9T, May 30

Defining Inset, Basin, Attractor, ...
(From Foundations of Mechanics)

Review from Meeting 8Th

• Calculus on manifolds (Ch. 2)

Topological dynamics (Ch. 6, Sec. 1)

New for Meeting 9T

Topological dynamics (Ch. 6, Sec. 3)

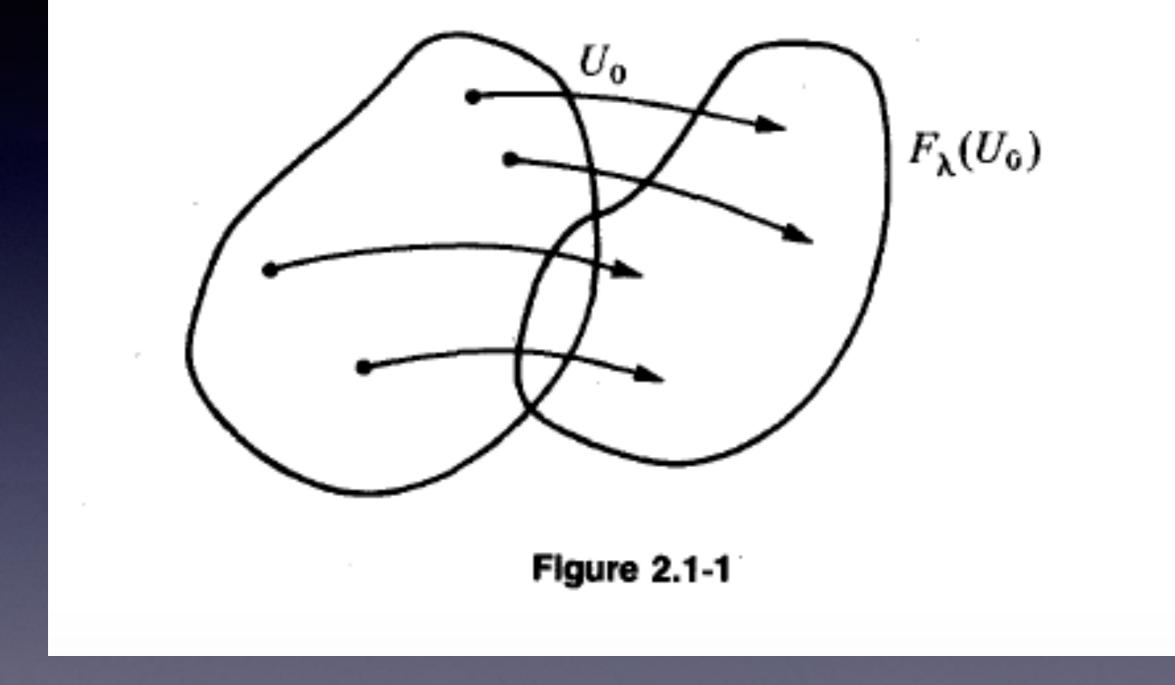
Chapter 2 Review Let us now turn to the elaboration of these ideas when a vector field X is given on a manifold M.

Recall that a curve c at a point m of a manifold M is a C^1 map from an open interval I of R into M such that $0 \in I$ and c(0) = m. For such a curve we may assign a tangent vector at each point $c(\lambda), \lambda \in I$, by $c'(\lambda) = Tc(\lambda, 1)$.

2.1.1 Definition. Let M be a manifold and $X \in \mathcal{K}(M)$. An integral curve of X at $m \in M$ is a curve c at m such that $c'(\lambda) = X(c(\lambda))$ for each $\lambda \in I$.

2.1.3 Definition. Let M be a manifold and X a vector field on M. A flow box of X at $m \in M$ is a triple (U_0, a, F) , where

- (i) $U_0 \subset M$ is open, $m \in U_0$, and $a \in \mathbb{R}$, a > 0 or $a = +\infty$;
- (ii) F: $U_0 \times I_a \rightarrow M$ is of class C^{∞} , where $I_a = (-a, a)$;
- (iii) for each $u \in U_0$, $c_u: I_a \to M$ defined by $c_u(\lambda) = F(u, \lambda)$ is an integral curve of X at u;
- (iv) if F_{λ} : $U_0 \rightarrow M$ is defined by $F_{\lambda}(u) = F(u, \lambda)$, then for $\lambda \in I_a$, $F_{\lambda}(U_0)$ is open, and F_{λ} is a diffeomorphism onto its image.



2.1.13 Definition Given a manifold M and a vector field X on M, let $\mathfrak{N}_X \subset M \times R$ be the set of $(m, \lambda) \in M \times R$ such that there is an integral curve $c: I \rightarrow M$ of X at m with $\lambda \in I$. The vector field X is complete if $\mathfrak{N}_X = M \times R$. Also, a point $m \in M$ is called σ complete, where $\sigma = +, -, \text{ or } \pm, if \mathfrak{N}_X \cap (\{m\} \times R)$ contains all (m, t) for $t > 0, t < 0, or t \in R$, respectively.

Thus, X is complete iff each integral curve can be extended so that its domain becomes $(-\infty, \infty)$.

Chapter 6, Section I Review

6.1.1 Definition. Suppose X is a vector field on the manifold M with integral $F: \mathfrak{D}_X \subset M \times \mathbb{R} \to M$. Then the λ^{σ} limit set of $m, \sigma = +, -, \text{ or } \pm, \text{ is defined by}$

$$\lambda^{+}(m) = \bigcap_{n \in \mathbb{Z}} cl \left\{ F[(\{m\} \times (n, +\infty)) \cap \mathfrak{D}_{X}] \right\}$$
$$\lambda^{-}(m) = \bigcap_{n \in \mathbb{Z}} cl \left\{ F[(\{m\} \times (-\infty, n)) \cap \mathfrak{D}_{X}] \right\}$$

and

. .

$$\lambda^{\pm}(m) = \lambda^{+}(m) \cup \lambda^{-}(m)$$

where Z denotes the integers. Also, let $\Lambda_X^{\sigma} = \bigcup \{\lambda^{\sigma}(m) | m \in M\}$, $\sigma = +, -, \pm$, and $\Lambda_X = \Lambda_X^{\pm}$.

The λ^+ (resp. λ^-) limit set is sometimes called the ω (resp. α) limit set.

6.1.6 Definition. An equilibrium point (rest point, critical point) of X is a point $m \in M$ such that $F_t(m) = m$ for all $t \in \mathbb{R}$. A periodic point of X is a point $m \in M$ such that for some $\tau > 0$, $F_{t+\tau}(m) = F_t(m)$ for all $t \in \mathbb{R}$, and the period of m is the smallest $\tau > 0$ satisfying this condition. A closed orbit is the orbit of a periodic (nonequilibrium) point. A critical element of X is either a set $\{m\}$, where m is an equilibrium, or a closed orbit. The set of all critical elements of X is denoted by Γ_X .

Chapter 6, Section 3

6.3.1 Notation. Let M be a manifold and X a vector field on M, with integral $F: \mathfrak{D}_X \subset M \times \mathbb{R} \to M$. For $(m, t) \in \mathfrak{D}_X$ let $m_t = F(m, t)$. Then for each $m \in M$, let

$$m_{+} = \bigcup \{ m_{t} | (m, t) \in \mathfrak{N}_{X}, t \ge 0 \}, \quad the \ + \ orbit \ of \ m$$
$$m_{-} = \bigcup \{ m_{t} | (m, t) \in \mathfrak{N}_{X}, t \le 0 \}, \quad the \ - \ orbit \ of \ m$$
$$m_{\pm} = m_{+} \cup m_{-}, \quad the \ full \ orbit \ of \ m$$

These will be denoted m_{σ} , where σ can be +, -, or \pm .

In either case above, we define

$$S^{\sigma}(m) = \{ m' \in M | \lambda^{\sigma}(m') \subset cl(m_{\sigma}) \}$$

and

$$A^{\sigma}(m) = \left\{ m' \in M \mid m' \text{ is } \sigma \text{ complete and } \lim_{t \to \sigma \infty} \rho(m_t, m'_t) = 0 \right\}$$

if m is σ complete, and $A^{\sigma}(m) = \{m\}$ otherwise. $S^+(m)$ and $S^-(m)$ are known as the **inset** and **outset** of m, respectively.

6.3.5 Definition. A subset $A \subseteq M$ is an attractor of a complete vector field $X \in \mathfrak{N}(M)$ if it is closed, invariant, and has an open neighborhood $U_0 \subseteq M$ that is (i) positively invariant, and (ii) for each open neighborhood V of $A (A \subseteq V \subseteq U_0 \subseteq M)$ there is $\tau > 0$ such that $U_t = F_t(U_0) \subseteq V$ for all $t \ge \tau$. An attractor $A \subseteq M$ is stable if for every neighborhood U_0 of $A \subseteq M$ there is a neighborhood V of A is the union of all open neighborhoods of A satisfying (i) and (ii) above.

Math 145 Spring 2017 Meeting #8Th

